A note on powers of Pisot numbers

By A. DUBICKAS (Vilnius)

Abstract

Let b be an algebraic number greater than one such that the fractional part of its powers tends to zero or one. We show that in the first case b is an integer and in the second case b is a certain type of Pisot number.

For $x \in \mathbb{R}$ let $\{x\}$ denote the fractional part of x, and let $\|x\|$ denote the distance from x to the nearest integer. A theorem of Koksma states that the sequence $\left\{b^{n}\right\}_{n \geqslant 1}$ is uniformly distributed in the interval $[0 ; 1]$ for almost all real numbers $b>1$. However Pisot (or Pisot-Vijayaraghavan) numbers represent a nontrivial exeptional set in this theorem. A real algebraic integer greater than 1 is called a Pisot (or PV) number if all its remaining conjugates (if any) lie strictly inside the unit circle. A theorem of Pisot and Vijayaraghavan (see, e.g., [1], [4]) implies that for an algebraic number b greater than one $\left\|b^{n}\right\| \rightarrow 0(n \rightarrow \infty)$ iff b is a PV number. In estimating the number of lattice points below a logarithmic curve [5] the question arises whether there exists any $b>1$ with $\left\{b^{n}\right\} \rightarrow 0$ as $n \rightarrow \infty$. Leaving transcendental numbers out of consideration G. Kuba [5] asked the following:

Question. Are there any $P V$ numbers $b \notin \mathbb{Z}$ with $\left\{b^{n}\right\} \rightarrow 0$ as $n \rightarrow \infty$?
A related question is the following one: find all real numbers $b>1$ for which $\left\{b^{n}\right\} \rightarrow 1$ as $n \rightarrow \infty$. If b is algebraic then this condition implies that b is a PV number. We say that b is a strong $P V$ number if it is a

Mathematics Subject Classification: 11J71, 11R06.
Key words and phrases: algebraic numbers, Pisot numbers, fractional part.
Partially supported by Grant from Lithuanian Foundation of Studies and Science.

PV number such that one of its remaining conjugates $b_{2}>0$ is strictly greater then any of the absolute values of the remaining ones (if any) $b_{2}>\max _{3 \leqslant j \leqslant d}\left|b_{j}\right|$. Clearly, the strong PV numbers of degree $d=2$ are given by $b=\frac{1}{2}\left(p+\sqrt{p^{2}-4 q}\right)$, where p, q and $p^{2}-4 q$ are positive integers and $p^{2}-4 q$ is not a perfect square. The referee noted that the set of strong PV numbers was also considered by D. Boyd [3].

The following theorem describes the algebraic numbers with the limit of fractional part of powers zero or one. In particular, it shows that the answer to the question in [5] is negative.

Theorem. If $b>1$ is an algebraic number such that $\left\{b^{n}\right\} \rightarrow 0$ as $n \rightarrow \infty$ then $b \in \mathbb{Z}$. If with the same hypotheses $\left\{b^{n}\right\} \rightarrow 1$ as $n \rightarrow \infty$ then b is a strong $P V$ number.

Proof. Suppose first that $\left\{b^{n}\right\} \rightarrow 0$ as $n \rightarrow \infty$. The theorem of Pisot and Vijayaraghavan implies that either $b \in \mathbb{Z}$ or b is a PV number of degree $d \geqslant 2$. We will show that the second case is impossible. Indeed, let $b_{2}, b_{3}, \ldots, b_{d}$ be the conjugates of b. Clearly, the sum

$$
b^{n}+b_{2}^{n}+b_{3}^{n}+\ldots+b_{d}^{n}
$$

is an integer if n is a positive integer. Since

$$
S(n)=b_{2}^{n}+b_{3}^{n}+\ldots+b_{d}^{n}
$$

is a real number and $S(n) \rightarrow 0$ as $n \rightarrow \infty$, it suffices to show that $S(n)$ is positive for an infinite number of n 's.

Let $M=\max _{2 \leqslant j \leqslant d}\left|b_{j}\right|$. A result of C. Smyth [7] shows that if b is a PV number then it has no two conjugates of equal modulus, except for pairs of complex conjugates (see [2], [6] for related results). Without loss of generality we assume that $\left|b_{2}\right|=M$. There are three possibilities: $b_{2}=M, b_{2}=-M$ and $b_{2}=M e^{i \theta}$ with $\theta \in(0 ; \pi)$. In the first two cases we have $S(2 n)>0$ for all sufficiently large n 's and the first part of the theorem follows. In the third case let $b_{3}=M e^{-i \theta}$. Then

$$
b_{2}^{n}+b_{3}^{n}=2 M^{n} \cos (n \theta) \geqslant M^{n}
$$

if $\|n \theta / 2 \pi\| \leqslant 1 / 6$. By Dirichlet's theorem, for each $x \in \mathbb{R}$ and $\delta>0$ the inequality $\|n x\|<\delta$ has infinite number of solutions in positive integers n (here $x=\theta / 2 \pi, \delta=1 / 6$). Hence, if $m=\max _{4 \leqslant j \leqslant d}\left|b_{j}\right|$ for these n we have

$$
S(n) \geqslant M^{n}-(d-3) m^{n}
$$

which is positive for sufficiently large n. This completes the proof of the first part of the theorem.

Suppose now that $\left\{b^{n}\right\} \rightarrow 1$ as $n \rightarrow \infty$. Then again $S(n) \rightarrow 0$ as $n \rightarrow \infty$. In the first case $\left(b_{2}=M\right) b$ is a strong PV number. In the second case $\left(b_{2}=-M\right) S(n)$ is negative for all sufficiently large odd n which contradicts the condition $\left\{b^{n}\right\} \rightarrow 1(n \rightarrow \infty)$. In the third case

$$
b_{2}^{n}+b_{3}^{n}=2 M^{n} \cos (n \theta) \leqslant-M^{n}
$$

if $1 / 3 \leqslant\|n \theta / 2 \pi\| \leqslant 2 / 3$. Clearly, for $x \in \mathbb{R}, x \notin \mathbb{Z}$ the inequality $1 / 3 \leqslant$ $\|n x\| \leqslant 2 / 3$ has infinite number of solutions in positive integers n (for $x \notin \mathbb{Q}$ this follows from the uniform distribution of $\{n x\}$ and for $x \in \mathbb{Q}$ this is an easy exercise). So that for these n we have

$$
S(n) \leqslant-M^{n}+(d-3) m^{n}
$$

which is negative for sufficiently large n. This completes the proof of the second part of the theorem.

References

[1] M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. PathiauxDelefosse and J. P. Schreiber, Pisot and Salem numbers, Birkhäuser, 1992.
[2] D. Boyd, Irreducible polynomials with many roots of maximal modulus, Acta Arith. 68 (1994), 85-88.
[3] D. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory (F.Q. Gouvea and N. Yui, eds.), Proc. of the 1991 CNTA conference, Oxford University Press, 1993, 333-340.
[4] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge, 1957.
[5] G. Kuba, The number of lattice points below a logarithmic curve, Arch. Math. 69 (1997), 156-163.
[6] M. Mignotte, Sur les conjugées des nombres de Pisot, C.R. Acad. Sci. Paris Sér. I Math. 298 (1984), 21.
[7] C. Smyth, The conjugates of algebraic integers, Amer. Math. Monthly $8 \mathbf{8}$ (1975), 86.
A. DUBICKAS

DEPARTMENT OF MATHEMATICS
VILNiUS UNIVERSITY
NAUGARDUKO 24
2006 VILNIUS
LITHUANIA
E-mail: arturas.dubickas@maf.vu.lt
(Received September 18, 1998; revised March 1, 1999)

