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Quasi-metrizability of the finest quasi-proximity

By SALVADOR ROMAGUERA (Valencia)

Abstract. A characterization of the bispaces whose finest quasi-proximity is
quasi-metrizable is obtained in terms of real-valued quasi-proximally continuous func-
tions. We also prove that for a doubly Hausdorff bispace X the following are equivalent:
(i) X admits a quasi-metric for which every real-valued bicontinuous function is quasi-
uniformly continuous; (ii) the finest quasi-proximity of X is quasi-metrizable; (iii) the
finest quasi-uniformity of X is quasi-metrizable. Examples showing that double Haus-
dorffness of X cannot be omitted in this result are given.

As an application of our methods we deduce that the fine quasi-proximity (resp.
quasi-uniformity) of a T1 topological space X is quasi-metrizable if and only if X admits
a quasi-metric for which every lower semicontinuous function is quasi-proximally (resp.
quasi-uniformly) continuous. We also deduce that if the finest quasi-proximity of a
Hausdorff topological space X is quasi-metrizable, then its fine quasi-uniformity is quasi-
metrizable and, thus, X is a metrizable space with only finitely many nonisolated points.

1. Introduction

Throughout this paper the letters R and N will denote the set of all real
numbers and the set of all positive integer numbers, respectively. If (X, τ)
is a topological space and A is a subset of X, then τ cl(A) and τ int(A)
will denote the closure of A and the interior of A in (X, τ), respectively.

Our basic references for quasi-proximity spaces are [8] and [28], for
quasi-uniform and quasi-metric spaces they are [8] and [15] and for bitopo-
logical spaces they are [13] and [18].
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Let us recall that a quasi-pseudometric on a (nonempty) set X is a
nonnegative real-valued function d on X ×X such that for all x, y, z ∈ X:

(i) d(x, x) = 0, and

(ii) d(x, y) ≤ d(x, z) + d(z, y).

If, in addition, d satisfies:

(iii) d(x, y) = 0 ⇔ x = y,
then, d is called a quasi-metric on X.

A quasi-(pseudo)metric space is a pair (X, d) such that X is a (non-
empty) set and d is a quasi-(pseudo)metric on X.

Each quasi-pseudometric d on X generates a topology T (d) on X,
which has as a base the collection {Sd(x, r) : x ∈ X, r > 0}, where
Sd(x, r) = {y ∈ X : d(x, y) < r} for all x ∈ X and r > 0.

If d is a quasi-(pseudo)metric on X, then the function d−1 defined
on X × X by d−1(x, y) = d(y, x), is also a quasi-(pseudo)metric on X,
called the conjugate of d. Then, the function d ∨ d−1 defined on X × X

by (d ∨ d−1)(x, y) = max{d(x, y), d−1(x, y)}, is a (pseudo)metric on X.
Each quasi-pseudometric d on X generates a quasi-uniformity Ud on

X, which has as a base the countable collection {Un : n ∈ N}, where
Un = {(x, y) ∈ X ×X : d(x, y) < 2−n} for all n ∈ N (see [8, p. 3]).

A topological space (X, τ) is called quasi-(pseudo)metrizable if there
is a quasi-(pseudo)metric d on X such that T (d) = τ . In this case, we say
that (X, τ) admits d (and d is said to be compatible with τ).

The notion of a bispace (bitopological space in [13]) appears in a natu-
ral way when one considers the topologies T (d) and T (d−1) generated by a
quasi-pseudometric d and its conjugate d−1. A bispace is an ordered triple
(X, τ1, τ2) such that X is a (nonempty) set and τ1 and τ2 are topologies on
X. A bispace (X, τ1, τ2) is said to be quasi-(pseudo)metrizable if there is
a quasi-(pseudo)metric d on X such that T (d) = τ1 and T (d−1) = τ2. In
this case, we say that (X, τ1, τ2) admits d (and d is said to be compatible
with (τ1, τ2)).

A UC space is a metric space for which every real-valued continuous
function is uniformly continuous. UC spaces have been investigated by
many authors in different contexts [1], [2], [3], [4], [5], [9], [10], [12], [19],
[20], [21], [22], [23], [24], [25], [30], [31], etc. In particular, it is well known
that for a metric space (X, d) the following are equivalent: (i) (X, d) is a
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UC space; (ii) d is an equinormal metric on X; (iii) the uniformity gen-
erated by d is exactly the fine uniformity of (X, d). Perhaps, the most
visual characterization of metrizable spaces whose fine uniformity is gen-
erated by a metric, is the following result proved by Nagata [22]: The
fine uniformity of a metrizable space is metrizable if and only if the set of
the nonisolated points is compact. Later on, Sharma [30] proved that the
finest proximity of a metrizable space is metrizable if and only it admits
an equinormal metric, so, it follows that the fine uniformity of a Tychonoff
space is metrizable if and only if its finest proximity is metrizable. In [14],
Künzi proved that the fine quasi-uniformity of a T1 topological space is
quasi-metrizable if and only if it is a quasi-metrizable space containing
only finitely many nonisolated points.

These interesting results suggest some questions in a natural way.
For instance, characterize the quasi-metric spaces for which every real-
valued lower semicontinuous function is quasi-uniformly continuous, inves-
tigate the relationship between the bispaces whose finest quasi-proximity
is quasi-metrizable and the bispaces whose finest quasi-uniformity is quasi-
metrizable, etc. We here obtain characterizations of the bispaces whose
finest quasi-proximity is quasi-metrizable both in terms of a bitopological
notion of equinormality and in terms of real-valued bicontinuous functions
which are quasi-proximally continuous. We observe that, contrarily to
the metric case, there exist bispaces whose finest quasi-proximity is quasi-
metrizable but their finest quasi-uniformity is not. However, we prove
that if (X, τ1, τ2) is a quasi-metrizable bispace such that both τ1 and τ2

are Hausdorff topologies, then the following are equivalent: (i) The finest
quasi-proximity of (X, τ1, τ2) is quasi-metrizable; (ii) The finest quasi-
uniformity of (X, τ1, τ2) is quasi-metrizable; (iii) (X, τ1, τ2) admits a quasi-
metric for which every real-valued bicontinuous function is quasi-uniformly
continuous. We also present an example of a quasi-metrizable bispace
which satisfies condition (iii) above but whose finest quasi-uniformity is
not quasi-metrizable. As an application of our methods we deduce that
a quasi-metric space (X, d) has the property that every real-valued lower
semicontinuous function is quasi-proximally (resp. quasi-uniformly) contin-
uous if and only the quasi-proximity (resp. the quasi-uniformity) generated
by d is exactly the finest quasi-proximity (resp. the fine quasi-uniformity)
of the topological space (X,T (d)). We also deduce, Künzi’s theorem men-
tioned above as well as the fact that the fine quasi-uniformity of a Hausdorff
topological space is quasi-metrizable if and only if its finest quasi-proximity
is quasi-metrizable.
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2. Bispaces whose finest quasi-proximity
is quasi-metrizable

If δ is a quasi-proximity for a set X we write AδB for (A,B) ∈ δ and
A−δB for (A,B) /∈ δ.

It is well known [8, p. 12] that if U is a quasi-uniformity on a set X,
the quasi-proximity induced by U is the quasi-proximity δU defined by

AδUB if and only if for each U ∈ U , (A×B) ∩ U 6= ∅.

Hence, if d is a quasi-pseudometric on X, we have AδUd
B if and only

if d(A,B) = 0. In this case we write δd instead of δUd
and we say that δd

is the quasi-proximity induced by the quasi-pseudometric d.
A quasi-proximity ρ for a set X is called quasi-(pseudo)metrizable if

there is a quasi-(pseudo)metric d on X such that δd = ρ.
It is well known that every topological space (X, τ) admits a finest

compatible quasi-proximity δFN . Moreover, AδFNB if and only if A ∩
τ cl(B) 6= ∅. In particular, if (X, τ) is T1, T (δ−1

FN ) is the discrete topology
on X.

Now let (X, τ1, τ2) be a pairwise completely regular bispace. A quasi-
proximity δ for X is called compatible with (τ1, τ2) if T (δ) = τ1 and
T (δ−1) = τ2. Similarly to the proof of [8, Proposition 1.38] one can show
that every pairwise completely regular bispace admits a finest compati-
ble quasi-proximity. If (X, τ1, τ2) is a pairwise Hausdorff pairwise normal
bispace, the finest compatible quasi-proximity can be easily described.

Proposition 1. Let (X, τ1, τ2) be a pairwise Hausdorff pairwise nor-

mal bispace. Then the relation δBFN defined by

AδBFNB if and only if τ2 cl(A) ∩ τ1 cl(B) 6= ∅

is the finest quasi-proximity of (X, τ1, τ2).

Proof. It is proved in [11] that, indeed, δBFN is a quasi-proximity
compatible with (τ1, τ2). Let ρ be any quasi-proximity for X compatible
with (τ1, τ2) and let AδBFNB. We want to show that then AρB. Assume
the contrary. Then there is C ⊆ X such that A−ρC and (X\C)−ρB.
Hence C−ρ−1A, so C ⊆ τ2 int(X\A). Moreover, (X\C) ⊆ τ1 int(X\B).
Therefore τ2 cl(A)∩ τ1 cl(B) = ∅, a contradiction. We conclude that AρB.

¤
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Remark 1. It is well known that if (X, τ) is a T1 topological space,
then (X, τ, D) is a pairwise Hausdorff pairwise normal bispace, where D

denotes the discrete topology on X. Hence, from Proposition 1 and the
comments made above it follows the known fact that if (X, τ) is a T1

topological space, then the finest quasi-proximity of (X, τ) coincides with
the finest quasi-proximity of the bispace (X, τ,D).

Definition 1. A quasi-pseudometric d on a set X is called pairwise
equinormal if d(A,B) > 0 whenever A is a (nonempty) T (d−1)-closed set
and B is a disjoint (nonempty) T (d)-closed set.

Theorem 1. The finest quasi-proximity of a pairwise Hausdorff pair-

wise completely regular bispace (X, τ1, τ2) is quasi-metrizable if and only

if it admits a pairwise equinormal quasi-metric.

Proof. If the finest quasi-proximity of (X, τ1, τ2) is quasi-metrizable,
there exists a quasi-metric d on X compatible with (τ1, τ2) such that AδdB

if and only if τ2 cl(A) ∩ τ1 cl(B) 6= ∅, by Proposition 1 (recall that every
quasi-metrizable bispace is pairwise normal). Since AδdB if and only if
d(A,B) = 0, we conclude that d(A, B) > 0 whenever A is a (nonempty)
τ2-closed set and B is a disjoint (nonempty) τ1-closed set. Thus d is
pairwise equinormal.

Conversely, the quasi-proximity δd induced by the pairwise equinormal
quasi-metric d satisfies AδdB if and only if d(A,B) = 0. Consequently,
τ2 cl(A)∩ τ1 cl(B) 6= ∅ whenever AδdB, by the paiwise equinormality of d.
Then, it follows from Proposition 1 that AδBFNB whenever AδdB. We
conclude that δd is exactly the finest quasi-proximity of (X, τ1, τ2). ¤

Remark 2. Actually, the proof of Theorem 1 shows that if d is a quasi-
metric on a set X, then d is pairwise equinormal if and only if δd coincides
with the finest quasi-proximity of the bispace (X, T (d), T (d−1)).

In our next theorem we shall characterize the bispaces whose finest
quasi-proximity is quasi-metrizable in terms of real-valued bicontinuous
functions which are quasi-proximally continuous.

Let (X, τ1, τ2) and (Y, τ ′1, τ
′
2) be two bispaces. A function f from X

to Y is said to be bicontinuous if f is continuous from (X, τi) to (Y, τ ′i),
i = 1, 2.

Let (X, δ) and (Y, ρ) be two quasi-proximity spaces. A function f from
X to Y is called qp-continuous [8, 1.48], if f(A)ρf(B) whenever AδB.
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Denote by ` the quasi-pseudometric on R given by `(x, y) = (x−y)∨0.
We say that a real-valued function f defined on a quasi-pseudometric space
(X, d) is quasi-proximally continuous if it is qp-continuous from (X, δd) to
(R, δ`). Thus, a real-valued function f defined on the quasi-pseudometric
space (X, d) is quasi-proximally continuous if and only if inf{(f(a)−f(b))∨
0 : a ∈ A, b ∈ B} = 0 whenever d(A, B) = 0.

Definition 2. A quasi-metric space (X, d) is called a QP space if every
real-valued lower semicontinuous function (with respect to T (d)) is quasi-
proximally continuous. A quasi-metrizable topological space (X, τ) is said
to be a QP topological space if it admits a quasi-metric d for which (X, d)
is a QP space.

A quasi-metric space (X, d) is called a BQP space if every real-
valued bicontinuous function (from (X,T (d), T (d−1)) to (R, T (`), T (`−1)))
is quasi-proximally continuous. A quasi-metrizable bispace (X, τ1, τ2) is
said to be a BQP bispace if it admits a quasi-metric d for which (X, d) is
a BQP space.

Theorem 2. A quasi-metric space (X, d) is a BQP space if and only

if the quasi-proximity δd, induced by d, is the finest quasi-proximity of the

bispace (X, T (d), T (d−1)).

Proof. Suppose that the quasi-metric space (X, d) is a BQP space.
By Remark 2, it suffices to show that d is a pairwise equinormal quasi-
metric on X. Let A be a (nonempty) T (d−1)-closed set and let B be
a disjoint (nonempty) T (d)-closed set. By [13, Theorem 2.7] there is a
bicontinuous function f : X → [0, 1] such that f(A) = 1 and f(B) = 0.
Therefore,

inf{(f(a)− f(b)) ∨ 0 : a ∈ A, b ∈ B} = 1.

Since (X, d) is a BQP space we deduce that d(A, B) > 0. Thus d is
pairwise equinormal.

Conversely, let f be a real-valued bicontinuous function from (X,τ1,τ2)
to (R, T (`), T (`−1)), where τ1 = T (d) and τ2 = T (d−1). Let A and B be
two subsets of X such that d(A,B) = 0. Then d(τ2 cl(A), τ1 cl(B)) = 0.
Since d is pairwise equinormal there is x ∈ τ2 cl(A) ∩ τ1 cl(B). We may
assume the following cases:

I. x ∈ A∩B. Then, obviously, inf{(f(a)−f(b))∨0 : a ∈ A, b ∈ B} = 0.
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II. x ∈ (τ2 cl(A)\A) ∩ B. In this case there is a sequence (an)n∈N of
distinct points in A such that d(an, x) → 0. Since f is upper semicontin-
uous with respect to τ2 and x ∈ B, we obtain that inf{(f(a)− f(x)) ∨ 0 :
a ∈ A} = 0.

III. x ∈ A ∩ (τ1 cl(B)\B). Then, an argument similarly to the given
in II, permits us to obtain that inf{(f(x)− f(b)) ∨ 0 : b ∈ B} = 0.

IV. x ∈ (τ2 cl(A)\A) ∩ (τ1 cl(B)\B). Then there exist a sequence
(an)n∈N of (distinct) points in A and a sequence (bn)n∈N of (distinct) points
in B such that d(an, x) → 0 and d(x, bn) → 0. Since f is bicontinuous, we
immediately deduce that inf{(f(a)− f(b)) ∨ 0 : a ∈ A, b ∈ B} = 0.

We conclude that (X, d) is a BQP space. ¤

Corollary 1. The finest quasi-proximity of a pairwise Hausdorff pair-

wise completely regular bispace is quasi-metrizable if and only if it is a

BQP bispace.

In [14, Lemma 1.1] Künzi proved that a topological space has a σ-
interior preserving topology if and only if its finest quasi-proximity is quasi-
pseudo-metrizable. Here we obtain the following characterizations of those
quasi-metrizable topological spaces whose finest quasi-proximity is quasi-
metrizable.

Corollary 2. For a quasi-metrizable topological space (X, τ) the fol-

lowing statements are equivalent:

(1) The finest quasi-proximity of (X, τ) is quasi-metrizable.

(2) (X, τ) admits a quasi-metric d such that d(A,B) > 0 whenever A is

a (nonempty) set and B is a disjoint (nonempty) closed set.

(3) (X, τ) is a QP topological space.

Proof. (1) ⇒ (2): If the finest quasi-proximity of (X, τ) is quasi-
metrizable we deduce, from Remark 1, that the finest quasi-proximity of
(X, τ, D) is quasi-metrizable, where D denotes the discrete topology on X.
By Theorem 1, (X, τ, D) admits a pairwise equinormal quasi-metric d,
which, obviously, satisfies the conditions of (2).

(2) ⇒ (3): Suppose that there is a point x ∈ X which is not T (d−1)-
isolated. Then there is a sequence (an)n∈N of distinct points in X such
that an 6= x for all n ∈ N and d(an, x) → 0. Thus, d(A,B) = 0, where
A = {an : n ∈ N} and B = {x}, a contradiction. Hence, T (d−1) is the
discrete topology on X, and, thus, d is pairwise equinormal. By Theorem 1
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and Corollary 1, (X, τ,D) is a BQP bispace, so (X, τ) is a QP topological
space.

(3) ⇒ (1): Let d be a quasi-metric on X compatible with τ for which
(X, d) is a QP space. Suppose that there is a point x ∈ X which is not
T (d−1)-isolated. Then there is a sequence (an)n∈N of distinct points in X

such that an 6= x for all n ∈ N and d(an, x) → 0. Consider the function f

defined on X by f(x) = 0 and f(y) = 1 for all y ∈ X\{x}. Then f is lower
semicontinuous on (X, τ) but clearly it is not quasi-proximally continuous.
We conclude that T (d−1) is the discrete topology on X, so, (X, τ, D) is a
BQP bispace because (X, τ) is a QP topological space. From Corollary 1
and Remark 1 it follows that the finest quasi-proximity of (X, τ) is quasi-
metrizable. ¤

The notion of a pairwise compact bispace was introduced in [7]. It is
known that a bispace (X, τ1, τ2) is pairwise compact if and only if every
proper τi-closed set is τj-compact, i, j = 1, 2; i 6= j.

Proposition 2. Let (X, τ1, τ2) be a quasi-metrizable pairwise compact

bispace. Then every compatible quasi-metric is pairwise equinormal.

Proof. Let d be a quasi-metric on X compatible with (τ1, τ2). Sup-
pose that there exist a (nonempty) τ2-closed set A and a disjoint (non-
empty) τ1-closed set B such that d(A,B) = 0. Then there exist a sequence
(an)n∈N in A and a sequence (bn)n∈N in B such that d(an, bn) → 0. Since
the bispace is pairwise compact, there exists a subsequence (ak(n))n∈N of
(an)n∈N that is τ1-convergent to a point a ∈ A. Moreover, (bk(n))n∈N has
a τ2-cluster point b ∈ B. It follows from the triangle inequality that a = b,
a contradiction. We conclude that d is pairwise equinormal. ¤

Corollary 3. The finest quasi-proximity of any quasi-metrizable pair-

wise compact bispace is quasi-metrizable.

Example 1. Let X = {1/n : n ∈ N} and let d be the quasi-metric
defined on X by d(1/n, 1/m) = 1/m for n 6= m and d(x, x) = 0 for all
x ∈ X. Then T (d) is the cofinite topology on X and T (d−1) is the discrete
topology on X. It is known (and easy to verify) that (X, T (d), T (d−1))
is a pairwise compact bispace. Hence, every compatible quasi-metric is
pairwise equinormal. So, the finest quasi-proximity of (X, T (d), T (d−1)) is
quasi-metrizable.
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It is interesting to note that, by [16, Proposition 4], (X, T (d)) (and,
hence, (X,T (d), T (d−1))) admits a unique quasi-proximity, because it is
hereditarily compact. (See [17] for an example of a non hereditarily com-
pact T1 topological space admitting a unique quasi-proximity.)

In [6] Brümmer showed that every topological space (X, τ) admits a
finest quasi-uniformity: Basic entourages are of the form {(x, y) ∈ X×X :
d(x, y) < r}, where d is any quasi-pseudometric on X such that T (d) ⊆ τ
and r is any positive real number. This quasi-uniformity is said to be the
fine quasi-uniformity of (X, τ) (see [8]).

The bitopological counterpart of Brümmer’s result was obtained by
Salbany [29] who proved that every quasi-uniformizable bispace (X,τ1,τ2)
admits a finest quasi-uniformity: Basic entourages are of the form {(x, y) ∈
X ×X : d(x, y) < r}, where d is any quasi-pseudometric on X such that
T (d) ⊆ τ1 and T (d−1) ⊆ τ2 and r is any positive real number.

In connection with these facts let us recall that a bispace is quasi-
uniformizable if and only if it is pairwise completely regular [18, Theo-
rem 4.2].

Since every quasi-uniformity with a countable base generates a quasi-
pseudometric (see e.g. [8, Lemma 1.5]), we will say that the fine(st) quasi-
uniformity of a (bi)space is quasi-pseudometrizable if it has a countable
base.

Remark 3. Let (X, τ) be a T1 topological space. It immediately fol-
lows from Brümmer’s result and Salbany’s result mentioned above that the
fine quasi-uniformity of (X, τ) coincides with the finest quasi-uniformity of
the bispace (X, τ, D), where D denotes the discrete topology on X (com-
pare Remark 1).

The finest quasi-uniformity of the bispace (X, T (d), T (d−1)) of Ex-
ample 1 is not quasi-metrizable: Indeed, it follows from Künzi’s theorem
mentioned in Section 1 that the fine quasi-uniformity of (X, T (d)) is not
quasi-metrizable. The conclusion now follows from Remark 3.

Therefore, an interesting question appears in a natural way: Obtain
conditions under which quasi-metrizability of the finest quasi-proximity of
a (bi)space implies quasi-metrizability of the fine(st) quasi-uniformity.

In the next section we shall give a solution to this question via the
study of quasi-metric spaces having the property that real-valued bicon-
tinuous functions are quasi-uniformly continuous. (In our context, this
property should be considered as the analogue of property UC for metric
spaces.)
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3. QUC topological spaces and BQUC bispaces

Let us recall [28], [8], that a real-valued function f defined on a quasi-
uniform space (X,U) is said to be quasi-uniformly continuous if for each
ε > 0 there is U ∈ U such that `(f(x), f(y)) < ε whenever (x, y) ∈ U .
In particular, a real-valued function f defined on a quasi-pseudometric
space (X, d) is said to be quasi-uniformly continuous if it is quasi-uniformly
continuous for (X,Ud).

Definition 3. A quasi-metric space (X, d) is called a QUC space if
every real-valued lower semicontinuous function (with respect to (X,T (d))
is quasi-uniformly continuous. A quasi-metrizable topological space (X, τ)
is said to be a QUC topological space if it admits a quasi-metric d for
which (X, d) is a QUC space.

A quasi-metric space (X, d) is called a BQUC space if every real-
valued bicontinuous function (with respect to (X, T (d), T (d−1)) is quasi-
uniformly continuous. A quasi-metrizable bispace (X, τ1, τ2) is said to be
a BQUC bispace if it admits a quasi-metric d for which (X, d) is a BQUC

space.

In [29] Salbany showed that the finest quasi-uniformity of any pair-
wise completely regular bispace has the property that every real-valued
bicontinuous function is quasi-uniformly continuous. From this result we
immediately deduce the following result.

Proposition 3. Every pairwise Hausdorff pairwise completely regu-

lar bispace whose finest quasi-uniformity is quasi-metrizable is a BQUC

bispace.

Proposition 4. Let (X, d) be a BQUC space. Then d is a pairwise

equinormal quasi-metric.

Proof. By [8, Proposition 1.51] every real-valued quasi-uniformly
continuous function on (X, d) is quasi-proximally continuous from (X, δd)
to (R, δ`). Hence (X, d) is a BQP space. By Theorem 2 and Remark 2, d

is pairwise equinormal. ¤

In [14, proof of Proposition 1.13], Künzi observed that if the fine
quasi-uniformity of a topological space is quasi-pseudometrizable, then
its finest quasi-proximity is quasi-pseudometrizable. From Propositions 3
and 4 and Theorem 1 we here obtain the following result.



Quasi-metrizability of the finest quasi-proximity 155

Corollary 4. If the finest quasi-uniformity of a pairwise Hausdorff

pairwise completely regular bispace is quasi-metrizable, then its finest

quasi-proximity is quasi-metrizable.

Lemma 1 [28, Corollary 3.2.3]. Let (X, τ1, τ2) be a pairwise normal

bispace. Let A be a τ2-closed set,B a τ1-closed set and C = A ∩B. Then

every real-valued bounded bicontinuous function f on (C, τ1|C, τ2|C) has

a bicontinuous extension to (X, τ1, τ2).

Proposition 5. Let (X, τ1, τ2) be a BQUC bispace. Then every se-

quence of non τi-isolated points has a τj-cluster point, i, j = 1, 2; i 6= j.

Proof. Let (X, τ1, τ2) be a BQUC bispace and let d be a compatible
quasi-metric for which every real-valued bicontinuous function is quasi-
uniformly continuous. Suppose that there exists a sequence (xn)n∈N of
(distinct) non τ1-isolated points without τ2-cluster point. Then {xn : n∈N}
is a τ2-closed set. Since each xn is a non τ1-isolated point, there exist a
subsequence (an)n∈N of (xn)n∈N and a sequence (bn)n∈N of distinct points
in X, such that

{an : n ∈ N} ∩ {bn : n ∈ N} = ∅ and d(an, bn) → 0.

Indeed: If the sequence (xn)n∈N has infinitely many τ1-cluster points
in {xn : n ∈ N}, then we may construct two disjoint subsequences (an)n∈N
and (bn)n∈N of (xn)n∈N, such that d(an, bn) < 2−n for all n ∈ N. Oth-
erwise, there is n0 ∈ N such that no point in {xn : n ≥ n0} is a τ1-
cluster point of (xn)n∈N. Therefore, for each n ≥ n0 there exists an
rn, with 0 < rn < 2−n, and a bn 6= xn, such that d(xn, bn) < rn and
xm /∈ Sd(xn, rn) for all m ∈ N\{n}. (Moreover, it is not a restriction to
suppose that bn 6= bm whenever n 6= m, since d(xn, bn) → 0 and (xn)n∈N
has no τ2-cluster points.)

Now note that {bn : n ∈ N} is also a τ2-closed set because (bn)n∈N
has no τ2-cluster points, and put A = {an : n ∈ N} ∪ {bn : n ∈ N}.

Define a function f : A → R, by f(an) = 2n and f(bn) = 2n−1, for all
n ∈ N. Since τ2 | A is the discrete topology, f is τ2-upper semicontinuous
on A. Moreover, f is τ1-lower semicontinuous on A, since for each n,m ∈ N
such that n < m, we have f(an) < f(bm), f(an) < f(am), f(bn) < f(am)
and f(bn) < f(bm). Therefore, the function g defined on A by g = f/(1+f)
is also bicontinuous on A, and 1/2 ≤ g(x) < 1 for all x ∈ A. Since
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A is τ2-closed, it follows from Lemma 1 (with B = X), that g has a
bicontinuous extension to a function G : X → [0, 1]. On the other hand
(see [18, p. 247–248]), there is a τ1-upper semicontinuous and τ2-lower
semicontinuous function on X, h : X → [0, 1] such that h−1(0) = A.

Consider the function H = G/(1 + h). Then H is a bicontinuous function
on (X, τ1, τ2) such that for each x ∈ X, 0 ≤ H(x) < 1, and H(x) = g(x)
for all x ∈ A.

Finally, let F = H/(1−H). Then, F is also bicontinuous on (X, τ1, τ2)
and F (x) = f(x) for all x ∈ A. Thus, by the hypothesis, F is quasi-
uniformly continuous on (X, d). However, d(an, bn) → 0 and F (an) −
F (bn) = 1 for all n ∈ N, a contradiction.

We conclude that every sequence of non τ1-isolated points has a τ2-
cluster point. A similar argument shows that every sequence of non τ2-
isolated points has a τ1-cluster point. ¤

Corollary 5. Let (X, τ1, τ2) be a BQUC bispace. Then the fine uni-

formity of (X, τ1 ∨ τ2) is metrizable.

Proof. Let (xn)n∈N be a sequence of non τ1 ∨ τ2-isolated points.
From Proposition 5 it follows that there is a subsequence (xk(n))n∈N of
(xn)n∈N, that converges to a point x ∈ X with respect to τ2. Since
(xk(n))n∈N has also a τ1-cluster point, we deduce that x is a τ1 ∨ τ2-cluster
point of (xk(n))n∈N. The conclusion follows from Nagata’s theorem men-
tioned in Section 1. ¤

Corollary 6. Let (X, τ1, τ2) be a quasi-metrizable bispace with only

finitely many τ1-isolated points. If (X, τ1, τ2) is a BQUC bispace, then:

(i) (X, τ2) is a compact space and, thus, τ2 ⊆ τ1.

(ii) (X, τ1) is a metrizable space whose fine uniformity is metrizable.

Proof. By Proposition 5, (X, τ2) is a compact space and, hence,
τ2 ⊆ τ1. The assertion (ii) is now a consequence of Corollary 5. ¤

Remark 4. Corollary 6 shows that the Niemytzki plane, the Kofner
plane and the Sorgenfrey line (see [8]) are examples of quasi-metrizable
topological spaces (X, τ) that do not admit any quasi-metric d for which
(X, τ, T (d−1)) is a BQUC bispace. Hence, they do not admit any quasi-
metric d for which the finest quasi-uniformity of (X, τ, T (d−1)) is quasi-
metrizable.
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Example 2. Let d be the quasi-metric defined on R by d(x, y) =
min{1, y − x} if x ≤ y, and d(x, y) = 1 otherwise. Then T (d) is the
Sorgenfrey topology on R. Since d ∨ d−1 is the discrete metric on R, we
deduce, from Remark 4, that the converse of Corollary 5 is not true in
general.

Note that Example 1 also shows that such a converse does not hold
(see Proposition 5). However, the space (X,T (d)) of Example 2 is Haus-
dorff.

The following is an example of a BQUC bispace whose finest quasi-
uniformity is not quasi-metrizable.

Example 3. Let (xn)n∈N and (yn)n∈N be two sequences of distinct
points such that {xn : n ∈ N} ∩ {yn : n ∈ N} = ∅. Take a point a /∈ ({xn :
n ∈ N} ∪ {yn : n ∈ N}) and put X = {a} ∪ {xn : n ∈ N} ∪ {yn : n ∈ N}.
Define a quasi-metric d on X by d(a, yn) = 1/n for all n ∈ N, d(xn, ym) =
1/n for all n,m ∈ N, d(x, x) = 0 for all x ∈ X, and d(x, y) = 1 otherwise.

We first show that the finest quasi-uniformity BFN of the quasi-
metrizable bispace (X, T (d), T (d−1)) is not quasi-metrizable. Assume the
contrary. Then BFN has a countable base {Vn : n ∈ N}. By Lemma 2
below, for each x ∈ X and each n ∈ N there is an n(x) ∈ N such that
Sd−1(x, 1/n(x))× Sd(x, 1/n(x)) ⊆ Vn. Let

W =

[ ⋃

n∈N
({xn} × {xn})

]
∪ [{a} × Sd(a, 1)]

∪
[ ⋃

n∈N
(Sd−1(yn, 1/(n(yn) + 1))× {yn})

]
.

By Lemma 2, W ∈ BFN . However, (xn(yn)+1, yn) ∈ Vn\W for all
n ∈ N, because d(xn(yn)+1, yn) = 1/(n(yn) + 1). We conclude that BFN
has no a countable base.

Finally, we prove that (X, d) is a BQUC space. Assume the contrary.
Then there is a real-valued bicontinuous function f on X which is not
quasi-uniformly continuous. Thus, there exist an ε > 0 and two sequences
(an)n∈N and (bn)n∈N in X such that d(an, bn) < 2−n and f(an)−f(bn) ≥ ε

whenever n ∈ N. If there is a subsequence (ak(n))n∈N of (an)n∈N such
that ak(n) = a for all n ∈ N, then (bk(n))n∈N will be a subsequence of
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(distinct) points of (yn)n∈N. Hence, d(a, bk(n)) → 0. Since f is lower
semicontinuous with respect to T (d), we obtain a contradiction. Other-
wise, we may assume that (an)n∈N is a subsequence of distinct points of
(xn)n∈N. If there is a subsequence (bk(n))k∈N of (bn)n∈N such that for some
fixed j ∈ N, one has bk(n) = yj whenever n ∈ N, we obtain a contradic-
tion again, because f is upper semicontinuous with respect to T (d−1) and
d(ak(n), yj) → 0. Thus it only remains to consider the case that (bn)n∈N is
a subsequence of distinct points of (yn)n∈N. Then, for b1, there is δ1 > 0
such that f(x)− f(b1) < ε/2 whenever d(x, b1) < δ1. Since d(an, b1) → 0,
there is k(1) > 1 such that d(ak(1), b1) < δ1, so f(ak(1)) − f(b1) < ε/2.
Hence, (ε/2) + f(bk(1)) ≤ f(ak(1)) − (ε/2) < f(b1). Taking bk(1) we
obtain, similarly, a k(2) > k(1) such that f(ak(2)) − f(bk(1)) < ε/2.
Hence, (ε/2)+f(bk(2)) < f(bk(1)). Following this process we can construct
a strictly increasing sequence (k(n))n∈N of natural numbers such that
(ε/2)+f(bk(n+1)) < f(bk(n)) for all k ∈ N. Consequently, f(bk(n)) → −∞.
Since d(a, bk(n)) → 0, we deduce that f(a) = −∞, a contradiction. Hence,
f is quasi-uniformly continuous and, thus, (X, d) is a BQUC space.

However, in the topological case we may obtain a satisfactory result,
as Theorem 3 below shows. We will use the two following lemmas.

Lemma 2 [26]. The finest quasi-uniformity of a quasi-pseudometriz-

able bispace (X, τ1, τ2) consists of all τ2×τ1-neighborhoods of the diagonal

in X ×X.

Lemma 3. Let d be a pairwise equinormal quasi-metric on a set X.

If T (d−1) is the discrete topology on X, then there exists an r > 0 such

that d(x, y) ≥ r whenever x is a T (d)-isolated point and y 6= x.

Proof. Assume the contrary. Then there exist two sequences (an)n∈N
and (bn)n∈N of points in X such that each an is T (d)-isolated, an 6= bn, and
d(an, bn) < 2−n for all n ∈ N. Since T (d−1) is the discrete topology on X

and each an is T (d)-isolated, we may suppose, without loss of generality,
that both (an)n∈N and (bn)n∈N are sequences of distinct points. Put

A = {an : n ∈ N} and B = T (d) cl({bn : n ∈ N}).

Since d is pairwise equinormal and d(A,B) = 0, we deduce that A ∩
B 6= ∅. Let x ∈ A ∩ B. Then x is T (d)-isolated, so x ∈ {bn : n ∈ N}. If
C = A∩B is a finite set we have that A1 = A\C is a (nonempty) T (d−1)-
closed set and B1 = T (d) cl(B\C) is a disjoint (nonempty) T (d)-closed set
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such that d(A1, B1) = 0, a contradiction. Therefore, we may assume that
there exists a subsequence (ak(n))n∈N of (an)n∈N such that ak(m) ∈ {bn :
n ∈ N} for all m ∈ N. Thus we can construct two subsequences (xn)n∈N
and (yn)n∈N of (an)n∈N such that {xn : n ∈ N}∩T (d) cl({yn : n ∈ N}) = ∅
and d(xn, yn) → 0, a contradiction.

We conclude that there exists an r > 0 such that d(x, y) ≥ r whenever
x is T (d)-isolated and y 6= x. ¤

Theorem 3. For a quasi-metric space (X, d) the following statements

are equivalent:

(1) (X, d) is a QUC space.

(2) (X,T (d)) has only finitely many nonisolated points and there exists

an r > 0 such that d(x, y) ≥ r whenever x is a T (d)-isolated point

and y 6= x.

(3) The quasi-uniformity Ud, generated by d, coincides with the fine quasi-

uniformity of the topological space (X,T (d)).

Proof. (1) ⇒ (2): We first show that T (d−1) is the discrete topol-
ogy on X: Suppose that there exist a point x ∈ X and a sequence (xn)n∈N
of distinct points in X such that d(xn, x) → 0. Then, the characteris-
tic function for X\{x} is lower semicontinuous but not quasi-uniformly
continuous. Therefore T (d−1) is the discrete topology D on X.

Hence (X, d) is a BQUC space. By Proposition 4, d is pairwise
equinormal and, by Proposition 5, every sequence of non T (d)-isolated
points has a D-cluster point. So (X,T (d)) has only finitely many noniso-
lated points. Furthermore, by Lemma 3, there exists an r > 0 such that
d(x, y) ≥ r whenever x is a T (d)-isolated point and y 6= x.

(2) ⇒ (3): Denote by X ′ the set of non T (d)-isolated points of X.
If X ′ = ∅, T (d) = D, and, thus, by Remark 3 and Lemma 2,

∆ = {(x, x) : x ∈ X} is a base for the fine quasi-uniformity of (X, T (d)).
Theferore, {(x, y) ∈ X × X : d(x, y) < r} = ∆, and, consequently, Ud is
exactly the fine quasi-uniformity of (X,T (d)).

If X ′ 6= ∅, let X ′ = {x1, . . . , xj}. We first show that T (d−1) is the
discrete topology on X: Otherwise, there exist an x ∈ X and a sequence
(yn)n∈N of distinct points in X such that d(yn, x) → 0. Thus, there is an
n0 ∈ N such that yn 6= x and d(yn, x) < r for all n ≥ n0. So, for each
n ≥ n0, yn ∈ X ′. Since X ′ is a finite set, yn = x for some n ≥ n0, a
contradiction.
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Now denote by FN the fine quasi-uniformity of (X,T (d)) and let W ∈
FN . Since FN coincides with the finest quasi-uniformity of the quasi-
metrizable bispace (X, T (d), D) (see Remark 3), it follows from Lemma 2
that for each xi ∈ X ′ there is an εi > 0 such that

(
j⋃

i=1

({xi} × Sd(xi, εi))

)
∪

( ⋃

x/∈X′
({x} × {x})

)
⊆ W.

Put ε = min{εi : i = 1, . . . , j} and δ = min{ε, r}. Then d(x, y) ≥ δ

whenever x ∈ X\X ′ and y 6= x. Hence {(x, y) ∈ X×X : d(x, y) < δ} ⊆ W ,
and, consequently, Ud coincides with the fine quasi-uniformity of (X, T (d)).

(3) ⇒ (1): This implication is clear, because it is well known that
the fine quasi-uniformity of any topological space has the property that
every real-valued lower semicontinuous function is quasi-uniformly contin-
uous [8]. ¤

Corollary 7. The fine quasi-uniformity of a T1 topological space is

quasi-metrizable if and only if it is a QUC topological space.

Corollary 8 [14]. The fine quasi-uniformity of a T1 topological space

(X, τ) is quasi-metrizable if and only if (X, τ) is a quasi-metrizable space

with only finitely many nonisolated points.

Proof. We first suppose that the fine quasi-uniformity of (X, τ) is
quasi-metrizable. It then follows from Remark 3 that the finest quasi-uni-
formity of (X, τ, D) is quasi-metrizable. So (X, τ, D) is a BQUC bispace.
By Proposition 5, (X, τ) has only finitely many nonisolated points. Con-
versely, let d be a quasi-metric on X compatible with τ and let X ′ be the set
of the nonislated points. Define for all x, y ∈ X, e(x, y) = min{d(x, y), 1}
if x ∈ X ′, e(x, y) = 1 if x ∈ X\X ′ and x 6= y, and e(x, x) = 0 for all x ∈ X.
Since e is compatible with τ , the quasi-metric space (X, e) satisfies the con-
ditions of Theorem 3(2) (with r = 1). Therefore, the fine quasi-uniformity
of (X, τ) coincides with Ue, so, it is quasi-metrizable. ¤

Note that the topologies T (d) and T (d−1) of the bispace
(X,T (d), T (d−1)) of Example 3 are not comparable. Moreover, T (d) is a
Hausdorff topology but T (d−1) is not. These facts are not accidental as
our two next theorems show.
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Theorem 4. Let (X, τ1, τ2) be a quasi-metrizable bispace such that

τ1 ⊆ τ2. Then the following statements are equivalent:

(1) The finest quasi-uniformity of (X, τ1, τ2) is quasi-metrizable.

(2) (X, τ1, τ2) is a BQUC bispace.

(3) The set of the non τ1-isolated points is τ2-compact.

Proof. (1) ⇒ (2): Apply Proposition 3.
(2) ⇒ (3): By Proposition 5, every sequence (xn)n∈N in X of non

τ1-isolated points has a τ2-cluster point, which is also a τ1-cluster point of
(xn)n∈N because τ1 ⊆ τ2. Since every countably compact quasi-metrizable
topological space is compact [8, Corollary 2.29], we conclude that the set
of the non τ1-isolated points is τ2-compact.

(3) ⇒ (1): Denote by X ′ the set of the non τ1-isolated points of X.
If X ′ = ∅, then both τ1 and τ2 coincide with the discrete topology on X.
By Lemma 2 , {∆} is a base for the finest quasi-uniformity of (X, τ1, τ2).

Hence, we will suppose that X ′ 6= ∅. In this case, choose any quasi-
metric d on X compatible with (τ1, τ2). For each n ∈ N, define

Vn = {(x, y) ∈ X ×X : there is z ∈ X ′ such that d(x, z) < 2−2n and

d(z, y) < 2−2n}

and
Un = Vn ∪ {(x, x) ∈ X ×X : x /∈ X ′}.

Since for each n ∈ N, ∆ ⊆ Un and U3
n+1 ⊆ Un, {Un : n ∈ N} is a

base for a quasi-uniformity U on X. Clearly, T (U) ⊆ τ1 and T (U−1) ⊆
τ2. Moreover, for each x ∈ X, Un+1(x) ⊆ Sd(x, 2−2n) and U−1

n+1(x) ⊆
Sd−1(x, 2−2n). Hence, U is compatible with (τ1, τ2). We want to show
that U is exactly the finest quasi-uniformity of (X, τ1, τ2). To this end, let
V be a τ2 × τ1-neighborhood of the diagonal in X × X. Then, for each
x ∈ X there is a τi-neighborhood Wi(x) of x, (i = 1, 2), such that

W =
⋃
{W2(x)×W1(x) : x ∈ X} ⊆ V.

Hence, it suffices to show that Un ⊆ W for some n ∈ N. Assume the con-
trary. Then, for each n ∈ N there is a pair (an, bn) in Un\W . Thus, there
exists a sequence (xn)n∈N in X ′ such that d(an, xn) → 0 and d(xn, bn) → 0.
Since X ′ is τ2-compact and τ1 ⊆ τ2, we deduce that there are a point y ∈X ′
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and a subsequence (xk(n))n∈N of (xn)n∈N such that (d∨d−1)(y, xk(n))→ 0.
So d(ak(n), y) → 0 and d(y, bk(n)) → 0. Therefore (ak(n))n∈N is eventu-
ally in W2(y) and (bk(n))n∈N is eventually in W1(y), which contradicts
the fact that (an, bn) /∈ W for all n ∈ N. We conclude that the finest
quasi-uniformity of (X, τ1, τ2) coincides with U , so it is quasi-metrizable.

¤

A bispace (X, τ1, τ2) is called doubly Hausdorff if both τ1 and τ2 are
Hausdorff topologies on X. A quasi-metric space (X, d) is said to be doubly
Hausdorff if (X, T (d), T (d−1)) is a doubly Hausdorff bispace.

Theorem 5. For a doubly Hausdorff quasi-metric space (X, d) the

following statements are equivalent:

(1) (X, d) is a BQUC space.

(2) The quasi-proximity δd, induced by d, is the finest quasi-proximity of

the bispace (X,T (d), T (d−1)).

(3) The quasi-uniformity Ud, generated by d, is the finest quasi-uniformity

of the bispace (X, T (d), T (d−1)).

Proof. (1) ⇒ (2): Apply Proposition 4 and Remark 2.
(2) ⇒ (3): We first show that every sequence of non T (d)-isolated

points has a T (d−1)-cluster point. Assume the contrary. Then there is
a sequence (xn)n∈N of distinct non T (d)-isolated points without T (d−1)-
cluster point. Let F = {xn : n ∈ N}. Then F is T (d−1)-closed. For each
n ∈ N put Fn = F\{xn}. Note that Fn is T (d−1)-closed whenever n ∈ N.
Given x1 there is r1 < 2−1 (r1 > 0) such that Sd−1(x1, r1)∩F1 = ∅. Choose
a y1 6= x1 with d(x1, y1) < r1. Put k(1) = 1. Let k(2) be the first positive
integer greater than 1 such that xk(2) 6= y1. Choose 0 < r2 < min{r1, 2−2}
such that Sd−1(xk(2), r2) ∩ (Fk(2) ∪ {y1}) = ∅. Choose a y2 6= xk(2) with
d(xk(2), y2) < r2. Let k(3) be the first positive integer greater than k(2)
such that xk(3) /∈ {y1, y2}. Choose 0 < r3 < min{r2, 2−3} such that
Sd−1(xk(3), r3)∩ (Fk(3) ∪ {y1, y2}) = ∅. Following this process we can con-
struct a subsequence (xk(n))n∈N of (xn)n∈N, a sequence (yn)n∈N of points in
X, a subsequence (Fk(n))n∈N of (Fn)n∈N and a strictly decreasing sequence
of positive real numbers (rn)n∈N such that rn < 2−n, d(xk(n), yn) < rn and

Sd−1(xk(n), rn) ∩ (Fk(n) ∪ {y1, . . . , yn−1}) = ∅ for all n > 1.
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Therefore, xk(n) 6= ym for all n,m ∈ N: Indeed, if m > n, from
d(xk(m), xk(n)) ≤ d(xk(m), ym) + d(ym, xk(n)), it follows that rn < rm +
d(ym, xk(n)), so d(ym, xk(n)) > rn−rm > 0. If m < n, ym /∈Sd−1(xk(n), rn).

Now put A = {xk(n) : n ∈ N} and B = T (d) cl({yn : n ∈ N}). Note
that A is T (d−1)-closed because (xk(n))n∈N is a subsequence of (xn)n∈N. If
A ∩B = ∅, we obtain a contradiction because, by Remark 2, d is pairwise
equinormal and d(xk(n), yn) → 0. Otherwise, there exist an xk(m) ∈ A

and a subsequence (yj(n))n∈N of (yn)n∈N such that d(xk(m), yj(n)) → 0.
Since T (d) is a Hausdorff topology, H = {xk(m)} ∪ {yj(n) : n ∈ N} is a
T (d)-closed set. Put G = A\{xk(m)}. Then G is a T (d−1)-closed set such
that G ∩ H = ∅. However, d(G,H) = 0 because d(xk(j(n)), yj(n)) → 0,
a contradiction. We conclude that every sequence of non T (d)-isolated
points has a T (d−1)-cluster point. Similarly, we prove that every sequence
of non T (d−1)-isolated points has a T (d)-cluster point.

Now put, for each n ∈ N, Un = {(x, y) ∈ X ×X : d(x, y) < 2−n}, and
suppose that there exist a T (d−1)×T (d)-neighborhood W of the diagonal
in X × X and a sequence ((an, bn))n∈N of points in X × X, such that
(an, bn) ∈ Un\W for all n ∈ N. Then, we may assume that both (an)n∈N
and (bn)n∈N are sequences of distinct points. We consider the two following
cases:

I. The sequence (an)n∈N has no T (d−1)-cluster point. Hence, we may
assume, without loss of generality, that each an is a T (d)-isolated point.
Put A = {an : n ∈ N} and B = T (d) cl({bn : n ∈ N}). Since d(A,B) = 0
and d is pairwise equinormal we deduce that A∩B 6= ∅. If A∩B is a finite
set, then, an argument similiar to the one used in the proof of Lemma 3,
permits us to reach a contradiction. Otherwise, as in the proof of Lemma 3
again, we can construct two subsequences (xn)n∈N and (yn)n∈N of (an)n∈N
such that {xn : n ∈ N} ∩ T (d) cl({y : n ∈ N}) = ∅ and d(xn, yn) → 0, a
contradiction.

II. The sequence (an)n∈N has a T (d−1)-cluster point a ∈ X. Then
there is a subsequence (ak(n))n∈N of (an)n∈N such that d(ak(n), a) → 0.
Thus A = {a} ∪ {ak(n) : n ∈ N} is T (d−1)-closed because T (d−1) is a
Hausdorff topology. Put B = {bk(n) : n ∈ N}. It is not a restriction to
suppose that for each n ∈ N, bk(n) 6= a because (ak(n), bk(n)) /∈ W (and,
hence, there is a subsequence of (bk(n))n∈N consisting of points which are
different from a). If the sequence (bk(n))n∈N has no T (d)-cluster point, then
A ∩ B 6= ∅ because d is pairwise equinormal and, thus, we may suppose
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that there is a subsequence (cn)n∈N of (bk(n))n∈N such that each cn is in
A. Therefore, we can construct two subsequences (xn)n∈N and (yn)n∈N of
(an)n∈N (where (yn)n∈N is also a subsequence of (cn)n∈N), such that

{xn : n ∈ N} ∩ T (d) cl({yn : n ∈ N}) = ∅ and d(xn, yn) → 0,

a contradiction. Otherwise, there exists a subsequence (cn)n∈N of (bk(n))n∈N,
which is T (d)-convergent to a point c ∈ X. Then c 6= a, since (an, bn) /∈ W
whenever n ∈ N. Let r > 0 such that Sd(c, r) ∩ Sd−1(a, r) = ∅. Choose
an n0 ∈ N such that for each n ≥ n0, ak(n) ∈ Sd−1(a, r) and cn ∈ Sd(c, r),
respectively. Then, A0 = {a} ∪ {ak(n) : n ≥ n0} is T (d−1)-closed, C =
{c} ∪ {cn : n ≥ n0} is T (d)-closed, A0 ∩ C = ∅ and d(A0, C) = 0, so we
have reached a contradiction. We conclude that Ud is exactly the finest
quasi-uniformity of (X, T (d), T (d−1)).

(3) ⇒ (1): It follows from Salbany’s theorem [29] mentioned above
that the finest quasi-uniformity of any pairwise completely regular bispace
has the property that every real-valued bicontinuous function is quasi-
uniformly continuous. ¤

Corollary 9. The finest quasi-uniformity of a doubly Hausdorff pair-
wise completely regular bispace is quasi-metrizable if and only if its finest
quasi-proximity is quasi-metrizable.

Corollary 10. Let (X, τ1, τ2) be doubly Hausdorff pairwise completely
regular bispace whose finest quasi-proximity is quasi-metrizable. Then the
fine uniformity of (X, τ1 ∨ τ2) is metrizable.

Proof. Apply Corollaries 9 and 5. ¤
Fletcher and Lindgren proved in [8, Proposition 2.34] (see also

[19]) that the fine quasi-uniformity of a regular Hausdorff topological space
is quasi-metrizable if and only if it is a metrizable space with only finitely
many nonisolated points. This result is generalized in the following way.

Corollary 11. For a Hausdorff topological space (X, τ) the following
statements are equivalent:

(1) The finest quasi-proximity of (X, τ) is quasi-metrizable.

(2) The fine quasi-uniformity of (X, τ) is quasi-metrizable.

(3) (X, τ) is a metrizable space with only finitely many nonisolated points.

Proof. (1) ⇒ (2): It is a consequence of Theorem 5, (2) ⇒ (3), since
the finest quasi-proximity (resp. quasi-uniformity) of (X, τ) coincides with
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the finest quasi-proximity (resp. quasi-uniformity) of the bispace (X, τ,D)
(see Remarks 1 and 3).

(2) ⇒ (3): By [14, Proposition 1.12] (see Corollary 8), (X, τ) is a
quasi-metrizable space with only finitely many nonisolated points. Since
(X, τ) is a Hausdorff space, we immediately deduce that (X, τ) is regular.
By [8, Proposition 2.34] mentioned above, (X, τ) is a metrizable space with
only finitely many nonisolated points.

(3) ⇒ (1): By [8, Proposition 2.34], the fine quasi-uniformity of
(X, τ) is quasi-metrizable. Hence, its finest quasi-proximity is also quasi-
metrizable [14, Proof of Proposition 1.13]. ¤

Remark 5. The first part of the proof of (2) ⇒ (3) in Theorem 5,
shows that if d is a pairwise equinormal quasi-metric on a set X such that
T (d) is a Hausdorff topology, then every sequence of non T (d)-isolated
points has a T (d−1)-cluster point. Since the topological spaces (X, τ) of
Remark 4 are Hausdorff and they do not have isolated points, it follows
that they do not admit any compatible quasi-metric d such that the finest
quasi-proximity of the bispace (X, τ, T (d−1)) is quasi-metrizable (other-
wise T (d−1) would be compact, so T (d−1) ⊂ τ and thus, (X, τ) would be
metrizable, a contradiction).

Subsequently, we present three examples that deal with some natu-
ral conjectures that may be considered in the light of the obtained re-
sults. Thus, in Example 4 we obtain a doubly Hausdorff quasi-metrizable
non BQUC bispace (X, τ1, τ2) such that every sequence of non τi-isolated
points has a τj-cluster point, i, j = 1, 2; i 6= j. In Example 5, we shall give
an example of a doubly Hausdorff bispace (X, τ1, τ2) whose finest quasi-
uniformity is quasi-metrizable but the finest quasi-proximity of (X, τ1) is
not quasi-metrizable. Finally, Example 6 will show that the condition
“doubly Hausdorff” cannot be omitted in Corollary 10.

Example 4. Let (xn)n∈N be a sequence of distinct points. For each
n ∈ N consider a sequence (y(n)

m )m∈N of points such that y
(n)
m 6= y

(j)
k and

y
(n)
m 6= xk for all n,m, k, j ∈ N. Put Y = {xn : n ∈ N} ∪ {y(n)

m : n, m ∈ N}.
Choose a point a /∈ Y and let X = Y ∪ {a}. Now define a quasi-metric d

on X as follows: d(a, xn) = 1/n for all n ∈ N; d(y(n)
m , xn) = 1/m for all

n,m ∈ N; d(x, x) = 0 for all x ∈ X, and d(x, y) = 1 otherwise.
Clearly, (X,T (d), T (d−1)) is a doubly Hausdorff bispace. The point a

is the unique non T (d)-isolated point and every sequence of (distinct) non
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T (d−1)-isolated points is a subsequence of (xn)n∈N, which converges to a
with respect to T (d).

Now we show that the finest quasi-uniformity BFN of
(X,T (d), T (d−1)) has no countable base. Indeed, assume the contrary and
let {Vn : n ∈ N} be a base for BFN . Then, for each x ∈ X and each n ∈ N
there is an n(x) ∈ N such that Sd−1(x, 1/n(x))× Sd(x, 1/n(x)) ⊆ Vn. Let

W =


 ⋃

n,m∈N
({y(n)

m } × {y(n)
m })


 ∪ [{a} × Sd(a, 1)]

∪
[ ⋃

n∈N
(Sd−1(xn, 1/(n(xn) + 1))× {xn})

]
.

Then, W ∈ BFN (compare Example 3). However, (y(n)
n(xn)+1, xn) ∈

Vn\W for all n ∈ N, because d(y(n)
n(xn)+1, xn) = 1/(n(xn) + 1). Therefore,

BFN is not quasi-metrizable. By Corollary 9, the finest quasi-proximity
of (X, T (d), T (d−1)) is not quasi-metrizable.

Example 5. Let X be the set of Example 4. Define a quasi-metric d
on X as follows:

d(a, xn) = d(xn, a) = 1/n for all n ∈ N,

d(a, y(n)
m ) = (1/n) + (1/m) for all n, m ∈ N,

d(xn, xk) = |(1/n)− (1/k)| for all n, k ∈ N,

d(xn, y(n)
m ) = 1/m for all n,m ∈ N,

d(xn, y(k)
m ) = (1/m) + |(1/n)− (1/k)| for all n,m, k ∈ N with n 6= k,

d(x, x) = 0 for all x ∈ X,

d(x, y) = 2, otherwise.

An easy computation of the different cases shows that, indeed, d is a
quasi-metric on X. Note also that (X,T (d), T (d−1)) is a doubly Hausdorff
bispace such that T (d) ⊂ T (d−1). Moreover, since {a} ∪ {xn : n ∈ N} is
the set of non T (d)-isolated points and d(xn, a) → 0, we deduce that the
set of the non T (d)-isolated points is T (d−1)-compact. So, by Theorem 4,
the finest quasi-uniformity of (X,T (d), T (d−1)) is quasi-metrizable. On the
other hand, it follows from Corollary 11(3), that the finest quasi-proximity
of (X, T (d)) is not quasi-metrizable.
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Example 6. In [7] it is given an example of a quasi-metrizable pairwise
compact bispace (X, τ1, τ2) such that τ1 is not Hausdorff, τ1 ⊂ τ2 and the
fine uniformity of (X, τ2) is not metrizable. Thus, this example shows that
the condition “doubly Hausdorff” cannot be omitted in the statement of
Corollary 10.

In the light of the preceding example (see also Examples 1 and 2)
it seems interesting to study the problem of characterizing those quasi-
metrizable bispaces (X, τ1, τ2) for which the fine uniformity of (X, τ1 ∨ τ2)
is metrizable. We conclude the paper with a solution to this question. Let
us recall [8], [19], that a metric d on a set X is equinormal provided that
d(A,B) > 0 whenever A and B are disjoint (nonempty) closed sets.

Theorem 6. Let (X, τ1, τ2) be a quasi-metrizable bispace. Then, the

fine uniformity of (X, τ1 ∨ τ2) is metrizable if and only if (X, τ1, τ2) admits

a quasi-metric d such that d ∨ d−1 is an equinormal metric.

Proof. Sufficiency : Since the equinormal metric d∨ d−1 is compat-
ible with τ1 ∨ τ2, the fine uniformity of (X, τ1 ∨ τ2) is metrizable (see, for
instance, [8, Theorem 2.33]).

Necessity : If the fine uniformity of (X, τ1 ∨ τ2) is metrizable, then it
has a compatible equinormal metric p [8, Theorem 2.33]. Let q be a quasi-
metric on X compatible with (τ1, τ2). For each x ∈ X there is a sequence
(rn(x))n∈N of positive real numbers with 5rn+1(x) < rn(x) < 2−n and

Sq(x, rn(x)) ∩ Sq−1(x, rn(x)) ⊆ Sp(x, 2−n) for all n ∈ N.

Put
Vn =

⋃
{Sq−1(x, rn(x)/3)× Sq(x, rn(x)/3) : x ∈ X}

for all n ∈ N. Similarly to the proof of [27, Theorem 2.1], there exists a
quasi-metric d on X compatible with (τ1, τ2) such that

Vn+1 ⊆ {(x, y) ∈ X ×X : d(x, y) < 2−n} ⊆ Vn

for all n ∈ N. Finally, let A and B bet two disjoint (nonempty) closed sets
in (X, τ1 ∨ τ2) such that (d∨ d−1)(A,B) = 0. Then, there exist a sequence
(an)n∈N in A and a sequence (bn)n∈N in B such that (d∨d−1)(an, bn) < 2−n
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for all n ∈ N. Thus, there exist two sequences (xn)n∈N and (yn)n∈N in X

such that

q(an, xn) < rn(xn)/3, q(xn, bn) < rn(xn)/3,

q(bn, yn) < rn(yn)/3 and q(yn, an) < rn(yn)/3

for all n ∈ N. Assume, without loss of generality, that rn(yn) ≤ rn(xn)
for all n ∈ N. Then, q(xn, an) < rn(xn), q(xn, bn) < rn(xn), q(an, xn) <

rn(xn) and q(bn, xn) < rn(xn). Hence, p(an, bn) < 2−(n−1) for all n ∈ N,
which contradicts the fact that p is equinormal. We conclude that d∨ d−1

is equinormal. ¤
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