Publ. Math. Debrecen 56 / 1-2 (2000), 145–169

Quasi-metrizability of the finest quasi-proximity

By SALVADOR ROMAGUERA (Valencia)

Abstract. A characterization of the bispaces whose finest quasi-proximity is quasi-metrizable is obtained in terms of real-valued quasi-proximally continuous functions. We also prove that for a doubly Hausdorff bispace X the following are equivalent: (i) X admits a quasi-metric for which every real-valued bicontinuous function is quasi-uniformly continuous; (ii) the finest quasi-proximity of X is quasi-metrizable; (iii) the finest quasi-uniformity of X is quasi-metrizable. Examples showing that double Hausdorffness of X cannot be omitted in this result are given.

As an application of our methods we deduce that the fine quasi-proximity (resp. quasi-uniformity) of a T_1 topological space X is quasi-metrizable if and only if X admits a quasi-metric for which every lower semicontinuous function is quasi-proximally (resp. quasi-uniformly) continuous. We also deduce that if the finest quasi-proximity of a Hausdorff topological space X is quasi-metrizable, then its fine quasi-uniformity is quasi-metrizable and, thus, X is a metrizable space with only finitely many nonisolated points.

1. Introduction

Throughout this paper the letters \mathbb{R} and \mathbb{N} will denote the set of all real numbers and the set of all positive integer numbers, respectively. If (X, τ) is a topological space and A is a subset of X, then $\tau \operatorname{cl}(A)$ and $\tau \operatorname{int}(A)$ will denote the closure of A and the interior of A in (X, τ) , respectively.

Our basic references for quasi-proximity spaces are [8] and [28], for quasi-uniform and quasi-metric spaces they are [8] and [15] and for bitopological spaces they are [13] and [18].

Mathematics Subject Classification: 54E15, 54E05, 54E35, 54E55.

Key words and phrases: finest quasi-proximity, finest quasi-uniformity, quasi-metrizable, bispace, quasi-uniformly continuous.

The author acknowledges the support of the DGES, grant PB95-0737.

Let us recall that a quasi-pseudometric on a (nonempty) set X is a nonnegative real-valued function d on $X \times X$ such that for all $x, y, z \in X$:

(i) d(x, x) = 0, and

(ii) $d(x, y) \le d(x, z) + d(z, y)$.

If, in addition, d satisfies:

(iii) $d(x, y) = 0 \Leftrightarrow x = y$,

then, d is called a quasi-metric on X.

A quasi-(pseudo)metric space is a pair (X, d) such that X is a (nonempty) set and d is a quasi-(pseudo)metric on X.

Each quasi-pseudometric d on X generates a topology T(d) on X, which has as a base the collection $\{S_d(x,r) : x \in X, r > 0\}$, where $S_d(x,r) = \{y \in X : d(x,y) < r\}$ for all $x \in X$ and r > 0.

If d is a quasi-(pseudo)metric on X, then the function d^{-1} defined on $X \times X$ by $d^{-1}(x, y) = d(y, x)$, is also a quasi-(pseudo)metric on X, called the conjugate of d. Then, the function $d \vee d^{-1}$ defined on $X \times X$ by $(d \vee d^{-1})(x, y) = \max\{d(x, y), d^{-1}(x, y)\}$, is a (pseudo)metric on X.

Each quasi-pseudometric d on X generates a quasi-uniformity \mathcal{U}_d on X, which has as a base the countable collection $\{U_n : n \in \mathbb{N}\}$, where $U_n = \{(x, y) \in X \times X : d(x, y) < 2^{-n}\}$ for all $n \in \mathbb{N}$ (see [8, p. 3]).

A topological space (X, τ) is called quasi-(pseudo)metrizable if there is a quasi-(pseudo)metric d on X such that $T(d) = \tau$. In this case, we say that (X, τ) admits d (and d is said to be compatible with τ).

The notion of a bispace (bitopological space in [13]) appears in a natural way when one considers the topologies T(d) and $T(d^{-1})$ generated by a quasi-pseudometric d and its conjugate d^{-1} . A bispace is an ordered triple (X, τ_1, τ_2) such that X is a (nonempty) set and τ_1 and τ_2 are topologies on X. A bispace (X, τ_1, τ_2) is said to be quasi-(pseudo)metrizable if there is a quasi-(pseudo)metric d on X such that $T(d) = \tau_1$ and $T(d^{-1}) = \tau_2$. In this case, we say that (X, τ_1, τ_2) admits d (and d is said to be compatible with (τ_1, τ_2)).

A UC space is a metric space for which every real-valued continuous function is uniformly continuous. UC spaces have been investigated by many authors in different contexts [1], [2], [3], [4], [5], [9], [10], [12], [19], [20], [21], [22], [23], [24], [25], [30], [31], etc. In particular, it is well known that for a metric space (X, d) the following are equivalent: (i) (X, d) is a

146

UC space; (ii) d is an equinormal metric on X; (iii) the uniformity generated by d is exactly the fine uniformity of (X, d). Perhaps, the most visual characterization of metrizable spaces whose fine uniformity is generated by a metric, is the following result proved by NAGATA [22]: The fine uniformity of a metrizable space is metrizable if and only if the set of the nonisolated points is compact. Later on, SHARMA [30] proved that the finest proximity of a metrizable space is metrizable if and only it admits an equinormal metric, so, it follows that the fine uniformity of a Tychonoff space is metrizable if and only if its finest proximity is metrizable. In [14], KÜNZI proved that the fine quasi-uniformity of a T_1 topological space is quasi-metrizable if and only if it is a quasi-metrizable space containing only finitely many nonisolated points.

These interesting results suggest some questions in a natural way. For instance, characterize the quasi-metric spaces for which every realvalued lower semicontinuous function is quasi-uniformly continuous, investigate the relationship between the bispaces whose finest quasi-proximity is quasi-metrizable and the bispaces whose finest quasi-uniformity is quasimetrizable, etc. We here obtain characterizations of the bispaces whose finest quasi-proximity is quasi-metrizable both in terms of a bitopological notion of equinormality and in terms of real-valued bicontinuous functions which are quasi-proximally continuous. We observe that, contrarily to the metric case, there exist bispaces whose finest quasi-proximity is quasimetrizable but their finest quasi-uniformity is not. However, we prove that if (X, τ_1, τ_2) is a quasi-metrizable bispace such that both τ_1 and τ_2 are Hausdorff topologies, then the following are equivalent: (i) The finest quasi-proximity of (X, τ_1, τ_2) is quasi-metrizable; (ii) The finest quasiuniformity of (X, τ_1, τ_2) is quasi-metrizable; (iii) (X, τ_1, τ_2) admits a quasimetric for which every real-valued bicontinuous function is quasi-uniformly continuous. We also present an example of a quasi-metrizable bispace which satisfies condition (iii) above but whose finest quasi-uniformity is not quasi-metrizable. As an application of our methods we deduce that a quasi-metric space (X, d) has the property that every real-valued lower semicontinuous function is quasi-proximally (resp. quasi-uniformly) continuous if and only the quasi-proximity (resp. the quasi-uniformity) generated by d is exactly the finest quasi-proximity (resp. the fine quasi-uniformity) of the topological space (X, T(d)). We also deduce, Künzi's theorem mentioned above as well as the fact that the fine quasi-uniformity of a Hausdorff topological space is quasi-metrizable if and only if its finest quasi-proximity is quasi-metrizable.

Salvador Romaguera

2. Bispaces whose finest quasi-proximity is quasi-metrizable

If δ is a quasi-proximity for a set X we write $A\delta B$ for $(A, B) \in \delta$ and $A^{-}\delta B$ for $(A, B) \notin \delta$.

It is well known [8, p. 12] that if \mathcal{U} is a quasi-uniformity on a set X, the quasi-proximity induced by \mathcal{U} is the quasi-proximity $\delta_{\mathcal{U}}$ defined by

 $A\delta_{\mathcal{U}}B$ if and only if for each $U \in \mathcal{U}$, $(A \times B) \cap U \neq \emptyset$.

Hence, if d is a quasi-pseudometric on X, we have $A\delta_{\mathcal{U}_d}B$ if and only if d(A, B) = 0. In this case we write δ_d instead of $\delta_{\mathcal{U}_d}$ and we say that δ_d is the quasi-proximity induced by the quasi-pseudometric d.

A quasi-proximity ρ for a set X is called quasi-(pseudo)metrizable if there is a quasi-(pseudo)metric d on X such that $\delta_d = \rho$.

It is well known that every topological space (X, τ) admits a finest compatible quasi-proximity $\delta_{\mathcal{FN}}$. Moreover, $A\delta_{\mathcal{FN}}B$ if and only if $A \cap \tau \operatorname{cl}(B) \neq \emptyset$. In particular, if (X, τ) is $T_1, T(\delta_{\mathcal{FN}}^{-1})$ is the discrete topology on X.

Now let (X, τ_1, τ_2) be a pairwise completely regular bispace. A quasiproximity δ for X is called compatible with (τ_1, τ_2) if $T(\delta) = \tau_1$ and $T(\delta^{-1}) = \tau_2$. Similarly to the proof of [8, Proposition 1.38] one can show that every pairwise completely regular bispace admits a finest compatible quasi-proximity. If (X, τ_1, τ_2) is a pairwise Hausdorff pairwise normal bispace, the finest compatible quasi-proximity can be easily described.

Proposition 1. Let (X, τ_1, τ_2) be a pairwise Hausdorff pairwise normal bispace. Then the relation $\delta_{\mathcal{BFN}}$ defined by

 $A\delta_{\mathcal{BFN}}B$ if and only if $\tau_2 \operatorname{cl}(A) \cap \tau_1 \operatorname{cl}(B) \neq \emptyset$

is the finest quasi-proximity of (X, τ_1, τ_2) .

PROOF. It is proved in [11] that, indeed, $\delta_{\mathcal{BFN}}$ is a quasi-proximity compatible with (τ_1, τ_2) . Let ρ be any quasi-proximity for X compatible with (τ_1, τ_2) and let $A\delta_{\mathcal{BFN}}B$. We want to show that then $A\rho B$. Assume the contrary. Then there is $C \subseteq X$ such that $A^-\rho C$ and $(X \setminus C)^-\rho B$. Hence $C^-\rho^{-1}A$, so $C \subseteq \tau_2 \operatorname{int}(X \setminus A)$. Moreover, $(X \setminus C) \subseteq \tau_1 \operatorname{int}(X \setminus B)$. Therefore $\tau_2 \operatorname{cl}(A) \cap \tau_1 \operatorname{cl}(B) = \emptyset$, a contradiction. We conclude that $A\rho B$. Remark 1. It is well known that if (X, τ) is a T_1 topological space, then (X, τ, D) is a pairwise Hausdorff pairwise normal bispace, where Ddenotes the discrete topology on X. Hence, from Proposition 1 and the comments made above it follows the known fact that if (X, τ) is a T_1 topological space, then the finest quasi-proximity of (X, τ) coincides with the finest quasi-proximity of the bispace (X, τ, D) .

Definition 1. A quasi-pseudometric d on a set X is called *pairwise* equinormal if d(A, B) > 0 whenever A is a (nonempty) $T(d^{-1})$ -closed set and B is a disjoint (nonempty) T(d)-closed set.

Theorem 1. The finest quasi-proximity of a pairwise Hausdorff pairwise completely regular bispace (X, τ_1, τ_2) is quasi-metrizable if and only if it admits a pairwise equinormal quasi-metric.

PROOF. If the finest quasi-proximity of (X, τ_1, τ_2) is quasi-metrizable, there exists a quasi-metric d on X compatible with (τ_1, τ_2) such that $A\delta_d B$ if and only if $\tau_2 \operatorname{cl}(A) \cap \tau_1 \operatorname{cl}(B) \neq \emptyset$, by Proposition 1 (recall that every quasi-metrizable bispace is pairwise normal). Since $A\delta_d B$ if and only if d(A, B) = 0, we conclude that d(A, B) > 0 whenever A is a (nonempty) τ_2 -closed set and B is a disjoint (nonempty) τ_1 -closed set. Thus d is pairwise equinormal.

Conversely, the quasi-proximity δ_d induced by the pairwise equinormal quasi-metric d satisfies $A\delta_d B$ if and only if d(A, B) = 0. Consequently, $\tau_2 \operatorname{cl}(A) \cap \tau_1 \operatorname{cl}(B) \neq \emptyset$ whenever $A\delta_d B$, by the paiwise equinormality of d. Then, it follows from Proposition 1 that $A\delta_{\mathcal{BFN}}B$ whenever $A\delta_d B$. We conclude that δ_d is exactly the finest quasi-proximity of (X, τ_1, τ_2) . \Box

Remark 2. Actually, the proof of Theorem 1 shows that if d is a quasimetric on a set X, then d is pairwise equinormal if and only if δ_d coincides with the finest quasi-proximity of the bispace $(X, T(d), T(d^{-1}))$.

In our next theorem we shall characterize the bispaces whose finest quasi-proximity is quasi-metrizable in terms of real-valued bicontinuous functions which are quasi-proximally continuous.

Let (X, τ_1, τ_2) and (Y, τ'_1, τ'_2) be two bispaces. A function f from X to Y is said to be bicontinuous if f is continuous from (X, τ_i) to (Y, τ'_i) , i = 1, 2.

Let (X, δ) and (Y, ρ) be two quasi-proximity spaces. A function f from X to Y is called qp-continuous [8, 1.48], if $f(A)\rho f(B)$ whenever $A\delta B$.

Denote by ℓ the quasi-pseudometric on \mathbb{R} given by $\ell(x, y) = (x-y) \lor 0$. We say that a real-valued function f defined on a quasi-pseudometric space (X, d) is quasi-proximally continuous if it is qp-continuous from (X, δ_d) to $(\mathbb{R}, \delta_\ell)$. Thus, a real-valued function f defined on the quasi-pseudometric space (X, d) is quasi-proximally continuous if and only if $\inf\{(f(a) - f(b)) \lor 0 : a \in A, b \in B\} = 0$ whenever d(A, B) = 0.

Definition 2. A quasi-metric space (X, d) is called a QP space if every real-valued lower semicontinuous function (with respect to T(d)) is quasiproximally continuous. A quasi-metrizable topological space (X, τ) is said to be a QP topological space if it admits a quasi-metric d for which (X, d)is a QP space.

A quasi-metric space (X, d) is called a BQP space if every realvalued bicontinuous function (from $(X, T(d), T(d^{-1}))$ to $(\mathbb{R}, T(\ell), T(\ell^{-1}))$) is quasi-proximally continuous. A quasi-metrizable bispace (X, τ_1, τ_2) is said to be a BQP bispace if it admits a quasi-metric d for which (X, d) is a BQP space.

Theorem 2. A quasi-metric space (X, d) is a BQP space if and only if the quasi-proximity δ_d , induced by d, is the finest quasi-proximity of the bispace $(X, T(d), T(d^{-1}))$.

PROOF. Suppose that the quasi-metric space (X, d) is a BQP space. By Remark 2, it suffices to show that d is a pairwise equinormal quasimetric on X. Let A be a (nonempty) $T(d^{-1})$ -closed set and let B be a disjoint (nonempty) T(d)-closed set. By [13, Theorem 2.7] there is a bicontinuous function $f: X \to [0, 1]$ such that f(A) = 1 and f(B) = 0. Therefore,

$$\inf\{(f(a) - f(b)) \lor 0 : a \in A, \ b \in B\} = 1.$$

Since (X, d) is a BQP space we deduce that d(A, B) > 0. Thus d is pairwise equinormal.

Conversely, let f be a real-valued bicontinuous function from (X, τ_1, τ_2) to $(\mathbb{R}, T(\ell), T(\ell^{-1}))$, where $\tau_1 = T(d)$ and $\tau_2 = T(d^{-1})$. Let A and B be two subsets of X such that d(A, B) = 0. Then $d(\tau_2 \operatorname{cl}(A), \tau_1 \operatorname{cl}(B)) = 0$. Since d is pairwise equinormal there is $x \in \tau_2 \operatorname{cl}(A) \cap \tau_1 \operatorname{cl}(B)$. We may assume the following cases:

I. $x \in A \cap B$. Then, obviously, $\inf\{(f(a) - f(b)) \lor 0 : a \in A, b \in B\} = 0$.

II. $x \in (\tau_2 \operatorname{cl}(A) \setminus A) \cap B$. In this case there is a sequence $(a_n)_{n \in \mathbb{N}}$ of distinct points in A such that $d(a_n, x) \to 0$. Since f is upper semicontinuous with respect to τ_2 and $x \in B$, we obtain that $\inf\{(f(a) - f(x)) \lor 0 : a \in A\} = 0$.

III. $x \in A \cap (\tau_1 \operatorname{cl}(B) \setminus B)$. Then, an argument similarly to the given in II, permits us to obtain that $\inf\{(f(x) - f(b)) \lor 0 : b \in B\} = 0$.

IV. $x \in (\tau_2 \operatorname{cl}(A) \setminus A) \cap (\tau_1 \operatorname{cl}(B) \setminus B)$. Then there exist a sequence $(a_n)_{n \in \mathbb{N}}$ of (distinct) points in A and a sequence $(b_n)_{n \in \mathbb{N}}$ of (distinct) points in B such that $d(a_n, x) \to 0$ and $d(x, b_n) \to 0$. Since f is bicontinuous, we immediately deduce that $\inf\{(f(a) - f(b)) \lor 0 : a \in A, b \in B\} = 0$.

We conclude that (X, d) is a BQP space.

Corollary 1. The finest quasi-proximity of a pairwise Hausdorff pairwise completely regular bispace is quasi-metrizable if and only if it is a BQP bispace.

In [14, Lemma 1.1] KÜNZI proved that a topological space has a σ interior preserving topology if and only if its finest quasi-proximity is quasipseudo-metrizable. Here we obtain the following characterizations of those quasi-metrizable topological spaces whose finest quasi-proximity is quasimetrizable.

Corollary 2. For a quasi-metrizable topological space (X, τ) the following statements are equivalent:

- (1) The finest quasi-proximity of (X, τ) is quasi-metrizable.
- (2) (X, τ) admits a quasi-metric d such that d(A, B) > 0 whenever A is a (nonempty) set and B is a disjoint (nonempty) closed set.
- (3) (X, τ) is a QP topological space.

PROOF. (1) \Rightarrow (2): If the finest quasi-proximity of (X, τ) is quasimetrizable we deduce, from Remark 1, that the finest quasi-proximity of (X, τ, D) is quasi-metrizable, where D denotes the discrete topology on X. By Theorem 1, (X, τ, D) admits a pairwise equinormal quasi-metric d, which, obviously, satisfies the conditions of (2).

 $(2) \Rightarrow (3)$: Suppose that there is a point $x \in X$ which is not $T(d^{-1})$ isolated. Then there is a sequence $(a_n)_{n \in \mathbb{N}}$ of distinct points in X such that $a_n \neq x$ for all $n \in \mathbb{N}$ and $d(a_n, x) \to 0$. Thus, d(A, B) = 0, where $A = \{a_n : n \in \mathbb{N}\}$ and $B = \{x\}$, a contradiction. Hence, $T(d^{-1})$ is the discrete topology on X, and, thus, d is pairwise equinormal. By Theorem 1 and Corollary 1, (X, τ, D) is a BQP bispace, so (X, τ) is a QP topological space.

 $(3) \Rightarrow (1)$: Let d be a quasi-metric on X compatible with τ for which (X,d) is a QP space. Suppose that there is a point $x \in X$ which is not $T(d^{-1})$ -isolated. Then there is a sequence $(a_n)_{n \in \mathbb{N}}$ of distinct points in X such that $a_n \neq x$ for all $n \in \mathbb{N}$ and $d(a_n, x) \to 0$. Consider the function f defined on X by f(x) = 0 and f(y) = 1 for all $y \in X \setminus \{x\}$. Then f is lower semicontinuous on (X, τ) but clearly it is not quasi-proximally continuous. We conclude that $T(d^{-1})$ is the discrete topology on X, so, (X, τ, D) is a BQP bispace because (X, τ) is a QP topological space. From Corollary 1 and Remark 1 it follows that the finest quasi-proximity of (X, τ) is quasi-metrizable.

The notion of a pairwise compact bispace was introduced in [7]. It is known that a bispace (X, τ_1, τ_2) is pairwise compact if and only if every proper τ_i -closed set is τ_j -compact, $i, j = 1, 2; i \neq j$.

Proposition 2. Let (X, τ_1, τ_2) be a quasi-metrizable pairwise compact bispace. Then every compatible quasi-metric is pairwise equinormal.

PROOF. Let d be a quasi-metric on X compatible with (τ_1, τ_2) . Suppose that there exist a (nonempty) τ_2 -closed set A and a disjoint (nonempty) τ_1 -closed set B such that d(A, B) = 0. Then there exist a sequence $(a_n)_{n \in \mathbb{N}}$ in A and a sequence $(b_n)_{n \in \mathbb{N}}$ in B such that $d(a_n, b_n) \to 0$. Since the bispace is pairwise compact, there exists a subsequence $(a_{k(n)})_{n \in \mathbb{N}}$ of $(a_n)_{n \in \mathbb{N}}$ that is τ_1 -convergent to a point $a \in A$. Moreover, $(b_{k(n)})_{n \in \mathbb{N}}$ has a τ_2 -cluster point $b \in B$. It follows from the triangle inequality that a = b, a contradiction. We conclude that d is pairwise equinormal.

Corollary 3. The finest quasi-proximity of any quasi-metrizable pairwise compact bispace is quasi-metrizable.

Example 1. Let $X = \{1/n : n \in \mathbb{N}\}$ and let d be the quasi-metric defined on X by d(1/n, 1/m) = 1/m for $n \neq m$ and d(x, x) = 0 for all $x \in X$. Then T(d) is the cofinite topology on X and $T(d^{-1})$ is the discrete topology on X. It is known (and easy to verify) that $(X, T(d), T(d^{-1}))$ is a pairwise compact bispace. Hence, every compatible quasi-metric is pairwise equinormal. So, the finest quasi-proximity of $(X, T(d), T(d^{-1}))$ is quasi-metrizable.

It is interesting to note that, by [16, Proposition 4], (X, T(d)) (and, hence, $(X, T(d), T(d^{-1}))$) admits a unique quasi-proximity, because it is hereditarily compact. (See [17] for an example of a non hereditarily compact T_1 topological space admitting a unique quasi-proximity.)

In [6] BRÜMMER showed that every topological space (X, τ) admits a finest quasi-uniformity: Basic entourages are of the form $\{(x, y) \in X \times X : d(x, y) < r\}$, where d is any quasi-pseudometric on X such that $T(d) \subseteq \tau$ and r is any positive real number. This quasi-uniformity is said to be the fine quasi-uniformity of (X, τ) (see [8]).

The bitopological counterpart of Brümmer's result was obtained by SALBANY [29] who proved that every quasi-uniformizable bispace (X,τ_1,τ_2) admits a finest quasi-uniformity: Basic entourages are of the form $\{(x, y) \in X \times X : d(x, y) < r\}$, where d is any quasi-pseudometric on X such that $T(d) \subseteq \tau_1$ and $T(d^{-1}) \subseteq \tau_2$ and r is any positive real number.

In connection with these facts let us recall that a bispace is quasiuniformizable if and only if it is pairwise completely regular [18, Theorem 4.2].

Since every quasi-uniformity with a countable base generates a quasipseudometric (see e.g. [8, Lemma 1.5]), we will say that the fine(st) quasiuniformity of a (bi)space is quasi-pseudometrizable if it has a countable base.

Remark 3. Let (X, τ) be a T_1 topological space. It immediately follows from Brümmer's result and Salbany's result mentioned above that the fine quasi-uniformity of (X, τ) coincides with the finest quasi-uniformity of the bispace (X, τ, D) , where D denotes the discrete topology on X (compare Remark 1).

The finest quasi-uniformity of the bispace $(X, T(d), T(d^{-1}))$ of Example 1 is not quasi-metrizable: Indeed, it follows from Künzi's theorem mentioned in Section 1 that the fine quasi-uniformity of (X, T(d)) is not quasi-metrizable. The conclusion now follows from Remark 3.

Therefore, an interesting question appears in a natural way: Obtain conditions under which quasi-metrizability of the finest quasi-proximity of a (bi)space implies quasi-metrizability of the fine(st) quasi-uniformity.

In the next section we shall give a solution to this question via the study of quasi-metric spaces having the property that real-valued bicontinuous functions are quasi-uniformly continuous. (In our context, this property should be considered as the analogue of property UC for metric spaces.) Salvador Romaguera

3. QUC topological spaces and BQUC bispaces

Let us recall [28], [8], that a real-valued function f defined on a quasiuniform space (X, \mathcal{U}) is said to be quasi-uniformly continuous if for each $\varepsilon > 0$ there is $U \in \mathcal{U}$ such that $\ell(f(x), f(y)) < \varepsilon$ whenever $(x, y) \in U$. In particular, a real-valued function f defined on a quasi-pseudometric space (X, d) is said to be quasi-uniformly continuous if it is quasi-uniformly continuous for (X, \mathcal{U}_d) .

Definition 3. A quasi-metric space (X, d) is called a QUC space if every real-valued lower semicontinuous function (with respect to (X, T(d))is quasi-uniformly continuous. A quasi-metrizable topological space (X, τ) is said to be a QUC topological space if it admits a quasi-metric d for which (X, d) is a QUC space.

A quasi-metric space (X, d) is called a BQUC space if every realvalued bicontinuous function (with respect to $(X, T(d), T(d^{-1}))$) is quasiuniformly continuous. A quasi-metrizable bispace (X, τ_1, τ_2) is said to be a BQUC bispace if it admits a quasi-metric d for which (X, d) is a BQUCspace.

In [29] SALBANY showed that the finest quasi-uniformity of any pairwise completely regular bispace has the property that every real-valued bicontinuous function is quasi-uniformly continuous. From this result we immediately deduce the following result.

Proposition 3. Every pairwise Hausdorff pairwise completely regular bispace whose finest quasi-uniformity is quasi-metrizable is a BQUC bispace.

Proposition 4. Let (X, d) be a BQUC space. Then d is a pairwise equinormal quasi-metric.

PROOF. By [8, Proposition 1.51] every real-valued quasi-uniformly continuous function on (X, d) is quasi-proximally continuous from (X, δ_d) to $(\mathbb{R}, \delta_\ell)$. Hence (X, d) is a *BQP* space. By Theorem 2 and Remark 2, *d* is pairwise equinormal.

In [14, proof of Proposition 1.13], KÜNZI observed that if the fine quasi-uniformity of a topological space is quasi-pseudometrizable, then its finest quasi-proximity is quasi-pseudometrizable. From Propositions 3 and 4 and Theorem 1 we here obtain the following result. **Corollary 4.** If the finest quasi-uniformity of a pairwise Hausdorff pairwise completely regular bispace is quasi-metrizable, then its finest quasi-proximity is quasi-metrizable.

Lemma 1 [28, Corollary 3.2.3]. Let (X, τ_1, τ_2) be a pairwise normal bispace. Let A be a τ_2 -closed set, B a τ_1 -closed set and $C = A \cap B$. Then every real-valued bounded bicontinuous function f on $(C, \tau_1 | C, \tau_2 | C)$ has a bicontinuous extension to (X, τ_1, τ_2) .

Proposition 5. Let (X, τ_1, τ_2) be a BQUC bispace. Then every sequence of non τ_i -isolated points has a τ_j -cluster point, $i, j = 1, 2; i \neq j$.

PROOF. Let (X, τ_1, τ_2) be a *BQUC* bispace and let *d* be a compatible quasi-metric for which every real-valued bicontinuous function is quasiuniformly continuous. Suppose that there exists a sequence $(x_n)_{n \in \mathbb{N}}$ of (distinct) non τ_1 -isolated points without τ_2 -cluster point. Then $\{x_n : n \in \mathbb{N}\}$ is a τ_2 -closed set. Since each x_n is a non τ_1 -isolated point, there exist a subsequence $(a_n)_{n \in \mathbb{N}}$ of $(x_n)_{n \in \mathbb{N}}$ and a sequence $(b_n)_{n \in \mathbb{N}}$ of distinct points in X, such that

$$\{a_n : n \in \mathbb{N}\} \cap \{b_n : n \in \mathbb{N}\} = \emptyset \text{ and } d(a_n, b_n) \to 0.$$

Indeed: If the sequence $(x_n)_{n \in \mathbb{N}}$ has infinitely many τ_1 -cluster points in $\{x_n : n \in \mathbb{N}\}$, then we may construct two disjoint subsequences $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ of $(x_n)_{n \in \mathbb{N}}$, such that $d(a_n, b_n) < 2^{-n}$ for all $n \in \mathbb{N}$. Otherwise, there is $n_0 \in \mathbb{N}$ such that no point in $\{x_n : n \geq n_0\}$ is a τ_1 cluster point of $(x_n)_{n \in \mathbb{N}}$. Therefore, for each $n \geq n_0$ there exists an r_n , with $0 < r_n < 2^{-n}$, and a $b_n \neq x_n$, such that $d(x_n, b_n) < r_n$ and $x_m \notin S_d(x_n, r_n)$ for all $m \in \mathbb{N} \setminus \{n\}$. (Moreover, it is not a restriction to suppose that $b_n \neq b_m$ whenever $n \neq m$, since $d(x_n, b_n) \to 0$ and $(x_n)_{n \in \mathbb{N}}$ has no τ_2 -cluster points.)

Now note that $\{b_n : n \in \mathbb{N}\}$ is also a τ_2 -closed set because $(b_n)_{n \in \mathbb{N}}$ has no τ_2 -cluster points, and put $A = \{a_n : n \in \mathbb{N}\} \cup \{b_n : n \in \mathbb{N}\}.$

Define a function $f : A \to \mathbb{R}$, by $f(a_n) = 2n$ and $f(b_n) = 2n-1$, for all $n \in \mathbb{N}$. Since $\tau_2 \mid A$ is the discrete topology, f is τ_2 -upper semicontinuous on A. Moreover, f is τ_1 -lower semicontinuous on A, since for each $n, m \in \mathbb{N}$ such that n < m, we have $f(a_n) < f(b_m)$, $f(a_n) < f(a_m)$, $f(b_n) < f(a_m)$ and $f(b_n) < f(b_m)$. Therefore, the function g defined on A by g = f/(1+f) is also bicontinuous on A, and $1/2 \leq g(x) < 1$ for all $x \in A$. Since

A is τ_2 -closed, it follows from Lemma 1 (with B = X), that g has a bicontinuous extension to a function $G: X \to [0,1]$. On the other hand (see [18, p. 247–248]), there is a τ_1 -upper semicontinuous and τ_2 -lower semicontinuous function on $X, h: X \to [0,1]$ such that $h^{-1}(0) = A$. Consider the function H = G/(1+h). Then H is a bicontinuous function on (X, τ_1, τ_2) such that for each $x \in X, 0 \leq H(x) < 1$, and H(x) = g(x) for all $x \in A$.

Finally, let F = H/(1-H). Then, F is also bicontinuous on (X, τ_1, τ_2) and F(x) = f(x) for all $x \in A$. Thus, by the hypothesis, F is quasiuniformly continuous on (X, d). However, $d(a_n, b_n) \to 0$ and $F(a_n) - F(b_n) = 1$ for all $n \in \mathbb{N}$, a contradiction.

We conclude that every sequence of non τ_1 -isolated points has a τ_2 cluster point. A similar argument shows that every sequence of non τ_2 isolated points has a τ_1 -cluster point.

Corollary 5. Let (X, τ_1, τ_2) be a BQUC bispace. Then the fine uniformity of $(X, \tau_1 \lor \tau_2)$ is metrizable.

PROOF. Let $(x_n)_{n \in \mathbb{N}}$ be a sequence of non $\tau_1 \vee \tau_2$ -isolated points. From Proposition 5 it follows that there is a subsequence $(x_{k(n)})_{n \in \mathbb{N}}$ of $(x_n)_{n \in \mathbb{N}}$, that converges to a point $x \in X$ with respect to τ_2 . Since $(x_{k(n)})_{n \in \mathbb{N}}$ has also a τ_1 -cluster point, we deduce that x is a $\tau_1 \vee \tau_2$ -cluster point of $(x_{k(n)})_{n \in \mathbb{N}}$. The conclusion follows from Nagata's theorem mentioned in Section 1.

Corollary 6. Let (X, τ_1, τ_2) be a quasi-metrizable bispace with only finitely many τ_1 -isolated points. If (X, τ_1, τ_2) is a BQUC bispace, then:

- (i) (X, τ_2) is a compact space and, thus, $\tau_2 \subseteq \tau_1$.
- (ii) (X, τ_1) is a metrizable space whose fine uniformity is metrizable.

PROOF. By Proposition 5, (X, τ_2) is a compact space and, hence, $\tau_2 \subseteq \tau_1$. The assertion (ii) is now a consequence of Corollary 5.

Remark 4. Corollary 6 shows that the Niemytzki plane, the Kofner plane and the Sorgenfrey line (see [8]) are examples of quasi-metrizable topological spaces (X, τ) that do not admit any quasi-metric d for which $(X, \tau, T(d^{-1}))$ is a *BQUC* bispace. Hence, they do not admit any quasimetric d for which the finest quasi-uniformity of $(X, \tau, T(d^{-1}))$ is quasimetrizable. Example 2. Let d be the quasi-metric defined on \mathbb{R} by $d(x, y) = \min\{1, y - x\}$ if $x \leq y$, and d(x, y) = 1 otherwise. Then T(d) is the Sorgenfrey topology on \mathbb{R} . Since $d \vee d^{-1}$ is the discrete metric on \mathbb{R} , we deduce, from Remark 4, that the converse of Corollary 5 is not true in general.

Note that Example 1 also shows that such a converse does not hold (see Proposition 5). However, the space (X, T(d)) of Example 2 is Hausdorff.

The following is an example of a BQUC bispace whose finest quasiuniformity is not quasi-metrizable.

Example 3. Let $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ be two sequences of distinct points such that $\{x_n : n \in \mathbb{N}\} \cap \{y_n : n \in \mathbb{N}\} = \emptyset$. Take a point $a \notin (\{x_n : n \in \mathbb{N}\} \cup \{y_n : n \in \mathbb{N}\})$ and put $X = \{a\} \cup \{x_n : n \in \mathbb{N}\} \cup \{y_n : n \in \mathbb{N}\}$. Define a quasi-metric d on X by $d(a, y_n) = 1/n$ for all $n \in \mathbb{N}$, $d(x_n, y_m) = 1/n$ for all $n, m \in \mathbb{N}$, d(x, x) = 0 for all $x \in X$, and d(x, y) = 1 otherwise.

We first show that the finest quasi-uniformity \mathcal{BFN} of the quasimetrizable bispace $(X, T(d), T(d^{-1}))$ is not quasi-metrizable. Assume the contrary. Then \mathcal{BFN} has a countable base $\{V_n : n \in \mathbb{N}\}$. By Lemma 2 below, for each $x \in X$ and each $n \in \mathbb{N}$ there is an $n(x) \in \mathbb{N}$ such that $S_{d^{-1}}(x, 1/n(x)) \times S_d(x, 1/n(x)) \subseteq V_n$. Let

$$W = \left[\bigcup_{n \in \mathbb{N}} (\{x_n\} \times \{x_n\})\right] \cup [\{a\} \times S_d(a, 1)]$$
$$\cup \left[\bigcup_{n \in \mathbb{N}} (S_{d^{-1}}(y_n, 1/(n(y_n) + 1)) \times \{y_n\})\right].$$

By Lemma 2, $W \in \mathcal{BFN}$. However, $(x_{n(y_n)+1}, y_n) \in V_n \setminus W$ for all $n \in \mathbb{N}$, because $d(x_{n(y_n)+1}, y_n) = 1/(n(y_n) + 1)$. We conclude that \mathcal{BFN} has no a countable base.

Finally, we prove that (X, d) is a *BQUC* space. Assume the contrary. Then there is a real-valued bicontinuous function f on X which is not quasi-uniformly continuous. Thus, there exist an $\varepsilon > 0$ and two sequences $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ in X such that $d(a_n, b_n) < 2^{-n}$ and $f(a_n) - f(b_n) \ge \varepsilon$ whenever $n \in \mathbb{N}$. If there is a subsequence $(a_{k(n)})_{n \in \mathbb{N}}$ of $(a_n)_{n \in \mathbb{N}}$ such that $a_{k(n)} = a$ for all $n \in \mathbb{N}$, then $(b_{k(n)})_{n \in \mathbb{N}}$ will be a subsequence of

(distinct) points of $(y_n)_{n\in\mathbb{N}}$. Hence, $d(a, b_{k(n)}) \to 0$. Since f is lower semicontinuous with respect to T(d), we obtain a contradiction. Otherwise, we may assume that $(a_n)_{n\in\mathbb{N}}$ is a subsequence of distinct points of $(x_n)_{n\in\mathbb{N}}$. If there is a subsequence $(b_{k(n)})_{k\in\mathbb{N}}$ of $(b_n)_{n\in\mathbb{N}}$ such that for some fixed $j \in \mathbb{N}$, one has $b_{k(n)} = y_j$ whenever $n \in \mathbb{N}$, we obtain a contradiction again, because f is upper semicontinuous with respect to $T(d^{-1})$ and $d(a_{k(n)}, y_j) \to 0$. Thus it only remains to consider the case that $(b_n)_{n \in \mathbb{N}}$ is a subsequence of distinct points of $(y_n)_{n \in \mathbb{N}}$. Then, for b_1 , there is $\delta_1 > 0$ such that $f(x) - f(b_1) < \varepsilon/2$ whenever $d(x, b_1) < \delta_1$. Since $d(a_n, b_1) \to 0$, there is k(1) > 1 such that $d(a_{k(1)}, b_1) < \delta_1$, so $f(a_{k(1)}) - f(b_1) < \varepsilon/2$. Hence, $(\varepsilon/2) + f(b_{k(1)}) \leq f(a_{k(1)}) - (\varepsilon/2) < f(b_1)$. Taking $b_{k(1)}$ we obtain, similarly, a k(2) > k(1) such that $f(a_{k(2)}) - f(b_{k(1)}) < \varepsilon/2$. Hence, $(\varepsilon/2) + f(b_{k(2)}) < f(b_{k(1)})$. Following this process we can construct a strictly increasing sequence $(k(n))_{n\in\mathbb{N}}$ of natural numbers such that $(\varepsilon/2) + f(b_{k(n+1)}) < f(b_{k(n)})$ for all $k \in \mathbb{N}$. Consequently, $f(b_{k(n)}) \to -\infty$. Since $d(a, b_{k(n)}) \to 0$, we deduce that $f(a) = -\infty$, a contradiction. Hence, f is quasi-uniformly continuous and, thus, (X, d) is a BQUC space.

However, in the topological case we may obtain a satisfactory result, as Theorem 3 below shows. We will use the two following lemmas.

Lemma 2 [26]. The finest quasi-uniformity of a quasi-pseudometrizable bispace (X, τ_1, τ_2) consists of all $\tau_2 \times \tau_1$ -neighborhoods of the diagonal in $X \times X$.

Lemma 3. Let d be a pairwise equinormal quasi-metric on a set X. If $T(d^{-1})$ is the discrete topology on X, then there exists an r > 0 such that $d(x, y) \ge r$ whenever x is a T(d)-isolated point and $y \ne x$.

PROOF. Assume the contrary. Then there exist two sequences $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ of points in X such that each a_n is T(d)-isolated, $a_n \neq b_n$, and $d(a_n, b_n) < 2^{-n}$ for all $n \in \mathbb{N}$. Since $T(d^{-1})$ is the discrete topology on X and each a_n is T(d)-isolated, we may suppose, without loss of generality, that both $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ are sequences of distinct points. Put

 $A = \{a_n : n \in \mathbb{N}\} \text{ and } B = T(d) \operatorname{cl}(\{b_n : n \in \mathbb{N}\}).$

Since d is pairwise equinormal and d(A, B) = 0, we deduce that $A \cap B \neq \emptyset$. Let $x \in A \cap B$. Then x is T(d)-isolated, so $x \in \{b_n : n \in \mathbb{N}\}$. If $C = A \cap B$ is a finite set we have that $A_1 = A \setminus C$ is a (nonempty) $T(d^{-1})$ -closed set and $B_1 = T(d) \operatorname{cl}(B \setminus C)$ is a disjoint (nonempty) T(d)-closed set

such that $d(A_1, B_1) = 0$, a contradiction. Therefore, we may assume that there exists a subsequence $(a_{k(n)})_{n \in \mathbb{N}}$ of $(a_n)_{n \in \mathbb{N}}$ such that $a_{k(m)} \in \{b_n : n \in \mathbb{N}\}$ for all $m \in \mathbb{N}$. Thus we can construct two subsequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ of $(a_n)_{n \in \mathbb{N}}$ such that $\{x_n : n \in \mathbb{N}\} \cap T(d) \operatorname{cl}(\{y_n : n \in \mathbb{N}\}) = \emptyset$ and $d(x_n, y_n) \to 0$, a contradiction.

We conclude that there exists an r > 0 such that $d(x, y) \ge r$ whenever x is T(d)-isolated and $y \ne x$.

Theorem 3. For a quasi-metric space (X, d) the following statements are equivalent:

- (1) (X, d) is a QUC space.
- (2) (X, T(d)) has only finitely many nonisolated points and there exists an r > 0 such that $d(x, y) \ge r$ whenever x is a T(d)-isolated point and $y \ne x$.
- (3) The quasi-uniformity \mathcal{U}_d , generated by d, coincides with the fine quasiuniformity of the topological space (X, T(d)).

PROOF. (1) \Rightarrow (2): We first show that $T(d^{-1})$ is the discrete topology on X: Suppose that there exist a point $x \in X$ and a sequence $(x_n)_{n \in \mathbb{N}}$ of distinct points in X such that $d(x_n, x) \to 0$. Then, the characteristic function for $X \setminus \{x\}$ is lower semicontinuous but not quasi-uniformly continuous. Therefore $T(d^{-1})$ is the discrete topology D on X.

Hence (X, d) is a *BQUC* space. By Proposition 4, *d* is pairwise equinormal and, by Proposition 5, every sequence of non T(d)-isolated points has a *D*-cluster point. So (X, T(d)) has only finitely many nonisolated points. Furthermore, by Lemma 3, there exists an r > 0 such that $d(x, y) \ge r$ whenever *x* is a T(d)-isolated point and $y \ne x$.

 $(2) \Rightarrow (3)$: Denote by X' the set of non T(d)-isolated points of X.

If $X' = \emptyset$, T(d) = D, and, thus, by Remark 3 and Lemma 2, $\Delta = \{(x, x) : x \in X\}$ is a base for the fine quasi-uniformity of (X, T(d)). Theferore, $\{(x, y) \in X \times X : d(x, y) < r\} = \Delta$, and, consequently, \mathcal{U}_d is exactly the fine quasi-uniformity of (X, T(d)).

If $X' \neq \emptyset$, let $X' = \{x_1, \ldots, x_j\}$. We first show that $T(d^{-1})$ is the discrete topology on X: Otherwise, there exist an $x \in X$ and a sequence $(y_n)_{n \in \mathbb{N}}$ of distinct points in X such that $d(y_n, x) \to 0$. Thus, there is an $n_0 \in \mathbb{N}$ such that $y_n \neq x$ and $d(y_n, x) < r$ for all $n \ge n_0$. So, for each $n \ge n_0, y_n \in X'$. Since X' is a finite set, $y_n = x$ for some $n \ge n_0$, a contradiction.

Salvador Romaguera

Now denote by \mathcal{FN} the fine quasi-uniformity of (X, T(d)) and let $W \in \mathcal{FN}$. Since \mathcal{FN} coincides with the finest quasi-uniformity of the quasimetrizable bispace (X, T(d), D) (see Remark 3), it follows from Lemma 2 that for each $x_i \in X'$ there is an $\varepsilon_i > 0$ such that

$$\left(\bigcup_{i=1}^{j} (\{x_i\} \times S_d(x_i, \varepsilon_i))\right) \cup \left(\bigcup_{x \notin X'} (\{x\} \times \{x\})\right) \subseteq W$$

Put $\varepsilon = \min\{\varepsilon_i : i = 1, ..., j\}$ and $\delta = \min\{\varepsilon, r\}$. Then $d(x, y) \ge \delta$ whenever $x \in X \setminus X'$ and $y \ne x$. Hence $\{(x, y) \in X \times X : d(x, y) < \delta\} \subseteq W$, and, consequently, \mathcal{U}_d coincides with the fine quasi-uniformity of (X, T(d)).

 $(3) \Rightarrow (1)$: This implication is clear, because it is well known that the fine quasi-uniformity of any topological space has the property that every real-valued lower semicontinuous function is quasi-uniformly continuous [8].

Corollary 7. The fine quasi-uniformity of a T_1 topological space is quasi-metrizable if and only if it is a QUC topological space.

Corollary 8 [14]. The fine quasi-uniformity of a T_1 topological space (X, τ) is quasi-metrizable if and only if (X, τ) is a quasi-metrizable space with only finitely many nonisolated points.

PROOF. We first suppose that the fine quasi-uniformity of (X, τ) is quasi-metrizable. It then follows from Remark 3 that the finest quasi-uniformity of (X, τ, D) is quasi-metrizable. So (X, τ, D) is a *BQUC* bispace. By Proposition 5, (X, τ) has only finitely many nonisolated points. Conversely, let *d* be a quasi-metric on *X* compatible with τ and let *X'* be the set of the nonislated points. Define for all $x, y \in X$, $e(x, y) = \min\{d(x, y), 1\}$ if $x \in X'$, e(x, y) = 1 if $x \in X \setminus X'$ and $x \neq y$, and e(x, x) = 0 for all $x \in X$. Since *e* is compatible with τ , the quasi-metric space (X, e) satisfies the conditions of Theorem 3(2) (with r = 1). Therefore, the fine quasi-uniformity of (X, τ) coincides with \mathcal{U}_e , so, it is quasi-metrizable.

Note that the topologies T(d) and $T(d^{-1})$ of the bispace $(X, T(d), T(d^{-1}))$ of Example 3 are not comparable. Moreover, T(d) is a Hausdorff topology but $T(d^{-1})$ is not. These facts are not accidental as our two next theorems show.

160

Theorem 4. Let (X, τ_1, τ_2) be a quasi-metrizable bispace such that $\tau_1 \subseteq \tau_2$. Then the following statements are equivalent:

- (1) The finest quasi-uniformity of (X, τ_1, τ_2) is quasi-metrizable.
- (2) (X, τ_1, τ_2) is a BQUC bispace.
- (3) The set of the non τ_1 -isolated points is τ_2 -compact.

PROOF. (1) \Rightarrow (2): Apply Proposition 3.

(2) \Rightarrow (3): By Proposition 5, every sequence $(x_n)_{n\in\mathbb{N}}$ in X of non τ_1 -isolated points has a τ_2 -cluster point, which is also a τ_1 -cluster point of $(x_n)_{n\in\mathbb{N}}$ because $\tau_1 \subseteq \tau_2$. Since every countably compact quasi-metrizable topological space is compact [8, Corollary 2.29], we conclude that the set of the non τ_1 -isolated points is τ_2 -compact.

(3) \Rightarrow (1): Denote by X' the set of the non τ_1 -isolated points of X. If $X' = \emptyset$, then both τ_1 and τ_2 coincide with the discrete topology on X. By Lemma 2, $\{\Delta\}$ is a base for the finest quasi-uniformity of (X, τ_1, τ_2) .

Hence, we will suppose that $X' \neq \emptyset$. In this case, choose any quasimetric d on X compatible with (τ_1, τ_2) . For each $n \in \mathbb{N}$, define

$$V_n=\{(x,y)\in X\times X:$$
 there is $z\in X'$ such that $d(x,z)<2^{-2n}$ and
$$d(z,y)<2^{-2n}\}$$

and

$$U_n = V_n \cup \{(x, x) \in X \times X : x \notin X'\}.$$

Since for each $n \in \mathbb{N}$, $\Delta \subseteq U_n$ and $U_{n+1}^3 \subseteq U_n$, $\{U_n : n \in \mathbb{N}\}$ is a base for a quasi-uniformity \mathcal{U} on X. Clearly, $T(\mathcal{U}) \subseteq \tau_1$ and $T(\mathcal{U}^{-1}) \subseteq$ τ_2 . Moreover, for each $x \in X$, $U_{n+1}(x) \subseteq S_d(x, 2^{-2n})$ and $U_{n+1}^{-1}(x) \subseteq$ $S_{d^{-1}}(x, 2^{-2n})$. Hence, \mathcal{U} is compatible with (τ_1, τ_2) . We want to show that \mathcal{U} is exactly the finest quasi-uniformity of (X, τ_1, τ_2) . To this end, let V be a $\tau_2 \times \tau_1$ -neighborhood of the diagonal in $X \times X$. Then, for each $x \in X$ there is a τ_i -neighborhood $W_i(x)$ of x, (i = 1, 2), such that

$$W = \bigcup \{ W_2(x) \times W_1(x) : x \in X \} \subseteq V.$$

Hence, it suffices to show that $U_n \subseteq W$ for some $n \in \mathbb{N}$. Assume the contrary. Then, for each $n \in \mathbb{N}$ there is a pair (a_n, b_n) in $U_n \setminus W$. Thus, there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in X' such that $d(a_n, x_n) \to 0$ and $d(x_n, b_n) \to 0$. Since X' is τ_2 -compact and $\tau_1 \subseteq \tau_2$, we deduce that there are a point $y \in X'$ and a subsequence $(x_{k(n)})_{n\in\mathbb{N}}$ of $(x_n)_{n\in\mathbb{N}}$ such that $(d\vee d^{-1})(y, x_{k(n)}) \to 0$. So $d(a_{k(n)}, y) \to 0$ and $d(y, b_{k(n)}) \to 0$. Therefore $(a_{k(n)})_{n\in\mathbb{N}}$ is eventually in $W_2(y)$ and $(b_{k(n)})_{n\in\mathbb{N}}$ is eventually in $W_1(y)$, which contradicts the fact that $(a_n, b_n) \notin W$ for all $n \in \mathbb{N}$. We conclude that the finest quasi-uniformity of (X, τ_1, τ_2) coincides with \mathcal{U} , so it is quasi-metrizable.

A bispace (X, τ_1, τ_2) is called *doubly Hausdorff* if both τ_1 and τ_2 are Hausdorff topologies on X. A quasi-metric space (X, d) is said to be *doubly* Hausdorff if $(X, T(d), T(d^{-1}))$ is a doubly Hausdorff bispace.

Theorem 5. For a doubly Hausdorff quasi-metric space (X, d) the following statements are equivalent:

- (1) (X, d) is a BQUC space.
- (2) The quasi-proximity δ_d , induced by d, is the finest quasi-proximity of the bispace $(X, T(d), T(d^{-1}))$.
- (3) The quasi-uniformity \mathcal{U}_d , generated by d, is the finest quasi-uniformity of the bispace $(X, T(d), T(d^{-1}))$.

PROOF. $(1) \Rightarrow (2)$: Apply Proposition 4 and Remark 2.

(2) \Rightarrow (3): We first show that every sequence of non T(d)-isolated points has a $T(d^{-1})$ -cluster point. Assume the contrary. Then there is a sequence $(x_n)_{n\in\mathbb{N}}$ of distinct non T(d)-isolated points without $T(d^{-1})$ cluster point. Let $F = \{x_n : n \in \mathbb{N}\}$. Then F is $T(d^{-1})$ -closed. For each $n \in \mathbb{N}$ put $F_n = F \setminus \{x_n\}$. Note that F_n is $T(d^{-1})$ -closed whenever $n \in \mathbb{N}$. Given x_1 there is $r_1 < 2^{-1}$ $(r_1 > 0)$ such that $S_{d^{-1}}(x_1, r_1) \cap F_1 = \emptyset$. Choose a $y_1 \neq x_1$ with $d(x_1, y_1) < r_1$. Put k(1) = 1. Let k(2) be the first positive integer greater than 1 such that $x_{k(2)} \neq y_1$. Choose $0 < r_2 < \min\{r_1, 2^{-2}\}$ such that $S_{d^{-1}}(x_{k(2)}, r_2) \cap (F_{k(2)} \cup \{y_1\}) = \emptyset$. Choose a $y_2 \neq x_{k(2)}$ with $d(x_{k(2)}, y_2) < r_2$. Let k(3) be the first positive integer greater than k(2)such that $x_{k(3)} \notin \{y_1, y_2\}$. Choose $0 < r_3 < \min\{r_2, 2^{-3}\}$ such that $S_{d^{-1}}(x_{k(3)}, r_3) \cap (F_{k(3)} \cup \{y_1, y_2\}) = \emptyset$. Following this process we can construct a subsequence $(x_{k(n)})_{n\in\mathbb{N}}$ of $(x_n)_{n\in\mathbb{N}}$ and a strictly decreasing sequence of positive real numbers $(r_n)_{n\in\mathbb{N}}$ such that $r_n < 2^{-n}$, $d(x_{k(n)}, y_n) < r_n$ and

$$S_{d^{-1}}(x_{k(n)}, r_n) \cap (F_{k(n)} \cup \{y_1, \dots, y_{n-1}\}) = \emptyset$$
 for all $n > 1$.

Therefore, $x_{k(n)} \neq y_m$ for all $n, m \in \mathbb{N}$: Indeed, if m > n, from $d(x_{k(m)}, x_{k(n)}) \leq d(x_{k(m)}, y_m) + d(y_m, x_{k(n)})$, it follows that $r_n < r_m + d(y_m, x_{k(n)})$, so $d(y_m, x_{k(n)}) > r_n - r_m > 0$. If $m < n, y_m \notin S_{d^{-1}}(x_{k(n)}, r_n)$.

Now put $A = \{x_{k(n)} : n \in \mathbb{N}\}$ and $B = T(d) \operatorname{cl}(\{y_n : n \in \mathbb{N}\})$. Note that A is $T(d^{-1})$ -closed because $(x_{k(n)})_{n \in \mathbb{N}}$ is a subsequence of $(x_n)_{n \in \mathbb{N}}$. If $A \cap B = \emptyset$, we obtain a contradiction because, by Remark 2, d is pairwise equinormal and $d(x_{k(n)}, y_n) \to 0$. Otherwise, there exist an $x_{k(m)} \in A$ and a subsequence $(y_{j(n)})_{n \in \mathbb{N}}$ of $(y_n)_{n \in \mathbb{N}}$ such that $d(x_{k(m)}, y_{j(n)}) \to 0$. Since T(d) is a Hausdorff topology, $H = \{x_{k(m)}\} \cup \{y_{j(n)} : n \in \mathbb{N}\}$ is a T(d)-closed set. Put $G = A \setminus \{x_{k(m)}\}$. Then G is a $T(d^{-1})$ -closed set such that $G \cap H = \emptyset$. However, d(G, H) = 0 because $d(x_{k(j(n))}, y_{j(n)}) \to 0$, a contradiction. We conclude that every sequence of non T(d)-isolated points has a $T(d^{-1})$ -cluster point. Similarly, we prove that every sequence of non $T(d^{-1})$ -isolated points has a T(d)-cluster point.

Now put, for each $n \in \mathbb{N}$, $U_n = \{(x, y) \in X \times X : d(x, y) < 2^{-n}\}$, and suppose that there exist a $T(d^{-1}) \times T(d)$ -neighborhood W of the diagonal in $X \times X$ and a sequence $((a_n, b_n))_{n \in \mathbb{N}}$ of points in $X \times X$, such that $(a_n, b_n) \in U_n \setminus W$ for all $n \in \mathbb{N}$. Then, we may assume that both $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ are sequences of distinct points. We consider the two following cases:

I. The sequence $(a_n)_{n\in\mathbb{N}}$ has no $T(d^{-1})$ -cluster point. Hence, we may assume, without loss of generality, that each a_n is a T(d)-isolated point. Put $A = \{a_n : n \in \mathbb{N}\}$ and $B = T(d) \operatorname{cl}(\{b_n : n \in \mathbb{N}\})$. Since d(A, B) = 0and d is pairwise equinormal we deduce that $A \cap B \neq \emptyset$. If $A \cap B$ is a finite set, then, an argument similiar to the one used in the proof of Lemma 3, permits us to reach a contradiction. Otherwise, as in the proof of Lemma 3 again, we can construct two subsequences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ of $(a_n)_{n\in\mathbb{N}}$ such that $\{x_n : n \in \mathbb{N}\} \cap T(d) \operatorname{cl}(\{y : n \in \mathbb{N}\}) = \emptyset$ and $d(x_n, y_n) \to 0$, a contradiction.

II. The sequence $(a_n)_{n\in\mathbb{N}}$ has a $T(d^{-1})$ -cluster point $a \in X$. Then there is a subsequence $(a_{k(n)})_{n\in\mathbb{N}}$ of $(a_n)_{n\in\mathbb{N}}$ such that $d(a_{k(n)}, a) \to 0$. Thus $A = \{a\} \cup \{a_{k(n)} : n \in \mathbb{N}\}$ is $T(d^{-1})$ -closed because $T(d^{-1})$ is a Hausdorff topology. Put $B = \{b_{k(n)} : n \in \mathbb{N}\}$. It is not a restriction to suppose that for each $n \in \mathbb{N}$, $b_{k(n)} \neq a$ because $(a_{k(n)}, b_{k(n)}) \notin W$ (and, hence, there is a subsequence of $(b_{k(n)})_{n\in\mathbb{N}}$ consisting of points which are different from a). If the sequence $(b_{k(n)})_{n\in\mathbb{N}}$ has no T(d)-cluster point, then $A \cap B \neq \emptyset$ because d is pairwise equinormal and, thus, we may suppose that there is a subsequence $(c_n)_{n\in\mathbb{N}}$ of $(b_{k(n)})_{n\in\mathbb{N}}$ such that each c_n is in A. Therefore, we can construct two subsequences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ of $(a_n)_{n\in\mathbb{N}}$ (where $(y_n)_{n\in\mathbb{N}}$ is also a subsequence of $(c_n)_{n\in\mathbb{N}}$), such that

 $\{x_n : n \in \mathbb{N}\} \cap T(d) \operatorname{cl}(\{y_n : n \in \mathbb{N}\}) = \emptyset \text{ and } d(x_n, y_n) \to 0,$

a contradiction. Otherwise, there exists a subsequence $(c_n)_{n \in \mathbb{N}}$ of $(b_{k(n)})_{n \in \mathbb{N}}$, which is T(d)-convergent to a point $c \in X$. Then $c \neq a$, since $(a_n, b_n) \notin W$ whenever $n \in \mathbb{N}$. Let r > 0 such that $S_d(c, r) \cap S_{d^{-1}}(a, r) = \emptyset$. Choose an $n_0 \in \mathbb{N}$ such that for each $n \geq n_0$, $a_{k(n)} \in S_{d^{-1}}(a, r)$ and $c_n \in S_d(c, r)$, respectively. Then, $A_0 = \{a\} \cup \{a_{k(n)} : n \geq n_0\}$ is $T(d^{-1})$ -closed, C = $\{c\} \cup \{c_n : n \geq n_0\}$ is T(d)-closed, $A_0 \cap C = \emptyset$ and $d(A_0, C) = 0$, so we have reached a contradiction. We conclude that \mathcal{U}_d is exactly the finest quasi-uniformity of $(X, T(d), T(d^{-1}))$.

 $(3) \Rightarrow (1)$: It follows from SALBANY's theorem [29] mentioned above that the finest quasi-uniformity of any pairwise completely regular bispace has the property that every real-valued bicontinuous function is quasiuniformly continuous.

Corollary 9. The finest quasi-uniformity of a doubly Hausdorff pairwise completely regular bispace is quasi-metrizable if and only if its finest quasi-proximity is quasi-metrizable.

Corollary 10. Let (X, τ_1, τ_2) be doubly Hausdorff pairwise completely regular bispace whose finest quasi-proximity is quasi-metrizable. Then the fine uniformity of $(X, \tau_1 \vee \tau_2)$ is metrizable.

PROOF. Apply Corollaries 9 and 5.

FLETCHER and LINDGREN proved in [8, Proposition 2.34] (see also [19]) that the fine quasi-uniformity of a regular Hausdorff topological space is quasi-metrizable if and only if it is a metrizable space with only finitely many nonisolated points. This result is generalized in the following way.

Corollary 11. For a Hausdorff topological space (X, τ) the following statements are equivalent:

- (1) The finest quasi-proximity of (X, τ) is quasi-metrizable.
- (2) The fine quasi-uniformity of (X, τ) is quasi-metrizable.
- (3) (X, τ) is a metrizable space with only finitely many nonisolated points.

PROOF. (1) \Rightarrow (2): It is a consequence of Theorem 5, (2) \Rightarrow (3), since the finest quasi-proximity (resp. quasi-uniformity) of (X, τ) coincides with the finest quasi-proximity (resp. quasi-uniformity) of the bispace (X, τ, D) (see Remarks 1 and 3).

(2) \Rightarrow (3): By [14, Proposition 1.12] (see Corollary 8), (X, τ) is a quasi-metrizable space with only finitely many nonisolated points. Since (X, τ) is a Hausdorff space, we immediately deduce that (X, τ) is regular. By [8, Proposition 2.34] mentioned above, (X, τ) is a metrizable space with only finitely many nonisolated points.

(3) \Rightarrow (1): By [8, Proposition 2.34], the fine quasi-uniformity of (X, τ) is quasi-metrizable. Hence, its finest quasi-proximity is also quasi-metrizable [14, Proof of Proposition 1.13].

Remark 5. The first part of the proof of $(2) \Rightarrow (3)$ in Theorem 5, shows that if d is a pairwise equinormal quasi-metric on a set X such that T(d) is a Hausdorff topology, then every sequence of non T(d)-isolated points has a $T(d^{-1})$ -cluster point. Since the topological spaces (X, τ) of Remark 4 are Hausdorff and they do not have isolated points, it follows that they do not admit any compatible quasi-metric d such that the finest quasi-proximity of the bispace $(X, \tau, T(d^{-1}))$ is quasi-metrizable (otherwise $T(d^{-1})$ would be compact, so $T(d^{-1}) \subset \tau$ and thus, (X, τ) would be metrizable, a contradiction).

Subsequently, we present three examples that deal with some natural conjectures that may be considered in the light of the obtained results. Thus, in Example 4 we obtain a doubly Hausdorff quasi-metrizable non BQUC bispace (X, τ_1, τ_2) such that every sequence of non τ_i -isolated points has a τ_j -cluster point, $i, j = 1, 2; i \neq j$. In Example 5, we shall give an example of a doubly Hausdorff bispace (X, τ_1, τ_2) whose finest quasiuniformity is quasi-metrizable but the finest quasi-proximity of (X, τ_1) is not quasi-metrizable. Finally, Example 6 will show that the condition "doubly Hausdorff" cannot be omitted in Corollary 10.

Example 4. Let $(x_n)_{n \in \mathbb{N}}$ be a sequence of distinct points. For each $n \in \mathbb{N}$ consider a sequence $(y_m^{(n)})_{m \in \mathbb{N}}$ of points such that $y_m^{(n)} \neq y_k^{(j)}$ and $y_m^{(n)} \neq x_k$ for all $n, m, k, j \in \mathbb{N}$. Put $Y = \{x_n : n \in \mathbb{N}\} \cup \{y_m^{(n)} : n, m \in \mathbb{N}\}$. Choose a point $a \notin Y$ and let $X = Y \cup \{a\}$. Now define a quasi-metric d on X as follows: $d(a, x_n) = 1/n$ for all $n \in \mathbb{N}$; $d(y_m^{(n)}, x_n) = 1/m$ for all $n, m \in \mathbb{N}$; d(x, x) = 0 for all $x \in X$, and d(x, y) = 1 otherwise.

Clearly, $(X, T(d), T(d^{-1}))$ is a doubly Hausdorff bispace. The point *a* is the unique non T(d)-isolated point and every sequence of (distinct) non

 $T(d^{-1})$ -isolated points is a subsequence of $(x_n)_{n \in \mathbb{N}}$, which converges to a with respect to T(d).

Now we show that the finest quasi-uniformity \mathcal{BFN} of $(X, T(d), T(d^{-1}))$ has no countable base. Indeed, assume the contrary and let $\{V_n : n \in \mathbb{N}\}$ be a base for \mathcal{BFN} . Then, for each $x \in X$ and each $n \in \mathbb{N}$ there is an $n(x) \in \mathbb{N}$ such that $S_{d^{-1}}(x, 1/n(x)) \times S_d(x, 1/n(x)) \subseteq V_n$. Let

$$W = \left[\bigcup_{n,m\in\mathbb{N}} (\{y_m^{(n)}\} \times \{y_m^{(n)}\})\right] \cup [\{a\} \times S_d(a,1)]$$
$$\cup \left[\bigcup_{n\in\mathbb{N}} (S_{d^{-1}}(x_n, 1/(n(x_n)+1)) \times \{x_n\})\right].$$

Then, $W \in \mathcal{BFN}$ (compare Example 3). However, $(y_{n(x_n)+1}^{(n)}, x_n) \in V_n \setminus W$ for all $n \in \mathbb{N}$, because $d(y_{n(x_n)+1}^{(n)}, x_n) = 1/(n(x_n)+1)$. Therefore, \mathcal{BFN} is not quasi-metrizable. By Corollary 9, the finest quasi-proximity of $(X, T(d), T(d^{-1}))$ is not quasi-metrizable.

Example 5. Let X be the set of Example 4. Define a quasi-metric d on X as follows:

$$\begin{split} &d(a, x_n) = d(x_n, a) = 1/n \text{ for all } n \in \mathbb{N}, \\ &d(a, y_m^{(n)}) = (1/n) + (1/m) \text{ for all } n, m \in \mathbb{N}, \\ &d(x_n, x_k) = |(1/n) - (1/k)| \text{ for all } n, k \in \mathbb{N}, \\ &d(x_n, y_m^{(n)}) = 1/m \text{ for all } n, m \in \mathbb{N}, \\ &d(x_n, y_m^{(k)}) = (1/m) + |(1/n) - (1/k)| \text{ for all } n, m, k \in \mathbb{N} \text{ with } n \neq k, \\ &d(x, x) = 0 \text{ for all } x \in X, \\ &d(x, y) = 2, \text{ otherwise.} \end{split}$$

An easy computation of the different cases shows that, indeed, d is a quasi-metric on X. Note also that $(X, T(d), T(d^{-1}))$ is a doubly Hausdorff bispace such that $T(d) \subset T(d^{-1})$. Moreover, since $\{a\} \cup \{x_n : n \in \mathbb{N}\}$ is the set of non T(d)-isolated points and $d(x_n, a) \to 0$, we deduce that the set of the non T(d)-isolated points is $T(d^{-1})$ -compact. So, by Theorem 4, the finest quasi-uniformity of $(X, T(d), T(d^{-1}))$ is quasi-metrizable. On the other hand, it follows from Corollary 11(3), that the finest quasi-proximity of (X, T(d)) is not quasi-metrizable.

166

Example 6. In [7] it is given an example of a quasi-metrizable pairwise compact bispace (X, τ_1, τ_2) such that τ_1 is not Hausdorff, $\tau_1 \subset \tau_2$ and the fine uniformity of (X, τ_2) is not metrizable. Thus, this example shows that the condition "doubly Hausdorff" cannot be omitted in the statement of Corollary 10.

In the light of the preceding example (see also Examples 1 and 2) it seems interesting to study the problem of characterizing those quasimetrizable bispaces (X, τ_1, τ_2) for which the fine uniformity of $(X, \tau_1 \vee \tau_2)$ is metrizable. We conclude the paper with a solution to this question. Let us recall [8], [19], that a metric d on a set X is equinormal provided that d(A, B) > 0 whenever A and B are disjoint (nonempty) closed sets.

Theorem 6. Let (X, τ_1, τ_2) be a quasi-metrizable bispace. Then, the fine uniformity of $(X, \tau_1 \vee \tau_2)$ is metrizable if and only if (X, τ_1, τ_2) admits a quasi-metric d such that $d \vee d^{-1}$ is an equinormal metric.

PROOF. Sufficiency: Since the equinormal metric $d \vee d^{-1}$ is compatible with $\tau_1 \vee \tau_2$, the fine uniformity of $(X, \tau_1 \vee \tau_2)$ is metrizable (see, for instance, [8, Theorem 2.33]).

Necessity: If the fine uniformity of $(X, \tau_1 \vee \tau_2)$ is metrizable, then it has a compatible equinormal metric p [8, Theorem 2.33]. Let q be a quasimetric on X compatible with (τ_1, τ_2) . For each $x \in X$ there is a sequence $(r_n(x))_{n \in \mathbb{N}}$ of positive real numbers with $5r_{n+1}(x) < r_n(x) < 2^{-n}$ and

$$S_q(x, r_n(x)) \cap S_{q^{-1}}(x, r_n(x)) \subseteq S_p(x, 2^{-n})$$
 for all $n \in \mathbb{N}$.

Put

$$V_n = \bigcup \{ S_{q^{-1}}(x, r_n(x)/3) \times S_q(x, r_n(x)/3) : x \in X \}$$

for all $n \in \mathbb{N}$. Similarly to the proof of [27, Theorem 2.1], there exists a quasi-metric d on X compatible with (τ_1, τ_2) such that

$$V_{n+1} \subseteq \{(x,y) \in X \times X : d(x,y) < 2^{-n}\} \subseteq V_n$$

for all $n \in \mathbb{N}$. Finally, let A and B bet two disjoint (nonempty) closed sets in $(X, \tau_1 \vee \tau_2)$ such that $(d \vee d^{-1})(A, B) = 0$. Then, there exist a sequence $(a_n)_{n \in \mathbb{N}}$ in A and a sequence $(b_n)_{n \in \mathbb{N}}$ in B such that $(d \vee d^{-1})(a_n, b_n) < 2^{-n}$ for all $n \in \mathbb{N}$. Thus, there exist two sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ in X such that

$$q(a_n, x_n) < r_n(x_n)/3,$$
 $q(x_n, b_n) < r_n(x_n)/3,$
 $q(b_n, y_n) < r_n(y_n)/3$ and $q(y_n, a_n) < r_n(y_n)/3$

for all $n \in \mathbb{N}$. Assume, without loss of generality, that $r_n(y_n) \leq r_n(x_n)$ for all $n \in \mathbb{N}$. Then, $q(x_n, a_n) < r_n(x_n)$, $q(x_n, b_n) < r_n(x_n)$, $q(a_n, x_n) < r_n(x_n)$ and $q(b_n, x_n) < r_n(x_n)$. Hence, $p(a_n, b_n) < 2^{-(n-1)}$ for all $n \in \mathbb{N}$, which contradicts the fact that p is equinormal. We conclude that $d \lor d^{-1}$ is equinormal.

References

- J. A. ANTONINO and S. ROMAGUERA, Equinormal metrics and upper semi-continuity, *Math. Japonica* 36 (1991), 147–151.
- [2] M. ATSUJI, Uniform continuity and continuous functions on metric spaces, *Pacific J. Math.* 8 (1958), 11–16.
- [3] G. BEER, Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance, Proc. Amer. Math. Soc. 95 (1985), 653–658.
- [4] G. BEER, More about metric spaces on which continuous functions are uniformly continuous, Bull. Austral. Math. Soc. 33 (1986), 397–406.
- [5] G. BEER, UC spaces revisited, Amer. Math. Monthly 95 (1988), 737-739.
- [6] G. C. L. BRÜMMER, Initial quasi-uniformities, Indag. Math. 31 (1969), 403-409.
- [7] P. FLETCHER, H. B. HOYLE III and C. W. PATTY, The comparison of topologies, Duke Math. J. 36 (1969), 325–331.
- [8] P. FLETCHER and W. F. LINDGREN, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
- [9] L. M. FRIEDLER, H. W. MARTIN and S. W. WILLIAMS, Paracompact C-scattered spaces, Pacific J. Math. 129 (1987), 277–296.
- [10] H. HUEBER, On uniform continuity and compactness in metric spaces, Amer. Math. Monthly 88 (1981), 204–205.
- [11] M. JAS and A. P. BAISNAB, Bitopological spaces and associated q-proximity, Indian J. Pure Appl. Math. 13 (1982), 1142–1146.
- [12] A. J. JAYANTHAN and V. KANNAN, Spaces every quotient of which is metrizable, Proc. Amer. Math. Soc. 103 (1988), 294–298.
- [13] J. C. KELLY, Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89.
- [14] H. P. A. KÜNZI, Some remarks on quasi-uniform spaces, Glasgow Math. J. 31 (1989), 309–320.
- [15] H. P. A. KÜNZI, Nonsymmetric topology, Bolyai Soc. Math. Studies 4, Topology Appl., 1993, (Budapest 1995), 303–338.
- [16] H. P. A. KÜNZI and G. C. L. BRÜMMER, Sobrification and bicompletion of totally bounded quasi-uniform spaces, *Math. Proc. Cambridge Phil. Soc.* **101** (1987), 237–247.

- [17] H. P. A. KÜNZI and S. WATSON, A nontrivial T₁-space admitting a unique quasiproximity, Glasgow Math. J. 38 (1996), 207–213.
- [18] E. P. LANE, Bitopological spaces and quasi-uniform spaces, Proc. London Math. Soc. 17 (1967), 241–256.
- [19] W. F. LINDGREN and P. FLETCHER, Equinormal quasi-uniformities and quasi-metrics, *Glasnik Mat.* 13 (1978), 111–125.
- [20] S. G. MRÓWKA, On normal metrics, Amer. Math. Monthly 72 (1965), 998-1001.
- [21] S. NADLER and T. WEST, A note on Lebesgue spaces, *Topology Proc.* 6 (1981), 363–369.
- [22] J. NAGATA, On the uniform topology and bicompactifications, J. Inst. Polytech. Osaka City Univ. 1 (1950), 93–100.
- [23] S. A. NAIMPALLY and P. L. SHARMA, Fine uniformity and the locally finite hyperspace topology, Proc. Amer. Math. Soc. 103 (1988), 641–646.
- [24] J. RAINWATER, Spaces whose finest uniformity is metric, Pacific J. Math. 9 (1959), 567–570.
- [25] S. ROMAGUERA and J. A. ANTONINO, Star Čech complete spaces, Houston J. Math. 18 (1992), 473–479.
- [26] S. ROMAGUERA and S. SALBANY, Quasi-metrizable spaces with a bicomplete structure, *Extracta Math.* 7 (1992), 103–106.
- [27] S. ROMAGUERA and S. SALBANY, On bicomplete quasi-pseudometrizability, Topology Appl. 50 (1993), 283–289.
- [28] S. SALBANY, Bitopological spaces, Compactifications and Completions, Thesis, Univ. Cape Town, 1970, Math. Monographs Univ. Cape Town, 1, 1974.
- [29] S. SALBANY, Quasi-uniformities and quasi-pseudometrics, Math. Colloq. Univ. Cape Town 6 (1970/71), 88–102.
- [30] P. L SHARMA, Nonmetrizable uniformities and proximities on metrizable spaces, Canad. J. Math. 25 (1973), 979–981.
- [31] W. WATERHOUSE, On UC spaces, Amer. Math. Monthly 72 (1965), 634-635.

SALVADOR ROMAGUERA ESCUELA DE CAMINOS DEPARTAMENTO DE MATEMÁTICA APLICADA UNIVERSIDAD POLITÉCNICA DE VALENCIA APARTADO 22012 46071 VALENCIA SPAIN *E-mail*: sromague@mat.upv.es

(Received September 25 1998; revised January 7, 1999)