Quasi-metrizability of the finest quasi-proximity

By SALVADOR ROMAGUERA (Valencia)

Abstract

A characterization of the bispaces whose finest quasi-proximity is quasi-metrizable is obtained in terms of real-valued quasi-proximally continuous functions. We also prove that for a doubly Hausdorff bispace X the following are equivalent: (i) X admits a quasi-metric for which every real-valued bicontinuous function is quasiuniformly continuous; (ii) the finest quasi-proximity of X is quasi-metrizable; (iii) the finest quasi-uniformity of X is quasi-metrizable. Examples showing that double Hausdorffness of X cannot be omitted in this result are given.

As an application of our methods we deduce that the fine quasi-proximity (resp. quasi-uniformity) of a T_{1} topological space X is quasi-metrizable if and only if X admits a quasi-metric for which every lower semicontinuous function is quasi-proximally (resp. quasi-uniformly) continuous. We also deduce that if the finest quasi-proximity of a Hausdorff topological space X is quasi-metrizable, then its fine quasi-uniformity is quasimetrizable and, thus, X is a metrizable space with only finitely many nonisolated points.

1. Introduction

Throughout this paper the letters \mathbb{R} and \mathbb{N} will denote the set of all real numbers and the set of all positive integer numbers, respectively. If (X, τ) is a topological space and A is a subset of X, then $\tau \operatorname{cl}(A)$ and $\tau \operatorname{int}(A)$ will denote the closure of A and the interior of A in (X, τ), respectively.

Our basic references for quasi-proximity spaces are [8] and [28], for quasi-uniform and quasi-metric spaces they are [8] and [15] and for bitopological spaces they are [13] and [18].

[^0]Let us recall that a quasi-pseudometric on a (nonempty) set X is a nonnegative real-valued function d on $X \times X$ such that for all $x, y, z \in X$:
(i) $d(x, x)=0$, and
(ii) $d(x, y) \leq d(x, z)+d(z, y)$.

If, in addition, d satisfies:
(iii) $d(x, y)=0 \Leftrightarrow x=y$,
then, d is called a quasi-metric on X.
A quasi-(pseudo)metric space is a pair (X, d) such that X is a (nonempty) set and d is a quasi-(pseudo)metric on X.

Each quasi-pseudometric d on X generates a topology $T(d)$ on X, which has as a base the collection $\left\{S_{d}(x, r): x \in X, r>0\right\}$, where $S_{d}(x, r)=\{y \in X: d(x, y)<r\}$ for all $x \in X$ and $r>0$.

If d is a quasi-(pseudo)metric on X, then the function d^{-1} defined on $X \times X$ by $d^{-1}(x, y)=d(y, x)$, is also a quasi-(pseudo)metric on X, called the conjugate of d. Then, the function $d \vee d^{-1}$ defined on $X \times X$ by $\left(d \vee d^{-1}\right)(x, y)=\max \left\{d(x, y), d^{-1}(x, y)\right\}$, is a (pseudo)metric on X.

Each quasi-pseudometric d on X generates a quasi-uniformity \mathcal{U}_{d} on X, which has as a base the countable collection $\left\{U_{n}: n \in \mathbb{N}\right\}$, where $U_{n}=\left\{(x, y) \in X \times X: d(x, y)<2^{-n}\right\}$ for all $n \in \mathbb{N}$ (see [8, p. 3]).

A topological space (X, τ) is called quasi-(pseudo)metrizable if there is a quasi-(pseudo)metric d on X such that $T(d)=\tau$. In this case, we say that (X, τ) admits d (and d is said to be compatible with τ).

The notion of a bispace (bitopological space in [13]) appears in a natural way when one considers the topologies $T(d)$ and $T\left(d^{-1}\right)$ generated by a quasi-pseudometric d and its conjugate d^{-1}. A bispace is an ordered triple (X, τ_{1}, τ_{2}) such that X is a (nonempty) set and τ_{1} and τ_{2} are topologies on X. A bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be quasi-(pseudo)metrizable if there is a quasi-(pseudo)metric d on X such that $T(d)=\tau_{1}$ and $T\left(d^{-1}\right)=\tau_{2}$. In this case, we say that (X, τ_{1}, τ_{2}) admits d (and d is said to be compatible with $\left.\left(\tau_{1}, \tau_{2}\right)\right)$.

A $U C$ space is a metric space for which every real-valued continuous function is uniformly continuous. $U C$ spaces have been investigated by many authors in different contexts [1], [2], [3], [4], [5], [9], [10], [12], [19], [20], [21], [22], [23], [24], [25], [30], [31], etc. In particular, it is well known that for a metric space (X, d) the following are equivalent: (i) (X, d) is a
$U C$ space; (ii) d is an equinormal metric on X; (iii) the uniformity generated by d is exactly the fine uniformity of (X, d). Perhaps, the most visual characterization of metrizable spaces whose fine uniformity is generated by a metric, is the following result proved by Nagata [22]: The fine uniformity of a metrizable space is metrizable if and only if the set of the nonisolated points is compact. Later on, Sharma [30] proved that the finest proximity of a metrizable space is metrizable if and only it admits an equinormal metric, so, it follows that the fine uniformity of a Tychonoff space is metrizable if and only if its finest proximity is metrizable. In [14], KÜNZI proved that the fine quasi-uniformity of a T_{1} topological space is quasi-metrizable if and only if it is a quasi-metrizable space containing only finitely many nonisolated points.

These interesting results suggest some questions in a natural way. For instance, characterize the quasi-metric spaces for which every realvalued lower semicontinuous function is quasi-uniformly continuous, investigate the relationship between the bispaces whose finest quasi-proximity is quasi-metrizable and the bispaces whose finest quasi-uniformity is quasimetrizable, etc. We here obtain characterizations of the bispaces whose finest quasi-proximity is quasi-metrizable both in terms of a bitopological notion of equinormality and in terms of real-valued bicontinuous functions which are quasi-proximally continuous. We observe that, contrarily to the metric case, there exist bispaces whose finest quasi-proximity is quasimetrizable but their finest quasi-uniformity is not. However, we prove that if (X, τ_{1}, τ_{2}) is a quasi-metrizable bispace such that both τ_{1} and τ_{2} are Hausdorff topologies, then the following are equivalent: (i) The finest quasi-proximity of $\left(X, \tau_{1}, \tau_{2}\right)$ is quasi-metrizable; (ii) The finest quasiuniformity of (X, τ_{1}, τ_{2}) is quasi-metrizable; (iii) (X, τ_{1}, τ_{2}) admits a quasimetric for which every real-valued bicontinuous function is quasi-uniformly continuous. We also present an example of a quasi-metrizable bispace which satisfies condition (iii) above but whose finest quasi-uniformity is not quasi-metrizable. As an application of our methods we deduce that a quasi-metric space (X, d) has the property that every real-valued lower semicontinuous function is quasi-proximally (resp. quasi-uniformly) continuous if and only the quasi-proximity (resp. the quasi-uniformity) generated by d is exactly the finest quasi-proximity (resp. the fine quasi-uniformity) of the topological space $(X, T(d))$. We also deduce, Künzi's theorem mentioned above as well as the fact that the fine quasi-uniformity of a Hausdorff topological space is quasi-metrizable if and only if its finest quasi-proximity is quasi-metrizable.

2. Bispaces whose finest quasi-proximity is quasi-metrizable

If δ is a quasi-proximity for a set X we write $A \delta B$ for $(A, B) \in \delta$ and $A^{-} \delta B$ for $(A, B) \notin \delta$.

It is well known [8, p. 12] that if \mathcal{U} is a quasi-uniformity on a set X, the quasi-proximity induced by \mathcal{U} is the quasi-proximity $\delta_{\mathcal{U}}$ defined by

$$
A \delta_{\mathcal{U}} B \text { if and only if for each } U \in \mathcal{U}, \quad(A \times B) \cap U \neq \emptyset
$$

Hence, if d is a quasi-pseudometric on X, we have $A \delta_{\mathcal{U}_{d}} B$ if and only if $d(A, B)=0$. In this case we write δ_{d} instead of $\delta_{\mathcal{U}_{d}}$ and we say that δ_{d} is the quasi-proximity induced by the quasi-pseudometric d.

A quasi-proximity ρ for a set X is called quasi-(pseudo)metrizable if there is a quasi-(pseudo)metric d on X such that $\delta_{d}=\rho$.

It is well known that every topological space (X, τ) admits a finest compatible quasi-proximity $\delta_{\mathcal{F N}}$. Moreover, $A \delta_{\mathcal{F N}} B$ if and only if $A \cap$ $\tau \operatorname{cl}(B) \neq \emptyset$. In particular, if (X, τ) is $T_{1}, T\left(\delta_{\mathcal{F} \mathcal{N}}^{-1}\right)$ is the discrete topology on X.

Now let $\left(X, \tau_{1}, \tau_{2}\right)$ be a pairwise completely regular bispace. A quasiproximity δ for X is called compatible with $\left(\tau_{1}, \tau_{2}\right)$ if $T(\delta)=\tau_{1}$ and $T\left(\delta^{-1}\right)=\tau_{2}$. Similarly to the proof of [8, Proposition 1.38$]$ one can show that every pairwise completely regular bispace admits a finest compatible quasi-proximity. If $\left(X, \tau_{1}, \tau_{2}\right)$ is a pairwise Hausdorff pairwise normal bispace, the finest compatible quasi-proximity can be easily described.

Proposition 1. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a pairwise Hausdorff pairwise normal bispace. Then the relation $\delta_{\mathcal{B} \mathcal{F N}}$ defined by

$$
A \delta_{\mathcal{B F N}} B \text { if and only if } \tau_{2} \operatorname{cl}(A) \cap \tau_{1} \operatorname{cl}(B) \neq \emptyset
$$

is the finest quasi-proximity of $\left(X, \tau_{1}, \tau_{2}\right)$.
Proof. It is proved in [11] that, indeed, $\delta_{\mathcal{B} \mathcal{F} \mathcal{N}}$ is a quasi-proximity compatible with $\left(\tau_{1}, \tau_{2}\right)$. Let ρ be any quasi-proximity for X compatible with $\left(\tau_{1}, \tau_{2}\right)$ and let $A \delta_{\mathcal{B F N}} B$. We want to show that then $A \rho B$. Assume the contrary. Then there is $C \subseteq X$ such that $A^{-} \rho C$ and $(X \backslash C)^{-} \rho B$. Hence $C^{-} \rho^{-1} A$, so $C \subseteq \tau_{2} \operatorname{int}(X \backslash A)$. Moreover, $(X \backslash C) \subseteq \tau_{1} \operatorname{int}(X \backslash B)$. Therefore $\tau_{2} \operatorname{cl}(A) \cap \tau_{1} \operatorname{cl}(B)=\emptyset$, a contradiction. We conclude that $A \rho B$.

Remark 1. It is well known that if (X, τ) is a T_{1} topological space, then (X, τ, D) is a pairwise Hausdorff pairwise normal bispace, where D denotes the discrete topology on X. Hence, from Proposition 1 and the comments made above it follows the known fact that if (X, τ) is a T_{1} topological space, then the finest quasi-proximity of (X, τ) coincides with the finest quasi-proximity of the bispace (X, τ, D).

Definition 1. A quasi-pseudometric d on a set X is called pairwise equinormal if $d(A, B)>0$ whenever A is a (nonempty) $T\left(d^{-1}\right)$-closed set and B is a disjoint (nonempty) $T(d)$-closed set.

Theorem 1. The finest quasi-proximity of a pairwise Hausdorff pairwise completely regular bispace (X, τ_{1}, τ_{2}) is quasi-metrizable if and only if it admits a pairwise equinormal quasi-metric.

Proof. If the finest quasi-proximity of $\left(X, \tau_{1}, \tau_{2}\right)$ is quasi-metrizable, there exists a quasi-metric d on X compatible with $\left(\tau_{1}, \tau_{2}\right)$ such that $A \delta_{d} B$ if and only if $\tau_{2} \operatorname{cl}(A) \cap \tau_{1} \operatorname{cl}(B) \neq \emptyset$, by Proposition 1 (recall that every quasi-metrizable bispace is pairwise normal). Since $A \delta_{d} B$ if and only if $d(A, B)=0$, we conclude that $d(A, B)>0$ whenever A is a (nonempty) τ_{2}-closed set and B is a disjoint (nonempty) τ_{1}-closed set. Thus d is pairwise equinormal.

Conversely, the quasi-proximity δ_{d} induced by the pairwise equinormal quasi-metric d satisfies $A \delta_{d} B$ if and only if $d(A, B)=0$. Consequently, $\tau_{2} \operatorname{cl}(A) \cap \tau_{1} \operatorname{cl}(B) \neq \emptyset$ whenever $A \delta_{d} B$, by the paiwise equinormality of d. Then, it follows from Proposition 1 that $A \delta_{\mathcal{B F N}} B$ whenever $A \delta_{d} B$. We conclude that δ_{d} is exactly the finest quasi-proximity of $\left(X, \tau_{1}, \tau_{2}\right)$.

Remark 2. Actually, the proof of Theorem 1 shows that if d is a quasimetric on a set X, then d is pairwise equinormal if and only if δ_{d} coincides with the finest quasi-proximity of the bispace ($X, T(d), T\left(d^{-1}\right)$).

In our next theorem we shall characterize the bispaces whose finest quasi-proximity is quasi-metrizable in terms of real-valued bicontinuous functions which are quasi-proximally continuous.

Let $\left(X, \tau_{1}, \tau_{2}\right)$ and $\left(Y, \tau_{1}^{\prime}, \tau_{2}^{\prime}\right)$ be two bispaces. A function f from X to Y is said to be bicontinuous if f is continuous from $\left(X, \tau_{i}\right)$ to $\left(Y, \tau_{i}^{\prime}\right)$, $i=1,2$.

Let (X, δ) and (Y, ρ) be two quasi-proximity spaces. A function f from X to Y is called $q p$-continuous [8, 1.48], if $f(A) \rho f(B)$ whenever $A \delta B$.

Denote by ℓ the quasi-pseudometric on \mathbb{R} given by $\ell(x, y)=(x-y) \vee 0$. We say that a real-valued function f defined on a quasi-pseudometric space (X, d) is quasi-proximally continuous if it is $q p$-continuous from $\left(X, \delta_{d}\right)$ to $\left(\mathbb{R}, \delta_{\ell}\right)$. Thus, a real-valued function f defined on the quasi-pseudometric space (X, d) is quasi-proximally continuous if and only $\operatorname{if} \inf \{(f(a)-f(b)) \vee$ $0: a \in A, b \in B\}=0$ whenever $d(A, B)=0$.

Definition 2. A quasi-metric space (X, d) is called a $Q P$ space if every real-valued lower semicontinuous function (with respect to $T(d)$) is quasiproximally continuous. A quasi-metrizable topological space (X, τ) is said to be a $Q P$ topological space if it admits a quasi-metric d for which (X, d) is a $Q P$ space.

A quasi-metric space (X, d) is called a $B Q P$ space if every realvalued bicontinuous function (from $\left(X, T(d), T\left(d^{-1}\right)\right)$ to $\left(\mathbb{R}, T(\ell), T\left(\ell^{-1}\right)\right)$) is quasi-proximally continuous. A quasi-metrizable bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be a $B Q P$ bispace if it admits a quasi-metric d for which (X, d) is a $B Q P$ space.

Theorem 2. A quasi-metric space (X, d) is a $B Q P$ space if and only if the quasi-proximity δ_{d}, induced by d, is the finest quasi-proximity of the bispace ($\left.X, T(d), T\left(d^{-1}\right)\right)$.

Proof. Suppose that the quasi-metric space (X, d) is a $B Q P$ space. By Remark 2, it suffices to show that d is a pairwise equinormal quasimetric on X. Let A be a (nonempty) $T\left(d^{-1}\right)$-closed set and let B be a disjoint (nonempty) $T(d)$-closed set. By [13, Theorem 2.7] there is a bicontinuous function $f: X \rightarrow[0,1]$ such that $f(A)=1$ and $f(B)=0$. Therefore,

$$
\inf \{(f(a)-f(b)) \vee 0: a \in A, b \in B\}=1
$$

Since (X, d) is a $B Q P$ space we deduce that $d(A, B)>0$. Thus d is pairwise equinormal.

Conversely, let f be a real-valued bicontinuous function from $\left(X, \tau_{1}, \tau_{2}\right)$ to $\left(\mathbb{R}, T(\ell), T\left(\ell^{-1}\right)\right.$), where $\tau_{1}=T(d)$ and $\tau_{2}=T\left(d^{-1}\right)$. Let A and B be two subsets of X such that $d(A, B)=0$. Then $d\left(\tau_{2} \operatorname{cl}(A), \tau_{1} \operatorname{cl}(B)\right)=0$. Since d is pairwise equinormal there is $x \in \tau_{2} \operatorname{cl}(A) \cap \tau_{1} \operatorname{cl}(B)$. We may assume the following cases:
I. $x \in A \cap B$. Then, obviously, $\inf \{(f(a)-f(b)) \vee 0: a \in A, b \in B\}=0$.
II. $x \in\left(\tau_{2} \operatorname{cl}(A) \backslash A\right) \cap B$. In this case there is a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of distinct points in A such that $d\left(a_{n}, x\right) \rightarrow 0$. Since f is upper semicontinuous with respect to τ_{2} and $x \in B$, we obtain that $\inf \{(f(a)-f(x)) \vee 0$: $a \in A\}=0$.
III. $x \in A \cap\left(\tau_{1} \operatorname{cl}(B) \backslash B\right)$. Then, an argument similarly to the given in II, permits us to obtain that $\inf \{(f(x)-f(b)) \vee 0: b \in B\}=0$.
IV. $x \in\left(\tau_{2} \operatorname{cl}(A) \backslash A\right) \cap\left(\tau_{1} \operatorname{cl}(B) \backslash B\right)$. Then there exist a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of (distinct) points in A and a sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ of (distinct) points in B such that $d\left(a_{n}, x\right) \rightarrow 0$ and $d\left(x, b_{n}\right) \rightarrow 0$. Since f is bicontinuous, we immediately deduce that $\inf \{(f(a)-f(b)) \vee 0: a \in A, b \in B\}=0$.

We conclude that (X, d) is a $B Q P$ space.
Corollary 1. The finest quasi-proximity of a pairwise Hausdorff pairwise completely regular bispace is quasi-metrizable if and only if it is a BQP bispace.

In [14, Lemma 1.1] KüNZI proved that a topological space has a σ interior preserving topology if and only if its finest quasi-proximity is quasi-pseudo-metrizable. Here we obtain the following characterizations of those quasi-metrizable topological spaces whose finest quasi-proximity is quasimetrizable.

Corollary 2. For a quasi-metrizable topological space (X, τ) the following statements are equivalent:
(1) The finest quasi-proximity of (X, τ) is quasi-metrizable.
(2) (X, τ) admits a quasi-metric d such that $d(A, B)>0$ whenever A is a (nonempty) set and B is a disjoint (nonempty) closed set.
(3) (X, τ) is a $Q P$ topological space.

Proof. (1) $\Rightarrow(2)$: If the finest quasi-proximity of (X, τ) is quasimetrizable we deduce, from Remark 1, that the finest quasi-proximity of (X, τ, D) is quasi-metrizable, where D denotes the discrete topology on X. By Theorem 1, (X, τ, D) admits a pairwise equinormal quasi-metric d, which, obviously, satisfies the conditions of (2).
$(2) \Rightarrow(3)$: Suppose that there is a point $x \in X$ which is not $T\left(d^{-1}\right)$ isolated. Then there is a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of distinct points in X such that $a_{n} \neq x$ for all $n \in \mathbb{N}$ and $d\left(a_{n}, x\right) \rightarrow 0$. Thus, $d(A, B)=0$, where $A=\left\{a_{n}: n \in \mathbb{N}\right\}$ and $B=\{x\}$, a contradiction. Hence, $T\left(d^{-1}\right)$ is the discrete topology on X, and, thus, d is pairwise equinormal. By Theorem 1
and Corollary $1,(X, \tau, D)$ is a $B Q P$ bispace, so (X, τ) is a $Q P$ topological space.
$(3) \Rightarrow(1)$: Let d be a quasi-metric on X compatible with τ for which (X, d) is a $Q P$ space. Suppose that there is a point $x \in X$ which is not $T\left(d^{-1}\right)$-isolated. Then there is a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of distinct points in X such that $a_{n} \neq x$ for all $n \in \mathbb{N}$ and $d\left(a_{n}, x\right) \rightarrow 0$. Consider the function f defined on X by $f(x)=0$ and $f(y)=1$ for all $y \in X \backslash\{x\}$. Then f is lower semicontinuous on (X, τ) but clearly it is not quasi-proximally continuous. We conclude that $T\left(d^{-1}\right)$ is the discrete topology on X, so, (X, τ, D) is a $B Q P$ bispace because (X, τ) is a $Q P$ topological space. From Corollary 1 and Remark 1 it follows that the finest quasi-proximity of (X, τ) is quasimetrizable.

The notion of a pairwise compact bispace was introduced in [7]. It is known that a bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise compact if and only if every proper τ_{i}-closed set is τ_{j}-compact, $i, j=1,2 ; i \neq j$.

Proposition 2. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a quasi-metrizable pairwise compact bispace. Then every compatible quasi-metric is pairwise equinormal.

Proof. Let d be a quasi-metric on X compatible with $\left(\tau_{1}, \tau_{2}\right)$. Suppose that there exist a (nonempty) τ_{2}-closed set A and a disjoint (nonempty) τ_{1}-closed set B such that $d(A, B)=0$. Then there exist a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in A and a sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ in B such that $d\left(a_{n}, b_{n}\right) \rightarrow 0$. Since the bispace is pairwise compact, there exists a subsequence $\left(a_{k(n)}\right)_{n \in \mathbb{N}}$ of $\left(a_{n}\right)_{n \in \mathbb{N}}$ that is τ_{1}-convergent to a point $a \in A$. Moreover, $\left(b_{k(n)}\right)_{n \in \mathbb{N}}$ has a τ_{2}-cluster point $b \in B$. It follows from the triangle inequality that $a=b$, a contradiction. We conclude that d is pairwise equinormal.

Corollary 3. The finest quasi-proximity of any quasi-metrizable pairwise compact bispace is quasi-metrizable.

Example 1. Let $X=\{1 / n: n \in \mathbb{N}\}$ and let d be the quasi-metric defined on X by $d(1 / n, 1 / m)=1 / m$ for $n \neq m$ and $d(x, x)=0$ for all $x \in X$. Then $T(d)$ is the cofinite topology on X and $T\left(d^{-1}\right)$ is the discrete topology on X. It is known (and easy to verify) that ($X, T(d), T\left(d^{-1}\right)$) is a pairwise compact bispace. Hence, every compatible quasi-metric is pairwise equinormal. So, the finest quasi-proximity of $\left(X, T(d), T\left(d^{-1}\right)\right)$ is quasi-metrizable.

It is interesting to note that, by [16, Proposition 4], $(X, T(d))$ (and, hence, $\left(X, T(d), T\left(d^{-1}\right)\right)$) admits a unique quasi-proximity, because it is hereditarily compact. (See [17] for an example of a non hereditarily compact T_{1} topological space admitting a unique quasi-proximity.)

In [6] Brümmer showed that every topological space (X, τ) admits a finest quasi-uniformity: Basic entourages are of the form $\{(x, y) \in X \times X$: $d(x, y)<r\}$, where d is any quasi-pseudometric on X such that $T(d) \subseteq \tau$ and r is any positive real number. This quasi-uniformity is said to be the fine quasi-uniformity of (X, τ) (see [8]).

The bitopological counterpart of Brümmer's result was obtained by Salbany [29] who proved that every quasi-uniformizable bispace (X, τ_{1}, τ_{2}) admits a finest quasi-uniformity: Basic entourages are of the form $\{(x, y) \in$ $X \times X: d(x, y)<r\}$, where d is any quasi-pseudometric on X such that $T(d) \subseteq \tau_{1}$ and $T\left(d^{-1}\right) \subseteq \tau_{2}$ and r is any positive real number.

In connection with these facts let us recall that a bispace is quasiuniformizable if and only if it is pairwise completely regular [18, Theorem 4.2].

Since every quasi-uniformity with a countable base generates a quasipseudometric (see e.g. [8, Lemma 1.5]), we will say that the fine(st) quasiuniformity of a (bi)space is quasi-pseudometrizable if it has a countable base.

Remark 3. Let (X, τ) be a T_{1} topological space. It immediately follows from Brümmer's result and Salbany's result mentioned above that the fine quasi-uniformity of (X, τ) coincides with the finest quasi-uniformity of the bispace (X, τ, D), where D denotes the discrete topology on X (compare Remark 1).

The finest quasi-uniformity of the bispace $\left(X, T(d), T\left(d^{-1}\right)\right)$ of Example 1 is not quasi-metrizable: Indeed, it follows from Künzi's theorem mentioned in Section 1 that the fine quasi-uniformity of $(X, T(d))$ is not quasi-metrizable. The conclusion now follows from Remark 3.

Therefore, an interesting question appears in a natural way: Obtain conditions under which quasi-metrizability of the finest quasi-proximity of a (bi)space implies quasi-metrizability of the fine(st) quasi-uniformity.

In the next section we shall give a solution to this question via the study of quasi-metric spaces having the property that real-valued bicontinuous functions are quasi-uniformly continuous. (In our context, this property should be considered as the analogue of property $U C$ for metric spaces.)

3. $Q U C$ topological spaces and $B Q U C$ bispaces

Let us recall [28], [8], that a real-valued function f defined on a quasiuniform space (X, \mathcal{U}) is said to be quasi-uniformly continuous if for each $\varepsilon>0$ there is $U \in \mathcal{U}$ such that $\ell(f(x), f(y))<\varepsilon$ whenever $(x, y) \in U$. In particular, a real-valued function f defined on a quasi-pseudometric space (X, d) is said to be quasi-uniformly continuous if it is quasi-uniformly continuous for $\left(X, \mathcal{U}_{d}\right)$.

Definition 3. A quasi-metric space (X, d) is called a $Q U C$ space if every real-valued lower semicontinuous function (with respect to $(X, T(d)$) is quasi-uniformly continuous. A quasi-metrizable topological space (X, τ) is said to be a $Q U C$ topological space if it admits a quasi-metric d for which (X, d) is a $Q U C$ space.

A quasi-metric space (X, d) is called a $B Q U C$ space if every realvalued bicontinuous function (with respect to $\left(X, T(d), T\left(d^{-1}\right)\right.$) is quasiuniformly continuous. A quasi-metrizable bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be a $B Q U C$ bispace if it admits a quasi-metric d for which (X, d) is a $B Q U C$ space.

In [29] SALBANY showed that the finest quasi-uniformity of any pairwise completely regular bispace has the property that every real-valued bicontinuous function is quasi-uniformly continuous. From this result we immediately deduce the following result.

Proposition 3. Every pairwise Hausdorff pairwise completely regular bispace whose finest quasi-uniformity is quasi-metrizable is a $B Q U C$ bispace.

Proposition 4. Let (X, d) be a $B Q U C$ space. Then d is a pairwise equinormal quasi-metric.

Proof. By [8, Proposition 1.51] every real-valued quasi-uniformly continuous function on (X, d) is quasi-proximally continuous from $\left(X, \delta_{d}\right)$ to $\left(\mathbb{R}, \delta_{\ell}\right)$. Hence (X, d) is a $B Q P$ space. By Theorem 2 and Remark $2, d$ is pairwise equinormal.

In [14, proof of Proposition 1.13], KüNZI observed that if the fine quasi-uniformity of a topological space is quasi-pseudometrizable, then its finest quasi-proximity is quasi-pseudometrizable. From Propositions 3 and 4 and Theorem 1 we here obtain the following result.

Corollary 4. If the finest quasi-uniformity of a pairwise Hausdorff pairwise completely regular bispace is quasi-metrizable, then its finest quasi-proximity is quasi-metrizable.

Lemma 1 [28, Corollary 3.2.3]. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a pairwise normal bispace. Let A be a τ_{2}-closed set, B a τ_{1}-closed set and $C=A \cap B$. Then every real-valued bounded bicontinuous function f on $\left(C, \tau_{1}\left|C, \tau_{2}\right| C\right)$ has a bicontinuous extension to (X, τ_{1}, τ_{2}).

Proposition 5. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a BQUC bispace. Then every sequence of non τ_{i}-isolated points has a τ_{j}-cluster point, $i, j=1,2 ; i \neq j$.

Proof. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a $B Q U C$ bispace and let d be a compatible quasi-metric for which every real-valued bicontinuous function is quasiuniformly continuous. Suppose that there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of (distinct) non τ_{1}-isolated points without τ_{2}-cluster point. Then $\left\{x_{n}: n \in \mathbb{N}\right\}$ is a τ_{2}-closed set. Since each x_{n} is a non τ_{1}-isolated point, there exist a subsequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of $\left(x_{n}\right)_{n \in \mathbb{N}}$ and a sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ of distinct points in X, such that

$$
\left\{a_{n}: n \in \mathbb{N}\right\} \cap\left\{b_{n}: n \in \mathbb{N}\right\}=\emptyset \quad \text { and } d\left(a_{n}, b_{n}\right) \rightarrow 0
$$

Indeed: If the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ has infinitely many τ_{1}-cluster points in $\left\{x_{n}: n \in \mathbb{N}\right\}$, then we may construct two disjoint subsequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ of $\left(x_{n}\right)_{n \in \mathbb{N}}$, such that $d\left(a_{n}, b_{n}\right)<2^{-n}$ for all $n \in \mathbb{N}$. Otherwise, there is $n_{0} \in \mathbb{N}$ such that no point in $\left\{x_{n}: n \geq n_{0}\right\}$ is a τ_{1} cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$. Therefore, for each $n \geq n_{0}$ there exists an r_{n}, with $0<r_{n}<2^{-n}$, and a $b_{n} \neq x_{n}$, such that $d\left(x_{n}, b_{n}\right)<r_{n}$ and $x_{m} \notin S_{d}\left(x_{n}, r_{n}\right)$ for all $m \in \mathbb{N} \backslash\{n\}$. (Moreover, it is not a restriction to suppose that $b_{n} \neq b_{m}$ whenever $n \neq m$, since $d\left(x_{n}, b_{n}\right) \rightarrow 0$ and $\left(x_{n}\right)_{n \in \mathbb{N}}$ has no τ_{2}-cluster points.)

Now note that $\left\{b_{n}: n \in \mathbb{N}\right\}$ is also a τ_{2}-closed set because $\left(b_{n}\right)_{n \in \mathbb{N}}$ has no τ_{2}-cluster points, and put $A=\left\{a_{n}: n \in \mathbb{N}\right\} \cup\left\{b_{n}: n \in \mathbb{N}\right\}$.

Define a function $f: A \rightarrow \mathbb{R}$, by $f\left(a_{n}\right)=2 n$ and $f\left(b_{n}\right)=2 n-1$, for all $n \in \mathbb{N}$. Since $\tau_{2} \mid A$ is the discrete topology, f is τ_{2}-upper semicontinuous on A. Moreover, f is τ_{1}-lower semicontinuous on A, since for each $n, m \in \mathbb{N}$ such that $n<m$, we have $f\left(a_{n}\right)<f\left(b_{m}\right), f\left(a_{n}\right)<f\left(a_{m}\right), f\left(b_{n}\right)<f\left(a_{m}\right)$ and $f\left(b_{n}\right)<f\left(b_{m}\right)$. Therefore, the function g defined on A by $g=f /(1+f)$ is also bicontinuous on A, and $1 / 2 \leq g(x)<1$ for all $x \in A$. Since
A is τ_{2}-closed, it follows from Lemma 1 (with $B=X$), that g has a bicontinuous extension to a function $G: X \rightarrow[0,1]$. On the other hand (see [18, p. 247-248]), there is a τ_{1}-upper semicontinuous and τ_{2}-lower semicontinuous function on $X, h: X \rightarrow[0,1]$ such that $h^{-1}(0)=A$. Consider the function $H=G /(1+h)$. Then H is a bicontinuous function on $\left(X, \tau_{1}, \tau_{2}\right)$ such that for each $x \in X, 0 \leq H(x)<1$, and $H(x)=g(x)$ for all $x \in A$.

Finally, let $F=H /(1-H)$. Then, F is also bicontinuous on $\left(X, \tau_{1}, \tau_{2}\right)$ and $F(x)=f(x)$ for all $x \in A$. Thus, by the hypothesis, F is quasiuniformly continuous on (X, d). However, $d\left(a_{n}, b_{n}\right) \rightarrow 0$ and $F\left(a_{n}\right)-$ $F\left(b_{n}\right)=1$ for all $n \in \mathbb{N}$, a contradiction.

We conclude that every sequence of non τ_{1}-isolated points has a $\tau_{2}{ }^{-}$ cluster point. A similar argument shows that every sequence of non $\tau_{2^{-}}$ isolated points has a τ_{1}-cluster point.

Corollary 5. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a $B Q U C$ bispace. Then the fine uniformity of $\left(X, \tau_{1} \vee \tau_{2}\right)$ is metrizable.

Proof. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of non $\tau_{1} \vee \tau_{2}$-isolated points. From Proposition 5 it follows that there is a subsequence $\left(x_{k(n)}\right)_{n \in \mathbb{N}}$ of $\left(x_{n}\right)_{n \in \mathbb{N}}$, that converges to a point $x \in X$ with respect to τ_{2}. Since $\left(x_{k(n)}\right)_{n \in \mathbb{N}}$ has also a τ_{1}-cluster point, we deduce that x is a $\tau_{1} \vee \tau_{2}$-cluster point of $\left(x_{k(n)}\right)_{n \in \mathbb{N}}$. The conclusion follows from Nagata's theorem mentioned in Section 1.

Corollary 6. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a quasi-metrizable bispace with only finitely many τ_{1}-isolated points. If $\left(X, \tau_{1}, \tau_{2}\right)$ is a $B Q U C$ bispace, then:
(i) $\left(X, \tau_{2}\right)$ is a compact space and, thus, $\tau_{2} \subseteq \tau_{1}$.
(ii) $\left(X, \tau_{1}\right)$ is a metrizable space whose fine uniformity is metrizable.

Proof. By Proposition $5,\left(X, \tau_{2}\right)$ is a compact space and, hence, $\tau_{2} \subseteq \tau_{1}$. The assertion (ii) is now a consequence of Corollary 5.

Remark 4. Corollary 6 shows that the Niemytzki plane, the Kofner plane and the Sorgenfrey line (see [8]) are examples of quasi-metrizable topological spaces (X, τ) that do not admit any quasi-metric d for which $\left(X, \tau, T\left(d^{-1}\right)\right)$ is a $B Q U C$ bispace. Hence, they do not admit any quasimetric d for which the finest quasi-uniformity of $\left(X, \tau, T\left(d^{-1}\right)\right)$ is quasimetrizable.

Example 2. Let d be the quasi-metric defined on \mathbb{R} by $d(x, y)=$ $\min \{1, y-x\}$ if $x \leq y$, and $d(x, y)=1$ otherwise. Then $T(d)$ is the Sorgenfrey topology on \mathbb{R}. Since $d \vee d^{-1}$ is the discrete metric on \mathbb{R}, we deduce, from Remark 4, that the converse of Corollary 5 is not true in general.

Note that Example 1 also shows that such a converse does not hold (see Proposition 5). However, the space ($X, T(d)$) of Example 2 is Hausdorff.

The following is an example of a $B Q U C$ bispace whose finest quasiuniformity is not quasi-metrizable.

Example 3. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ be two sequences of distinct points such that $\left\{x_{n}: n \in \mathbb{N}\right\} \cap\left\{y_{n}: n \in \mathbb{N}\right\}=\emptyset$. Take a point $a \notin\left(\left\{x_{n}:\right.\right.$ $\left.n \in \mathbb{N}\} \cup\left\{y_{n}: n \in \mathbb{N}\right\}\right)$ and put $X=\{a\} \cup\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{y_{n}: n \in \mathbb{N}\right\}$. Define a quasi-metric d on X by $d\left(a, y_{n}\right)=1 / n$ for all $n \in \mathbb{N}, d\left(x_{n}, y_{m}\right)=$ $1 / n$ for all $n, m \in \mathbb{N}, d(x, x)=0$ for all $x \in X$, and $d(x, y)=1$ otherwise.

We first show that the finest quasi-uniformity $\mathcal{B F N}$ of the quasimetrizable bispace $\left(X, T(d), T\left(d^{-1}\right)\right)$ is not quasi-metrizable. Assume the contrary. Then $\mathcal{B F} \mathcal{N}$ has a countable base $\left\{V_{n}: n \in \mathbb{N}\right\}$. By Lemma 2 below, for each $x \in X$ and each $n \in \mathbb{N}$ there is an $n(x) \in \mathbb{N}$ such that $S_{d^{-1}}(x, 1 / n(x)) \times S_{d}(x, 1 / n(x)) \subseteq V_{n}$. Let

$$
\begin{aligned}
W= & {\left[\bigcup_{n \in \mathbb{N}}\left(\left\{x_{n}\right\} \times\left\{x_{n}\right\}\right)\right] \cup\left[\{a\} \times S_{d}(a, 1)\right] } \\
& \cup\left[\bigcup_{n \in \mathbb{N}}\left(S_{d^{-1}}\left(y_{n}, 1 /\left(n\left(y_{n}\right)+1\right)\right) \times\left\{y_{n}\right\}\right)\right] .
\end{aligned}
$$

By Lemma $2, W \in \mathcal{B} \mathcal{F} \mathcal{N}$. However, $\left(x_{n\left(y_{n}\right)+1}, y_{n}\right) \in V_{n} \backslash W$ for all $n \in \mathbb{N}$, because $d\left(x_{n\left(y_{n}\right)+1}, y_{n}\right)=1 /\left(n\left(y_{n}\right)+1\right)$. We conclude that $\mathcal{B F} \mathcal{N}$ has no a countable base.

Finally, we prove that (X, d) is a $B Q U C$ space. Assume the contrary. Then there is a real-valued bicontinuous function f on X which is not quasi-uniformly continuous. Thus, there exist an $\varepsilon>0$ and two sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ in X such that $d\left(a_{n}, b_{n}\right)<2^{-n}$ and $f\left(a_{n}\right)-f\left(b_{n}\right) \geq \varepsilon$ whenever $n \in \mathbb{N}$. If there is a subsequence $\left(a_{k(n)}\right)_{n \in \mathbb{N}}$ of $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that $a_{k(n)}=a$ for all $n \in \mathbb{N}$, then $\left(b_{k(n)}\right)_{n \in \mathbb{N}}$ will be a subsequence of
(distinct) points of $\left(y_{n}\right)_{n \in \mathbb{N}}$. Hence, $d\left(a, b_{k(n)}\right) \rightarrow 0$. Since f is lower semicontinuous with respect to $T(d)$, we obtain a contradiction. Otherwise, we may assume that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a subsequence of distinct points of $\left(x_{n}\right)_{n \in \mathbb{N}}$. If there is a subsequence $\left(b_{k(n)}\right)_{k \in \mathbb{N}}$ of $\left(b_{n}\right)_{n \in \mathbb{N}}$ such that for some fixed $j \in \mathbb{N}$, one has $b_{k(n)}=y_{j}$ whenever $n \in \mathbb{N}$, we obtain a contradiction again, because f is upper semicontinuous with respect to $T\left(d^{-1}\right)$ and $d\left(a_{k(n)}, y_{j}\right) \rightarrow 0$. Thus it only remains to consider the case that $\left(b_{n}\right)_{n \in \mathbb{N}}$ is a subsequence of distinct points of $\left(y_{n}\right)_{n \in \mathbb{N}}$. Then, for b_{1}, there is $\delta_{1}>0$ such that $f(x)-f\left(b_{1}\right)<\varepsilon / 2$ whenever $d\left(x, b_{1}\right)<\delta_{1}$. Since $d\left(a_{n}, b_{1}\right) \rightarrow 0$, there is $k(1)>1$ such that $d\left(a_{k(1)}, b_{1}\right)<\delta_{1}$, so $f\left(a_{k(1)}\right)-f\left(b_{1}\right)<\varepsilon / 2$. Hence, $(\varepsilon / 2)+f\left(b_{k(1)}\right) \leq f\left(a_{k(1)}\right)-(\varepsilon / 2)<f\left(b_{1}\right)$. Taking $b_{k(1)}$ we obtain, similarly, a $k(2)>k(1)$ such that $f\left(a_{k(2)}\right)-f\left(b_{k(1)}\right)<\varepsilon / 2$. Hence, $(\varepsilon / 2)+f\left(b_{k(2)}\right)<f\left(b_{k(1)}\right)$. Following this process we can construct a strictly increasing sequence $(k(n))_{n \in \mathbb{N}}$ of natural numbers such that $(\varepsilon / 2)+f\left(b_{k(n+1)}\right)<f\left(b_{k(n)}\right)$ for all $k \in \mathbb{N}$. Consequently, $f\left(b_{k(n)}\right) \rightarrow-\infty$. Since $d\left(a, b_{k(n)}\right) \rightarrow 0$, we deduce that $f(a)=-\infty$, a contradiction. Hence, f is quasi-uniformly continuous and, thus, (X, d) is a $B Q U C$ space.

However, in the topological case we may obtain a satisfactory result, as Theorem 3 below shows. We will use the two following lemmas.

Lemma 2 [26]. The finest quasi-uniformity of a quasi-pseudometrizable bispace (X, τ_{1}, τ_{2}) consists of all $\tau_{2} \times \tau_{1}$-neighborhoods of the diagonal in $X \times X$.

Lemma 3. Let d be a pairwise equinormal quasi-metric on a set X. If $T\left(d^{-1}\right)$ is the discrete topology on X, then there exists an $r>0$ such that $d(x, y) \geq r$ whenever x is a $T(d)$-isolated point and $y \neq x$.

Proof. Assume the contrary. Then there exist two sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ of points in X such that each a_{n} is $T(d)$-isolated, $a_{n} \neq b_{n}$, and $d\left(a_{n}, b_{n}\right)<2^{-n}$ for all $n \in \mathbb{N}$. Since $T\left(d^{-1}\right)$ is the discrete topology on X and each a_{n} is $T(d)$-isolated, we may suppose, without loss of generality, that both $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ are sequences of distinct points. Put

$$
A=\left\{a_{n}: n \in \mathbb{N}\right\} \text { and } B=T(d) \operatorname{cl}\left(\left\{b_{n}: n \in \mathbb{N}\right\}\right) .
$$

Since d is pairwise equinormal and $d(A, B)=0$, we deduce that $A \cap$ $B \neq \emptyset$. Let $x \in A \cap B$. Then x is $T(d)$-isolated, so $x \in\left\{b_{n}: n \in \mathbb{N}\right\}$. If $C=A \cap B$ is a finite set we have that $A_{1}=A \backslash C$ is a (nonempty) $T\left(d^{-1}\right)$ closed set and $B_{1}=T(d) \operatorname{cl}(B \backslash C)$ is a disjoint (nonempty) $T(d)$-closed set
such that $d\left(A_{1}, B_{1}\right)=0$, a contradiction. Therefore, we may assume that there exists a subsequence $\left(a_{k(n)}\right)_{n \in \mathbb{N}}$ of $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that $a_{k(m)} \in\left\{b_{n}\right.$: $n \in \mathbb{N}\}$ for all $m \in \mathbb{N}$. Thus we can construct two subsequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ of $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that $\left\{x_{n}: n \in \mathbb{N}\right\} \cap T(d) \operatorname{cl}\left(\left\{y_{n}: n \in \mathbb{N}\right\}\right)=\emptyset$ and $d\left(x_{n}, y_{n}\right) \rightarrow 0$, a contradiction.

We conclude that there exists an $r>0$ such that $d(x, y) \geq r$ whenever x is $T(d)$-isolated and $y \neq x$.

Theorem 3. For a quasi-metric space (X, d) the following statements are equivalent:
(1) (X, d) is a $Q U C$ space.
(2) $(X, T(d))$ has only finitely many nonisolated points and there exists an $r>0$ such that $d(x, y) \geq r$ whenever x is a $T(d)$-isolated point and $y \neq x$.
(3) The quasi-uniformity \mathcal{U}_{d}, generated by d, coincides with the fine quasiuniformity of the topological space $(X, T(d))$.

Proof. (1) $\Rightarrow(2)$: We first show that $T\left(d^{-1}\right)$ is the discrete topology on X : Suppose that there exist a point $x \in X$ and a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of distinct points in X such that $d\left(x_{n}, x\right) \rightarrow 0$. Then, the characteristic function for $X \backslash\{x\}$ is lower semicontinuous but not quasi-uniformly continuous. Therefore $T\left(d^{-1}\right)$ is the discrete topology D on X.

Hence (X, d) is a $B Q U C$ space. By Proposition 4, d is pairwise equinormal and, by Proposition 5, every sequence of non $T(d)$-isolated points has a D-cluster point. So $(X, T(d))$ has only finitely many nonisolated points. Furthermore, by Lemma 3, there exists an $r>0$ such that $d(x, y) \geq r$ whenever x is a $T(d)$-isolated point and $y \neq x$.
$(2) \Rightarrow(3)$: Denote by X^{\prime} the set of non $T(d)$-isolated points of X.
If $X^{\prime}=\emptyset, T(d)=D$, and, thus, by Remark 3 and Lemma 2, $\Delta=\{(x, x): x \in X\}$ is a base for the fine quasi-uniformity of $(X, T(d))$. Theferore, $\{(x, y) \in X \times X: d(x, y)<r\}=\Delta$, and, consequently, \mathcal{U}_{d} is exactly the fine quasi-uniformity of $(X, T(d))$.

If $X^{\prime} \neq \emptyset$, let $X^{\prime}=\left\{x_{1}, \ldots, x_{j}\right\}$. We first show that $T\left(d^{-1}\right)$ is the discrete topology on X : Otherwise, there exist an $x \in X$ and a sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ of distinct points in X such that $d\left(y_{n}, x\right) \rightarrow 0$. Thus, there is an $n_{0} \in \mathbb{N}$ such that $y_{n} \neq x$ and $d\left(y_{n}, x\right)<r$ for all $n \geq n_{0}$. So, for each $n \geq n_{0}, y_{n} \in X^{\prime}$. Since X^{\prime} is a finite set, $y_{n}=x$ for some $n \geq n_{0}$, a contradiction.

Now denote by $\mathcal{F} \mathcal{N}$ the fine quasi-uniformity of $(X, T(d))$ and let $W \in$ $\mathcal{F N}$. Since $\mathcal{F N}$ coincides with the finest quasi-uniformity of the quasimetrizable bispace ($X, T(d), D$) (see Remark 3), it follows from Lemma 2 that for each $x_{i} \in X^{\prime}$ there is an $\varepsilon_{i}>0$ such that

$$
\left(\bigcup_{i=1}^{j}\left(\left\{x_{i}\right\} \times S_{d}\left(x_{i}, \varepsilon_{i}\right)\right)\right) \cup\left(\bigcup_{x \notin X^{\prime}}(\{x\} \times\{x\})\right) \subseteq W .
$$

Put $\varepsilon=\min \left\{\varepsilon_{i}: i=1, \ldots, j\right\}$ and $\delta=\min \{\varepsilon, r\}$. Then $d(x, y) \geq \delta$ whenever $x \in X \backslash X^{\prime}$ and $y \neq x$. Hence $\{(x, y) \in X \times X: d(x, y)<\delta\} \subseteq W$, and, consequently, \mathcal{U}_{d} coincides with the fine quasi-uniformity of $(X, T(d))$.
$(3) \Rightarrow(1)$: This implication is clear, because it is well known that the fine quasi-uniformity of any topological space has the property that every real-valued lower semicontinuous function is quasi-uniformly continuous [8].

Corollary 7. The fine quasi-uniformity of a T_{1} topological space is quasi-metrizable if and only if it is a $Q U C$ topological space.

Corollary 8 [14]. The fine quasi-uniformity of a T_{1} topological space (X, τ) is quasi-metrizable if and only if (X, τ) is a quasi-metrizable space with only finitely many nonisolated points.

Proof. We first suppose that the fine quasi-uniformity of (X, τ) is quasi-metrizable. It then follows from Remark 3 that the finest quasi-uniformity of (X, τ, D) is quasi-metrizable. So (X, τ, D) is a $B Q U C$ bispace. By Proposition $5,(X, \tau)$ has only finitely many nonisolated points. Conversely, let d be a quasi-metric on X compatible with τ and let X^{\prime} be the set of the nonislated points. Define for all $x, y \in X, e(x, y)=\min \{d(x, y), 1\}$ if $x \in X^{\prime}, e(x, y)=1$ if $x \in X \backslash X^{\prime}$ and $x \neq y$, and $e(x, x)=0$ for all $x \in X$. Since e is compatible with τ, the quasi-metric space (X, e) satisfies the conditions of Theorem 3(2) (with $r=1$). Therefore, the fine quasi-uniformity of (X, τ) coincides with \mathcal{U}_{e}, so, it is quasi-metrizable.

Note that the topologies $T(d)$ and $T\left(d^{-1}\right)$ of the bispace $\left(X, T(d), T\left(d^{-1}\right)\right)$ of Example 3 are not comparable. Moreover, $T(d)$ is a Hausdorff topology but $T\left(d^{-1}\right)$ is not. These facts are not accidental as our two next theorems show.

Theorem 4. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a quasi-metrizable bispace such that $\tau_{1} \subseteq \tau_{2}$. Then the following statements are equivalent:
(1) The finest quasi-uniformity of $\left(X, \tau_{1}, \tau_{2}\right)$ is quasi-metrizable.
(2) $\left(X, \tau_{1}, \tau_{2}\right)$ is a BQUC bispace.
(3) The set of the non τ_{1}-isolated points is τ_{2}-compact.

Proof. (1) \Rightarrow (2): Apply Proposition 3.
$(2) \Rightarrow(3)$: By Proposition 5, every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X of non τ_{1}-isolated points has a τ_{2}-cluster point, which is also a τ_{1}-cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$ because $\tau_{1} \subseteq \tau_{2}$. Since every countably compact quasi-metrizable topological space is compact [8, Corollary 2.29], we conclude that the set of the non τ_{1}-isolated points is τ_{2}-compact.
$(3) \Rightarrow(1)$: Denote by X^{\prime} the set of the non τ_{1}-isolated points of X. If $X^{\prime}=\emptyset$, then both τ_{1} and τ_{2} coincide with the discrete topology on X. By Lemma $2,\{\Delta\}$ is a base for the finest quasi-uniformity of $\left(X, \tau_{1}, \tau_{2}\right)$.

Hence, we will suppose that $X^{\prime} \neq \emptyset$. In this case, choose any quasimetric d on X compatible with $\left(\tau_{1}, \tau_{2}\right)$. For each $n \in \mathbb{N}$, define

$$
\begin{aligned}
& V_{n}=\left\{(x, y) \in X \times X: \text { there is } z \in X^{\prime} \text { such that } d(x, z)<2^{-2 n}\right. \text { and } \\
&\left.d(z, y)<2^{-2 n}\right\}
\end{aligned}
$$

and

$$
U_{n}=V_{n} \cup\left\{(x, x) \in X \times X: x \notin X^{\prime}\right\} .
$$

Since for each $n \in \mathbb{N}, \Delta \subseteq U_{n}$ and $U_{n+1}^{3} \subseteq U_{n},\left\{U_{n}: n \in \mathbb{N}\right\}$ is a base for a quasi-uniformity \mathcal{U} on X. Clearly, $T(\mathcal{U}) \subseteq \tau_{1}$ and $T\left(\mathcal{U}^{-1}\right) \subseteq$ τ_{2}. Moreover, for each $x \in X, U_{n+1}(x) \subseteq S_{d}\left(x, 2^{-2 n}\right)$ and $U_{n+1}^{-1}(x) \subseteq$ $S_{d^{-1}}\left(x, 2^{-2 n}\right)$. Hence, \mathcal{U} is compatible with $\left(\tau_{1}, \tau_{2}\right)$. We want to show that \mathcal{U} is exactly the finest quasi-uniformity of $\left(X, \tau_{1}, \tau_{2}\right)$. To this end, let V be a $\tau_{2} \times \tau_{1}$-neighborhood of the diagonal in $X \times X$. Then, for each $x \in X$ there is a τ_{i}-neighborhood $W_{i}(x)$ of $x,(i=1,2)$, such that

$$
W=\bigcup\left\{W_{2}(x) \times W_{1}(x): x \in X\right\} \subseteq V
$$

Hence, it suffices to show that $U_{n} \subseteq W$ for some $n \in \mathbb{N}$. Assume the contrary. Then, for each $n \in \mathbb{N}$ there is a pair $\left(a_{n}, b_{n}\right)$ in $U_{n} \backslash W$. Thus, there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X^{\prime} such that $d\left(a_{n}, x_{n}\right) \rightarrow 0$ and $d\left(x_{n}, b_{n}\right) \rightarrow 0$. Since X^{\prime} is τ_{2}-compact and $\tau_{1} \subseteq \tau_{2}$, we deduce that there are a point $y \in X^{\prime}$
and a subsequence $\left(x_{k(n)}\right)_{n \in \mathbb{N}}$ of $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that $\left(d \vee d^{-1}\right)\left(y, x_{k(n)}\right) \rightarrow 0$. So $d\left(a_{k(n)}, y\right) \rightarrow 0$ and $d\left(y, b_{k(n)}\right) \rightarrow 0$. Therefore $\left(a_{k(n)}\right)_{n \in \mathbb{N}}$ is eventually in $W_{2}(y)$ and $\left(b_{k(n)}\right)_{n \in \mathbb{N}}$ is eventually in $W_{1}(y)$, which contradicts the fact that $\left(a_{n}, b_{n}\right) \notin W$ for all $n \in \mathbb{N}$. We conclude that the finest quasi-uniformity of (X, τ_{1}, τ_{2}) coincides with \mathcal{U}, so it is quasi-metrizable.

A bispace $\left(X, \tau_{1}, \tau_{2}\right)$ is called doubly Hausdorff if both τ_{1} and τ_{2} are Hausdorff topologies on X. A quasi-metric space (X, d) is said to be doubly Hausdorff if $\left(X, T(d), T\left(d^{-1}\right)\right)$ is a doubly Hausdorff bispace.

Theorem 5. For a doubly Hausdorff quasi-metric space (X, d) the following statements are equivalent:
(1) (X, d) is a BQUC space.
(2) The quasi-proximity δ_{d}, induced by d, is the finest quasi-proximity of the bispace ($X, T(d), T\left(d^{-1}\right)$).
(3) The quasi-uniformity \mathcal{U}_{d}, generated by d, is the finest quasi-uniformity of the bispace ($X, T(d), T\left(d^{-1}\right)$).

Proof. (1) \Rightarrow (2): Apply Proposition 4 and Remark 2.
$(2) \Rightarrow(3)$: We first show that every sequence of non $T(d)$-isolated points has a $T\left(d^{-1}\right)$-cluster point. Assume the contrary. Then there is a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of distinct non $T(d)$-isolated points without $T\left(d^{-1}\right)$ cluster point. Let $F=\left\{x_{n}: n \in \mathbb{N}\right\}$. Then F is $T\left(d^{-1}\right)$-closed. For each $n \in \mathbb{N}$ put $F_{n}=F \backslash\left\{x_{n}\right\}$. Note that F_{n} is $T\left(d^{-1}\right)$-closed whenever $n \in \mathbb{N}$. Given x_{1} there is $r_{1}<2^{-1}\left(r_{1}>0\right)$ such that $S_{d^{-1}}\left(x_{1}, r_{1}\right) \cap F_{1}=\emptyset$. Choose a $y_{1} \neq x_{1}$ with $d\left(x_{1}, y_{1}\right)<r_{1}$. Put $k(1)=1$. Let $k(2)$ be the first positive integer greater than 1 such that $x_{k(2)} \neq y_{1}$. Choose $0<r_{2}<\min \left\{r_{1}, 2^{-2}\right\}$ such that $S_{d^{-1}}\left(x_{k(2)}, r_{2}\right) \cap\left(F_{k(2)} \cup\left\{y_{1}\right\}\right)=\emptyset$. Choose a $y_{2} \neq x_{k(2)}$ with $d\left(x_{k(2)}, y_{2}\right)<r_{2}$. Let $k(3)$ be the first positive integer greater than $k(2)$ such that $x_{k(3)} \notin\left\{y_{1}, y_{2}\right\}$. Choose $0<r_{3}<\min \left\{r_{2}, 2^{-3}\right\}$ such that $S_{d^{-1}}\left(x_{k(3)}, r_{3}\right) \cap\left(F_{k(3)} \cup\left\{y_{1}, y_{2}\right\}\right)=\emptyset$. Following this process we can construct a subsequence $\left(x_{k(n)}\right)_{n \in \mathbb{N}}$ of $\left(x_{n}\right)_{n \in \mathbb{N}}$, a sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ of points in X, a subsequence $\left(F_{k(n)}\right)_{n \in \mathbb{N}}$ of $\left(F_{n}\right)_{n \in \mathbb{N}}$ and a strictly decreasing sequence of positive real numbers $\left(r_{n}\right)_{n \in \mathbb{N}}$ such that $r_{n}<2^{-n}, d\left(x_{k(n)}, y_{n}\right)<r_{n}$ and

$$
S_{d^{-1}}\left(x_{k(n)}, r_{n}\right) \cap\left(F_{k(n)} \cup\left\{y_{1}, \ldots, y_{n-1}\right\}\right)=\emptyset \quad \text { for all } n>1 .
$$

Therefore, $x_{k(n)} \neq y_{m}$ for all $n, m \in \mathbb{N}$: Indeed, if $m>n$, from $d\left(x_{k(m)}, x_{k(n)}\right) \leq d\left(x_{k(m)}, y_{m}\right)+d\left(y_{m}, x_{k(n)}\right)$, it follows that $r_{n}<r_{m}+$ $d\left(y_{m}, x_{k(n)}\right)$, so $d\left(y_{m}, x_{k(n)}\right)>r_{n}-r_{m}>0$. If $m<n, y_{m} \notin S_{d^{-1}}\left(x_{k(n)}, r_{n}\right)$. Now put $A=\left\{x_{k(n)}: n \in \mathbb{N}\right\}$ and $B=T(d) \operatorname{cl}\left(\left\{y_{n}: n \in \mathbb{N}\right\}\right)$. Note that A is $T\left(d^{-1}\right)$-closed because $\left(x_{k(n)}\right)_{n \in \mathbb{N}}$ is a subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$. If $A \cap B=\emptyset$, we obtain a contradiction because, by Remark 2, d is pairwise equinormal and $d\left(x_{k(n)}, y_{n}\right) \rightarrow 0$. Otherwise, there exist an $x_{k(m)} \in A$ and a subsequence $\left(y_{j(n)}\right)_{n \in \mathbb{N}}$ of $\left(y_{n}\right)_{n \in \mathbb{N}}$ such that $d\left(x_{k(m)}, y_{j(n)}\right) \rightarrow 0$. Since $T(d)$ is a Hausdorff topology, $H=\left\{x_{k(m)}\right\} \cup\left\{y_{j(n)}: n \in \mathbb{N}\right\}$ is a $T(d)$-closed set. Put $G=A \backslash\left\{x_{k(m)}\right\}$. Then G is a $T\left(d^{-1}\right)$-closed set such that $G \cap H=\emptyset$. However, $d(G, H)=0$ because $d\left(x_{k(j(n))}, y_{j(n)}\right) \rightarrow 0$, a contradiction. We conclude that every sequence of non $T(d)$-isolated points has a $T\left(d^{-1}\right)$-cluster point. Similarly, we prove that every sequence of non $T\left(d^{-1}\right)$-isolated points has a $T(d)$-cluster point.

Now put, for each $n \in \mathbb{N}, U_{n}=\left\{(x, y) \in X \times X: d(x, y)<2^{-n}\right\}$, and suppose that there exist a $T\left(d^{-1}\right) \times T(d)$-neighborhood W of the diagonal in $X \times X$ and a sequence $\left(\left(a_{n}, b_{n}\right)\right)_{n \in \mathbb{N}}$ of points in $X \times X$, such that $\left(a_{n}, b_{n}\right) \in U_{n} \backslash W$ for all $n \in \mathbb{N}$. Then, we may assume that both $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ are sequences of distinct points. We consider the two following cases:
I. The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ has no $T\left(d^{-1}\right)$-cluster point. Hence, we may assume, without loss of generality, that each a_{n} is a $T(d)$-isolated point. Put $A=\left\{a_{n}: n \in \mathbb{N}\right\}$ and $B=T(d) \operatorname{cl}\left(\left\{b_{n}: n \in \mathbb{N}\right\}\right)$. Since $d(A, B)=0$ and d is pairwise equinormal we deduce that $A \cap B \neq \emptyset$. If $A \cap B$ is a finite set, then, an argument similiar to the one used in the proof of Lemma 3, permits us to reach a contradiction. Otherwise, as in the proof of Lemma 3 again, we can construct two subsequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ of $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that $\left\{x_{n}: n \in \mathbb{N}\right\} \cap T(d) \operatorname{cl}(\{y: n \in \mathbb{N}\})=\emptyset$ and $d\left(x_{n}, y_{n}\right) \rightarrow 0$, a contradiction.
II. The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a $T\left(d^{-1}\right)$-cluster point $a \in X$. Then there is a subsequence $\left(a_{k(n)}\right)_{n \in \mathbb{N}}$ of $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that $d\left(a_{k(n)}, a\right) \rightarrow 0$. Thus $A=\{a\} \cup\left\{a_{k(n)}: n \in \mathbb{N}\right\}$ is $T\left(d^{-1}\right)$-closed because $T\left(d^{-1}\right)$ is a Hausdorff topology. Put $B=\left\{b_{k(n)}: n \in \mathbb{N}\right\}$. It is not a restriction to suppose that for each $n \in \mathbb{N}, b_{k(n)} \neq a$ because $\left(a_{k(n)}, b_{k(n)}\right) \notin W$ (and, hence, there is a subsequence of $\left(b_{k(n)}\right)_{n \in \mathbb{N}}$ consisting of points which are different from a). If the sequence $\left(b_{k(n)}\right)_{n \in \mathbb{N}}$ has no $T(d)$-cluster point, then $A \cap B \neq \emptyset$ because d is pairwise equinormal and, thus, we may suppose
that there is a subsequence $\left(c_{n}\right)_{n \in \mathbb{N}}$ of $\left(b_{k(n)}\right)_{n \in \mathbb{N}}$ such that each c_{n} is in A. Therefore, we can construct two subsequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ of $\left(a_{n}\right)_{n \in \mathbb{N}}$ (where $\left(y_{n}\right)_{n \in \mathbb{N}}$ is also a subsequence of $\left.\left(c_{n}\right)_{n \in \mathbb{N}}\right)$, such that

$$
\left\{x_{n}: n \in \mathbb{N}\right\} \cap T(d) \operatorname{cl}\left(\left\{y_{n}: n \in \mathbb{N}\right\}\right)=\emptyset \quad \text { and } \quad d\left(x_{n}, y_{n}\right) \rightarrow 0
$$

a contradiction. Otherwise, there exists a subsequence $\left(c_{n}\right)_{n \in \mathbb{N}}$ of $\left(b_{k(n)}\right)_{n \in \mathbb{N}}$, which is $T(d)$-convergent to a point $c \in X$. Then $c \neq a$, since $\left(a_{n}, b_{n}\right) \notin W$ whenever $n \in \mathbb{N}$. Let $r>0$ such that $S_{d}(c, r) \cap S_{d^{-1}}(a, r)=\emptyset$. Choose an $n_{0} \in \mathbb{N}$ such that for each $n \geq n_{0}, a_{k(n)} \in S_{d^{-1}}(a, r)$ and $c_{n} \in S_{d}(c, r)$, respectively. Then, $A_{0}=\{a\} \cup\left\{a_{k(n)}: n \geq n_{0}\right\}$ is $T\left(d^{-1}\right)$-closed, $C=$ $\{c\} \cup\left\{c_{n}: n \geq n_{0}\right\}$ is $T(d)$-closed, $A_{0} \cap C=\emptyset$ and $d\left(A_{0}, C\right)=0$, so we have reached a contradiction. We conclude that \mathcal{U}_{d} is exactly the finest quasi-uniformity of $\left(X, T(d), T\left(d^{-1}\right)\right)$.
$(3) \Rightarrow(1)$: It follows from Salbany's theorem [29] mentioned above that the finest quasi-uniformity of any pairwise completely regular bispace has the property that every real-valued bicontinuous function is quasiuniformly continuous.

Corollary 9. The finest quasi-uniformity of a doubly Hausdorff pairwise completely regular bispace is quasi-metrizable if and only if its finest quasi-proximity is quasi-metrizable.

Corollary 10. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be doubly Hausdorff pairwise completely regular bispace whose finest quasi-proximity is quasi-metrizable. Then the fine uniformity of $\left(X, \tau_{1} \vee \tau_{2}\right)$ is metrizable.

Proof. Apply Corollaries 9 and 5.
Fletcher and Lindgren proved in [8, Proposition 2.34] (see also [19]) that the fine quasi-uniformity of a regular Hausdorff topological space is quasi-metrizable if and only if it is a metrizable space with only finitely many nonisolated points. This result is generalized in the following way.

Corollary 11. For a Hausdorff topological space (X, τ) the following statements are equivalent:
(1) The finest quasi-proximity of (X, τ) is quasi-metrizable.
(2) The fine quasi-uniformity of (X, τ) is quasi-metrizable.
(3) (X, τ) is a metrizable space with only finitely many nonisolated points.

Proof. (1) $\Rightarrow(2)$: It is a consequence of Theorem $5,(2) \Rightarrow(3)$, since the finest quasi-proximity (resp. quasi-uniformity) of (X, τ) coincides with
the finest quasi-proximity (resp. quasi-uniformity) of the bispace (X, τ, D) (see Remarks 1 and 3).
$(2) \Rightarrow(3)$: By [14, Proposition 1.12] (see Corollary 8$),(X, \tau)$ is a quasi-metrizable space with only finitely many nonisolated points. Since (X, τ) is a Hausdorff space, we immediately deduce that (X, τ) is regular. By [8, Proposition 2.34] mentioned above, (X, τ) is a metrizable space with only finitely many nonisolated points.
$(3) \Rightarrow(1):$ By $[8$, Proposition 2.34], the fine quasi-uniformity of (X, τ) is quasi-metrizable. Hence, its finest quasi-proximity is also quasimetrizable [14, Proof of Proposition 1.13].

Remark 5. The first part of the proof of $(2) \Rightarrow(3)$ in Theorem 5, shows that if d is a pairwise equinormal quasi-metric on a set X such that $T(d)$ is a Hausdorff topology, then every sequence of non $T(d)$-isolated points has a $T\left(d^{-1}\right)$-cluster point. Since the topological spaces (X, τ) of Remark 4 are Hausdorff and they do not have isolated points, it follows that they do not admit any compatible quasi-metric d such that the finest quasi-proximity of the bispace ($X, \tau, T\left(d^{-1}\right)$) is quasi-metrizable (otherwise $T\left(d^{-1}\right)$ would be compact, so $T\left(d^{-1}\right) \subset \tau$ and thus, (X, τ) would be metrizable, a contradiction).

Subsequently, we present three examples that deal with some natural conjectures that may be considered in the light of the obtained results. Thus, in Example 4 we obtain a doubly Hausdorff quasi-metrizable non $B Q U C$ bispace (X, τ_{1}, τ_{2}) such that every sequence of non τ_{i}-isolated points has a τ_{j}-cluster point, $i, j=1,2 ; i \neq j$. In Example 5, we shall give an example of a doubly Hausdorff bispace (X, τ_{1}, τ_{2}) whose finest quasiuniformity is quasi-metrizable but the finest quasi-proximity of $\left(X, \tau_{1}\right)$ is not quasi-metrizable. Finally, Example 6 will show that the condition "doubly Hausdorff" cannot be omitted in Corollary 10.

Example 4. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of distinct points. For each $n \in \mathbb{N}$ consider a sequence $\left(y_{m}^{(n)}\right)_{m \in \mathbb{N}}$ of points such that $y_{m}^{(n)} \neq y_{k}^{(j)}$ and $y_{m}^{(n)} \neq x_{k}$ for all $n, m, k, j \in \mathbb{N}$. Put $Y=\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{y_{m}^{(n)}: n, m \in \mathbb{N}\right\}$. Choose a point $a \notin Y$ and let $X=Y \cup\{a\}$. Now define a quasi-metric d on X as follows: $d\left(a, x_{n}\right)=1 / n$ for all $n \in \mathbb{N} ; d\left(y_{m}^{(n)}, x_{n}\right)=1 / m$ for all $n, m \in \mathbb{N} ; d(x, x)=0$ for all $x \in X$, and $d(x, y)=1$ otherwise.

Clearly, $\left(X, T(d), T\left(d^{-1}\right)\right)$ is a doubly Hausdorff bispace. The point a is the unique non $T(d)$-isolated point and every sequence of (distinct) non
$T\left(d^{-1}\right)$-isolated points is a subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$, which converges to a with respect to $T(d)$.

Now we show that the finest quasi-uniformity $\mathcal{B F N}$ of ($X, T(d), T\left(d^{-1}\right)$) has no countable base. Indeed, assume the contrary and let $\left\{V_{n}: n \in \mathbb{N}\right\}$ be a base for $\mathcal{B F \mathcal { N }}$. Then, for each $x \in X$ and each $n \in \mathbb{N}$ there is an $n(x) \in \mathbb{N}$ such that $S_{d^{-1}}(x, 1 / n(x)) \times S_{d}(x, 1 / n(x)) \subseteq V_{n}$. Let

$$
\begin{aligned}
W= & {\left[\bigcup_{n, m \in \mathbb{N}}\left(\left\{y_{m}^{(n)}\right\} \times\left\{y_{m}^{(n)}\right\}\right)\right] \cup\left[\{a\} \times S_{d}(a, 1)\right] } \\
& \cup\left[\bigcup_{n \in \mathbb{N}}\left(S_{d^{-1}}\left(x_{n}, 1 /\left(n\left(x_{n}\right)+1\right)\right) \times\left\{x_{n}\right\}\right)\right]
\end{aligned}
$$

Then, $W \in \mathcal{B F F \mathcal { N }}$ (compare Example 3). However, $\left(y_{n\left(x_{n}\right)+1}^{(n)}, x_{n}\right) \in$ $V_{n} \backslash W$ for all $n \in \mathbb{N}$, because $d\left(y_{n\left(x_{n}\right)+1}^{(n)}, x_{n}\right)=1 /\left(n\left(x_{n}\right)+1\right)$. Therefore, $\mathcal{B F N}$ is not quasi-metrizable. By Corollary 9 , the finest quasi-proximity of $\left(X, T(d), T\left(d^{-1}\right)\right)$ is not quasi-metrizable.

Example 5. Let X be the set of Example 4. Define a quasi-metric d on X as follows:

$$
\begin{aligned}
d\left(a, x_{n}\right) & =d\left(x_{n}, a\right)=1 / n \text { for all } n \in \mathbb{N}, \\
d\left(a, y_{m}^{(n)}\right) & =(1 / n)+(1 / m) \text { for all } n, m \in \mathbb{N}, \\
d\left(x_{n}, x_{k}\right) & =|(1 / n)-(1 / k)| \text { for all } n, k \in \mathbb{N}, \\
d\left(x_{n}, y_{m}^{(n)}\right) & =1 / m \text { for all } n, m \in \mathbb{N}, \\
d\left(x_{n}, y_{m}^{(k)}\right) & =(1 / m)+|(1 / n)-(1 / k)| \text { for all } n, m, k \in \mathbb{N} \text { with } n \neq k, \\
d(x, x) & =0 \text { for all } x \in X, \\
d(x, y) & =2, \text { otherwise. }
\end{aligned}
$$

An easy computation of the different cases shows that, indeed, d is a quasi-metric on X. Note also that $\left(X, T(d), T\left(d^{-1}\right)\right)$ is a doubly Hausdorff bispace such that $T(d) \subset T\left(d^{-1}\right)$. Moreover, since $\{a\} \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ is the set of non $T(d)$-isolated points and $d\left(x_{n}, a\right) \rightarrow 0$, we deduce that the set of the non $T(d)$-isolated points is $T\left(d^{-1}\right)$-compact. So, by Theorem 4, the finest quasi-uniformity of $\left(X, T(d), T\left(d^{-1}\right)\right)$ is quasi-metrizable. On the other hand, it follows from Corollary 11(3), that the finest quasi-proximity of $(X, T(d))$ is not quasi-metrizable.

Example 6. In [7] it is given an example of a quasi-metrizable pairwise compact bispace (X, τ_{1}, τ_{2}) such that τ_{1} is not Hausdorff, $\tau_{1} \subset \tau_{2}$ and the fine uniformity of $\left(X, \tau_{2}\right)$ is not metrizable. Thus, this example shows that the condition "doubly Hausdorff" cannot be omitted in the statement of Corollary 10.

In the light of the preceding example (see also Examples 1 and 2) it seems interesting to study the problem of characterizing those quasimetrizable bispaces (X, τ_{1}, τ_{2}) for which the fine uniformity of ($X, \tau_{1} \vee \tau_{2}$) is metrizable. We conclude the paper with a solution to this question. Let us recall [8], [19], that a metric d on a set X is equinormal provided that $d(A, B)>0$ whenever A and B are disjoint (nonempty) closed sets.

Theorem 6. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a quasi-metrizable bispace. Then, the fine uniformity of ($X, \tau_{1} \vee \tau_{2}$) is metrizable if and only if (X, τ_{1}, τ_{2}) admits a quasi-metric d such that $d \vee d^{-1}$ is an equinormal metric.

Proof. Sufficiency: Since the equinormal metric $d \vee d^{-1}$ is compatible with $\tau_{1} \vee \tau_{2}$, the fine uniformity of $\left(X, \tau_{1} \vee \tau_{2}\right)$ is metrizable (see, for instance, [8, Theorem 2.33]).

Necessity: If the fine uniformity of $\left(X, \tau_{1} \vee \tau_{2}\right)$ is metrizable, then it has a compatible equinormal metric p [8, Theorem 2.33]. Let q be a quasimetric on X compatible with $\left(\tau_{1}, \tau_{2}\right)$. For each $x \in X$ there is a sequence $\left(r_{n}(x)\right)_{n \in \mathbb{N}}$ of positive real numbers with $5 r_{n+1}(x)<r_{n}(x)<2^{-n}$ and

$$
S_{q}\left(x, r_{n}(x)\right) \cap S_{q^{-1}}\left(x, r_{n}(x)\right) \subseteq S_{p}\left(x, 2^{-n}\right) \quad \text { for all } n \in \mathbb{N}
$$

Put

$$
V_{n}=\bigcup\left\{S_{q^{-1}}\left(x, r_{n}(x) / 3\right) \times S_{q}\left(x, r_{n}(x) / 3\right): x \in X\right\}
$$

for all $n \in \mathbb{N}$. Similarly to the proof of [27, Theorem 2.1], there exists a quasi-metric d on X compatible with $\left(\tau_{1}, \tau_{2}\right)$ such that

$$
V_{n+1} \subseteq\left\{(x, y) \in X \times X: d(x, y)<2^{-n}\right\} \subseteq V_{n}
$$

for all $n \in \mathbb{N}$. Finally, let A and B bet two disjoint (nonempty) closed sets in $\left(X, \tau_{1} \vee \tau_{2}\right)$ such that $\left(d \vee d^{-1}\right)(A, B)=0$. Then, there exist a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in A and a sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ in B such that $\left(d \vee d^{-1}\right)\left(a_{n}, b_{n}\right)<2^{-n}$
for all $n \in \mathbb{N}$. Thus, there exist two sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ in X such that

$$
\begin{array}{rlrl}
q\left(a_{n}, x_{n}\right)<r_{n}\left(x_{n}\right) / 3, & & q\left(x_{n}, b_{n}\right)<r_{n}\left(x_{n}\right) / 3, \\
q\left(b_{n}, y_{n}\right)<r_{n}\left(y_{n}\right) / 3
\end{array} \quad \text { and } \quad q\left(y_{n}, a_{n}\right)<r_{n}\left(y_{n}\right) / 3, ~ \$
$$

for all $n \in \mathbb{N}$. Assume, without loss of generality, that $r_{n}\left(y_{n}\right) \leq r_{n}\left(x_{n}\right)$ for all $n \in \mathbb{N}$. Then, $q\left(x_{n}, a_{n}\right)<r_{n}\left(x_{n}\right), q\left(x_{n}, b_{n}\right)<r_{n}\left(x_{n}\right), q\left(a_{n}, x_{n}\right)<$ $r_{n}\left(x_{n}\right)$ and $q\left(b_{n}, x_{n}\right)<r_{n}\left(x_{n}\right)$. Hence, $p\left(a_{n}, b_{n}\right)<2^{-(n-1)}$ for all $n \in \mathbb{N}$, which contradicts the fact that p is equinormal. We conclude that $d \vee d^{-1}$ is equinormal.

References

[1] J. A. Antonino and S. Romaguera, Equinormal metrics and upper semi-continuity, Math. Japonica 36 (1991), 147-151.
[2] M. Atsujı, Uniform continuity and continuous functions on metric spaces, Pacific J. Math. 8 (1958), 11-16.
[3] G. Beer, Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance, Proc. Amer. Math. Soc. 95 (1985), 653-658.
[4] G. Beer, More about metric spaces on which continuous functions are uniformly continuous, Bull. Austral. Math. Soc. 33 (1986), 397-406.
[5] G. Beer, UC spaces revisited, Amer. Math. Monthly 95 (1988), 737-739.
[6] G. C. L. Brümmer, Initial quasi-uniformities, Indag. Math. 31 (1969), 403-409.
[7] P. Fletcher, h. B. Hoyle III and C. W. Patty, The comparison of topologies, Duke Math. J. 36 (1969), 325-331.
[8] P. Fletcher and W. F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
[9] L. M. Friedler, H. W. Martin and S. W. Williams, Paracompact C-scattered spaces, Pacific J. Math. 129 (1987), 277-296.
[10] H. Hueber, On uniform continuity and compactness in metric spaces, Amer. Math. Monthly 88 (1981), 204-205.
[11] M. Jas and A. P. Baisnab, Bitopological spaces and associated q-proximity, Indian J. Pure Appl. Math. 13 (1982), 1142-1146.
[12] A. J. Jayanthan and V. Kannan, Spaces every quotient of which is metrizable, Proc. Amer. Math. Soc. 103 (1988), 294-298.
[13] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89.
[14] H. P. A. Künzı, Some remarks on quasi-uniform spaces, Glasgow Math. J. 31 (1989), 309-320.
[15] H. P. A. KünzI, Nonsymmetric topology, Bolyai Soc. Math. Studies 4, Topology Appl., 1993, (Budapest 1995), 303-338.
[16] H. P. A. Künzı and G. C. L. Brümmer, Sobrification and bicompletion of totally bounded quasi-uniform spaces, Math. Proc. Cambridge Phil. Soc. 101 (1987), 237-247.
[17] H. P. A. Künzi and S. Watson, A nontrivial T_{1}-space admitting a unique quasiproximity, Glasgow Math. J. 38 (1996), 207-213.
[18] E. P. Lane, Bitopological spaces and quasi-uniform spaces, Proc. London Math. Soc. 17 (1967), 241-256.
[19] W. F. Lindgren and P. Fletcher, Equinormal quasi-uniformities and quasi-metrics, Glasnik Mat. 13 (1978), 111-125.
[20] S. G. Mrówka, On normal metrics, Amer. Math. Monthly 72 (1965), 998-1001.
[21] S. Nadler and T. West, A note on Lebesgue spaces, Topology Proc. 6 (1981), 363-369.
[22] J. Nagata, On the uniform topology and bicompactifications, J. Inst. Polytech. Osaka City Univ. 1 (1950), 93-100.
[23] S. A. Naimpally and P. L. Sharma, Fine uniformity and the locally finite hyperspace topology, Proc. Amer. Math. Soc. 103 (1988), 641-646.
[24] J. Rainwater, Spaces whose finest uniformity is metric, Pacific J. Math. 9 (1959), 567-570.
[25] S. Romaguera and J. A. Antonino, Star Čech complete spaces, Houston J. Math. 18 (1992), 473-479.
[26] S. Romaguera and S. Salbany, Quasi-metrizable spaces with a bicomplete structure, Extracta Math. 7 (1992), 103-106.
[27] S. Romaguera and S. Salbany, On bicomplete quasi-pseudometrizability, Topology Appl. 50 (1993), 283-289.
[28] S. Salbany, Bitopological spaces, Compactifications and Completions, Thesis, Univ. Cape Town, 1970, Math. Monographs Univ. Cape Town, 1, 1974.
[29] S. Salbany, Quasi-uniformities and quasi-pseudometrics, Math. Colloq. Univ. Cape Town 6 (1970/71), 88-102.
[30] P. L Sharma, Nonmetrizable uniformities and proximities on metrizable spaces, Canad. J. Math. 25 (1973), 979-981.
[31] W. Waterhouse, On $U C$ spaces, Amer. Math. Monthly 72 (1965), 634-635.

```
SALVADOR ROMAGUERA
ESCUELA DE CAMINOS
DEPARTAMENTO DE MATEMÁTICA APLICADA
UNIVERSIDAD POLITÉCNICA DE VALENCIA
APARTADO 22012
4 6 0 7 1 ~ V A L E N C I A ~
SPAIN
E-mail: sromague@mat.upv.es
```

(Received September 25 1998; revised January 7, 1999)

[^0]: Mathematics Subject Classification: 54E15, 54E05, 54E35, 54E55.
 Key words and phrases: finest quasi-proximity, finest quasi-uniformity, quasi-metrizable, bispace, quasi-uniformly continuous.
 The author acknowledges the support of the DGES, grant PB95-0737.

