Publ. Math. Debrecen 56 / 1-2 (2000), 179–183

Characterization of field homomorphisms by functional equations

By FRANZ HALTER-KOCH (Graz) and LUDWIG REICH (Graz)

Abstract. Let K and \overline{K} be fields with a common subfield F, and let $n \in \mathbb{Z}$, $|n| \geq 2, A \in K^{\times}, B \in \overline{K}^{\times}$. We study, under mild restrictions on the cardinality and the characteristic of F, F-linear solutions $f: K \to \overline{K}$ of the functional equation

$$f(Ax^n) = Bf(x)^n$$
 for all $x \in K \setminus \text{Ker}(f)$,

and show that either f = 0 or $e^{-1}f$ is a field monomorphism where e = f(1).

Let K be a field of characteristic different from 2 and $f: K \to \overline{K}$ be an additive function. It is well known that f is a field homomorphism if

$$f(x^2) = f(x)^2$$
 for all $x \in K$.

The proof follows easily by calculating $f((x + y)^2)$ in two different ways. (For this and similar algebraic manipulations of functional equations related to additive functions see KUCZMA [1, Ch. XIV].)

Only recently, we proved in [2] that $\pm f$ is already a field homomorphism, if

$$f\left(\frac{1}{x}\right) = \frac{1}{f(x)}$$
 for all $x \in K \setminus \text{Ker}(f)$.

In this note, we investigate additive functions satisfying the more general functional equation (1) below. The emphasis lies here in admitting the constants A and B, and again, as in [2], in making the weaker assumption "for all $x \in K \setminus \text{Ker}(f)$ " instead of "for all $x \in K^{\times}$ ".

Mathematics Subject Classification: Primary: 39B52; Secondary: 39B62, 11E99. Key words and phrases: additive functions, field monomorphisms.

Theorem. Suppose that $n \in \mathbb{Z}$, $|n| \ge 2$, and

$$n^* = \begin{cases} n, & \text{if } n > 0, \\ n^2, & \text{if } n < 0. \end{cases}$$

Let F be a field such that $\#F > n^*$ and $\operatorname{char}(F) \nmid n(n^* - 1)$. Let $F \subset K$, $F \subset \overline{K}$ be extension fields, $f: K \to \overline{K}$ an F-linear map, $A \in K^{\times}$, $B \in \overline{K}^{\times}$ and

(1)
$$f(Ax^n) = Bf(x)^n$$
 for all $x \in K \setminus \text{Ker}(f)$.

Then either f = 0, or $e = f(1) \neq 0$, and $e^{-1}f : K \to \overline{K}$ is a field monomorphism.

PROOF. We set V = Ker(f) and e = f(1). If $e \neq 0$, then (1) implies $f(A) = Be^n$, and thus $A \notin V$.

Case 1: n > 0. If $a, b \in K$ and $\lambda \in F$ are such that $a + \lambda b \notin V$ or $a + \lambda b = 0$, then (1) implies

$$f(A(a+\lambda b)^n) = Bf(a+\lambda b)^n.$$

Expanding both sides according to powers of λ and observing that f is F-linear, we obtain

(2)
$$\sum_{\nu=0}^{n} \binom{n}{\nu} \lambda^{\nu} \left[f(Aa^{n-\nu}b^{\nu}) - Bf(a)^{n-\nu}f(b)^{\nu} \right] = 0.$$

Suppose first that $V = \{0\}$. If $a, b \in K$, then (2) holds for all $\lambda \in F$ and hence identically in λ , since #F > n. In particular (for $\nu = 1$), we have

$$n[f(Aa^{n-1}b) - Bf(a)^{n-1}f(b)] = 0,$$

and since $\operatorname{char}(K) \nmid n$,

(3)
$$f(Aa^{n-1}b) = Bf(a)^{n-1}f(b) \text{ for all } a, b \in K.$$

In (3) we replace a by $a + \lambda$ (where $\lambda \in F$), expand according to powers of λ and obtain

(4)
$$\sum_{\nu=0}^{n-1} {\binom{n-1}{\nu}} \lambda^{\nu} f(Aa^{n-1-\nu}b) = B \sum_{\nu=0}^{n-1} {\binom{n-1}{\nu}} \lambda^{\nu} e^{\nu} f(a)^{n-1-\nu} f(b).$$

180

Again, (4) holds identically in λ , and a comparison of the coefficients of λ^{n-2} implies (since char(F) $\nmid n-1$)

(5)
$$f(Aab) = Be^{n-2}f(a)f(b) \text{ for all } a, b \in K.$$

If $a = A^{-1}x$, where $x \in K$, and b = 1, (5) implies $f(x) = Be^{n-1}f(A^{-1}x)$. Therefore we obtain, for all $x, y \in K$,

$$(e^{-1}f)(xy) = e^{-1}f(A(A^{-1}x)y) = Be^{n-3}f(A^{-1}x)f(y)$$
$$= e^{-2}f(x)f(y) = (e^{-1}f)(x)(e^{-1}f)(y),$$

which proves our assertion.

It remains to show that either $V = \{0\}$ or V = K. We distinguish two cases.

Case 1A: $e = 0, 1 \in V$. If $x \in K \setminus V$, then we have $x + \lambda \in K \setminus V$ for all $\lambda \in F$, and (2) holds for a = x, b = 1 and all $\lambda \in F$. Hence (2) holds identically in λ , and we obtain (for $\nu = n - 1$)

$$nf(Ax) = 0$$
 and thus $x \in A^{-1}V$.

We have proved that $K \setminus V \subset A^{-1}V$, and consequently $K \subset V \cup A^{-1}V$. Since V and $A^{-1}V$ are vector spaces over F, it follows that V = K.

Case 1B: $e \neq 0, 1 \notin V$. If $x \in V$, then we have $x + \lambda \in K \setminus V$ for all $\lambda \in F^{\times}$, and (2) holds for a = x, b = 1 and all $\lambda \in F^{\times}$. Since f(x) = 0 and $f(A) = Be^n$, we obtain

(6)
$$\sum_{\nu=0}^{n-1} \binom{n}{\nu} \lambda^{\nu} f\left(Ax^{n-\nu}\right) = 0 \quad \text{for all } \lambda \in F^{\times}.$$

Since $\#F^{\times} > n-1$, (6) holds identically in λ . We focus on the coefficients of λ^1 , λ^{n-2} and λ^{n-1} and observe that $\operatorname{char}(F) \nmid n(n-1)$ in order to obtain

(7)
$$\{Ax, Ax^2, Ax^{n-1}\} \subset V$$

and thus (by induction) also

(8)
$$A^m x \in V$$
 for all $m \ge 1$.

We assume now that there exists an element $x \in V \setminus \{0\}$ and distinguish two cases.

Case 1Ba: $x^{-1} \in V$. Since $x, x^{-1}, (x + x^{-1}) \in V$, (7) implies $Ax^2, Ax^{-2}, A(x + x^{-1})^2 \in V$ and hence

$$A = \frac{1}{2} \left[A(x + x^{-1})^2 - Ax^2 - Ax^{-2} \right] \in V,$$

a contradiction.

Case 1Bb: $x^{-1} \notin V$. By (7), we have $Ax^{n-1} \in V$ and hence $x^{-1} + \lambda Ax^{n-1} \notin V$ for all $\lambda \in F$. We apply (2) for $a = x^{-1}$ and $b = Ax^{n-1}$ and obtain

(9)
$$\sum_{\nu=0}^{n} \binom{n}{\nu} \lambda^{\nu} f\left(A^{1+\nu} x^{n(\nu-1)}\right) = 0 \quad \text{for all } \lambda \in F.$$

Again, (9) holds identically in λ , and we obtain (for $\nu = 1$) $nf(A^2) = 0$ and hence $A^2 \in V$. By (8), we deduce that $A^m \in V$ for all $m \geq 2$, and in particular $A^{n+1} \in V$. Since $A \notin V$, (1) implies however that $f(A^{n+1}) = f(AA^n) = Bf(A) \neq 0$, a contradiciton.

Case 2: n < 0. If $x \notin V$, then $f(Ax^n) = Bf(x)^n \neq 0$, hence $Ax^n \notin V$ and

$$f(A^{n+1}x^{n^2}) = f(A(Ax^n)^n) = Bf(Ax^n)^n = B^2f(x)^{n^2}.$$

Hence it follows by Case 1 that either f = 0 or $e^{-1}f$ is a field monomorphism.

Remark. The functional equation

$$f\left(\frac{1}{x^2}\right) = \frac{1}{f(x^2)}$$
 for all $x \in K \setminus \{0\}$

(for an injective additive function $f:K\to \overline{K})$ can also be treated by applying f to the identity

$$\frac{1}{(2x)^2(1-x^2)^2} - \frac{1}{(2x)^2(1+x^2)^2} = \frac{1}{(1-x^4)^2}.$$

In a forthcoming paper of the first author more general such identities will be investigated to study further functional equations for additive functions.

182

Characterization of field homomorphisms by functional equations

References

- M. KUCZMA, Introduction to the theory of functional equations and inequalities, *Panstwowe Wydawnictwo Naukowe, Uniwersytet Slaski, Warszawa-Krakow-Kato- wice*, 1985.
- [2] F. HALTER-KOCH and L. REICH, On additive functions commuting with Möbius transformations and field monomorphisms, *Aequationes Math.* 58 (1999), 176–182.

FRANZ HALTER-KOCH INSTITUT FÜR MATHEMATIK KARL-FRANZENS-UNIVERSITÄT GRAZ HEINRICHSTRASSE 36 8010 GRAZ AUSTRIA *E-mail*: franz.halterkoch.kfunigraz.ac.at

LUDWIG REICH INSTITUT FÜR MATHEMATIK KARL-FRANZENS-UNIVERSITÄT GRAZ HEINRICHSTRASSE 36 8010 GRAZ AUSTRIA

(Received January 19, 1999; revised April 26, 1999)