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Characterization of field homomorphisms
by functional equations

By FRANZ HALTER-KOCH (Graz) and LUDWIG REICH (Graz)

Abstract. Let K and K be fields with a common subfield F , and let n ∈ Z,

|n| ≥ 2, A ∈ K×, B ∈ K
×

. We study, under mild restrictions on the cardinality and

the characteristic of F , F -linear solutions f : K → K of the functional equation

f(Axn) = Bf(x)n for all x ∈ K \Ker(f),

and show that either f = 0 or e−1f is a field monomorphism where e = f(1).

Let K be a field of characteristic different from 2 and f : K → K be
an additive function. It is well known that f is a field homomorphism if

f(x2) = f(x)2 for all x ∈ K.

The proof follows easily by calculating f((x + y)2) in two different ways.
(For this and similar algebraic manipulations of functional equations re-
lated to additive functions see Kuczma [1, Ch. XIV].)

Only recently, we proved in [2] that ±f is already a field homomor-
phism, if

f

(
1
x

)
=

1
f(x)

for all x ∈ K \Ker(f).

In this note, we investigate additive functions satisfying the more gen-
eral functional equation (1) below. The emphasis lies here in admitting the
constants A and B, and again, as in [2], in making the weaker assumption
“for all x ∈ K \Ker(f)” instead of “for all x ∈ K×”.
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Theorem. Suppose that n ∈ Z, |n| ≥ 2, and

n∗ =
{

n, if n > 0,

n2, if n < 0.

Let F be a field such that #F > n∗ and char(F ) - n(n∗ − 1). Let F ⊂ K,

F ⊂ K be extension fields, f : K → K an F -linear map, A ∈ K×, B ∈ K
×

and

(1) f(Axn) = Bf(x)n for all x ∈ K \Ker(f).

Then either f = 0, or e = f(1) 6= 0, and e−1f : K → K is a field

monomorphism.

Proof. We set V = Ker(f) and e = f(1). If e 6= 0, then (1) implies
f(A) = Ben, and thus A /∈ V .

Case 1: n > 0. If a, b ∈ K and λ ∈ F are such that a + λb /∈ V or
a + λb = 0, then (1) implies

f (A(a + λb)n) = Bf(a + λb)n.

Expanding both sides according to powers of λ and observing that f is
F -linear, we obtain

(2)
n∑

ν=0

(
n

ν

)
λν

[
f(Aan−νbν)−Bf(a)n−νf(b)ν

]
= 0.

Suppose first that V = {0}. If a, b ∈ K, then (2) holds for all λ ∈ F

and hence identically in λ, since #F > n. In particular (for ν = 1), we
have

n[f(Aan−1b)−Bf(a)n−1f(b)] = 0,

and since char(K) - n,

(3) f(Aan−1b) = Bf(a)n−1f(b) for all a, b ∈ K.

In (3) we replace a by a + λ (where λ ∈ F ), expand according to powers
of λ and obtain

(4)
n−1∑
ν=0

(
n− 1

ν

)
λνf(Aan−1−νb) = B

n−1∑
ν=0

(
n− 1

ν

)
λνeνf(a)n−1−νf(b).
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Again, (4) holds identically in λ, and a comparison of the coefficients of
λn−2 implies (since char(F ) - n− 1)

(5) f(Aab) = Ben−2f(a)f(b) for all a, b ∈ K.

If a = A−1x, where x ∈ K, and b = 1, (5) implies f(x) = Ben−1f(A−1x).
Therefore we obtain, for all x, y ∈ K,

(e−1f)(xy) = e−1f
(
A(A−1x)y

)
= Ben−3f(A−1x)f(y)

= e−2f(x)f(y) = (e−1f)(x)(e−1f)(y),

which proves our assertion.

It remains to show that either V = {0} or V = K. We distinguish
two cases.

Case 1A: e = 0, 1 ∈ V . If x ∈ K \ V , then we have x + λ ∈ K \ V for
all λ ∈ F , and (2) holds for a = x, b = 1 and all λ ∈ F . Hence (2) holds
identically in λ, and we obtain (for ν = n− 1)

nf(Ax) = 0 and thus x ∈ A−1V.

We have proved that K \ V ⊂ A−1V , and consequently K ⊂ V ∪ A−1V .
Since V and A−1V are vector spaces over F , it follows that V = K.

Case 1B: e 6= 0, 1 /∈ V . If x ∈ V , then we have x + λ ∈ K \ V for all
λ ∈ F×, and (2) holds for a = x, b = 1 and all λ ∈ F×. Since f(x) = 0
and f(A) = Ben, we obtain

(6)
n−1∑
ν=0

(
n

ν

)
λνf

(
Axn−ν

)
= 0 for all λ ∈ F×.

Since #F× > n−1, (6) holds identically in λ. We focus on the coefficients
of λ1, λn−2 and λn−1 and observe that char(F ) - n(n − 1) in order to
obtain

(7) {Ax,Ax2, Axn−1} ⊂ V

and thus (by induction) also

(8) Amx ∈ V for all m ≥ 1.
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We assume now that there exists an element x ∈ V \ {0} and distin-
guish two cases.

Case 1Ba: x−1 ∈ V . Since x, x−1, (x + x−1) ∈ V , (7) implies Ax2,
Ax−2, A(x + x−1)2 ∈ V and hence

A =
1
2

[
A(x + x−1)2 −Ax2 −Ax−2

] ∈ V,

a contradiction.
Case 1Bb: x−1 /∈ V . By (7), we have Axn−1 ∈ V and hence x−1 +

λAxn−1 /∈ V for all λ ∈ F . We apply (2) for a = x−1 and b = Axn−1 and
obtain

(9)
n∑

ν=0

(
n

ν

)
λνf

(
A1+νxn(ν−1)

)
= 0 for all λ ∈ F.

Again, (9) holds identically in λ, and we obtain (for ν = 1) nf(A2) = 0
and hence A2 ∈ V . By (8), we deduce that Am ∈ V for all m ≥ 2,
and in particular An+1 ∈ V . Since A /∈ V , (1) implies however that
f(An+1) = f(AAn) = Bf(A) 6= 0, a contradiciton.

Case 2: n < 0. If x /∈ V , then f(Axn) = Bf(x)n 6= 0, hence Axn /∈ V
and

f
(
An+1xn2

)
= f (A(Axn)n) = Bf (Axn)n = B2f(x)n2

.

Hence it follows by Case 1 that either f = 0 or e−1f is a field monomor-
phism. ¤

Remark. The functional equation

f

(
1
x2

)
=

1
f(x2)

for all x ∈ K \ {0}

(for an injective additive function f : K → K) can also be treated by
applying f to the identity

1
(2x)2(1− x2)2

− 1
(2x)2(1 + x2)2

=
1

(1− x4)2
.

In a forthcoming paper of the first author more general such identi-
ties will be investigated to study further functional equations for additive
functions.
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transformations and field monomorphisms, Aequationes Math. 58 (1999), 176–182.

FRANZ HALTER–KOCH
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HEINRICHSTRASSE 36
8010 GRAZ
AUSTRIA

(Received January 19, 1999; revised April 26, 1999)


