Characterization of field homomorphisms by functional equations

By FRANZ HALTER-KOCH (Graz) and LUDWIG REICH (Graz)

Abstract

Let K and \bar{K} be fields with a common subfield F, and let $n \in \mathbb{Z}$, $|n| \geq 2, A \in K^{\times}, B \in \bar{K}^{\times}$. We study, under mild restrictions on the cardinality and the characteristic of F, F-linear solutions $f: K \rightarrow \bar{K}$ of the functional equation $$
f\left(A x^{n}\right)=B f(x)^{n} \quad \text { for all } x \in K \backslash \operatorname{Ker}(f),
$$ and show that either $f=0$ or $e^{-1} f$ is a field monomorphism where $e=f(1)$.

Let K be a field of characteristic different from 2 and $f: K \rightarrow \bar{K}$ be an additive function. It is well known that f is a field homomorphism if

$$
f\left(x^{2}\right)=f(x)^{2} \quad \text { for all } x \in K .
$$

The proof follows easily by calculating $f\left((x+y)^{2}\right)$ in two different ways. (For this and similar algebraic manipulations of functional equations related to additive functions see Kuczma [1, Ch. XIV].)

Only recently, we proved in [2] that $\pm f$ is already a field homomorphism, if

$$
f\left(\frac{1}{x}\right)=\frac{1}{f(x)} \quad \text { for all } x \in K \backslash \operatorname{Ker}(f) .
$$

In this note, we investigate additive functions satisfying the more general functional equation (1) below. The emphasis lies here in admitting the constants A and B, and again, as in [2], in making the weaker assumption "for all $x \in K \backslash \operatorname{Ker}(f)$ " instead of "for all $x \in K^{\times}$".

Theorem. Suppose that $n \in \mathbb{Z},|n| \geq 2$, and

$$
n^{*}= \begin{cases}n, & \text { if } n>0, \\ n^{2}, & \text { if } n<0 .\end{cases}
$$

Let F be a field such that $\# F>n^{*}$ and $\operatorname{char}(F) \nmid n\left(n^{*}-1\right)$. Let $F \subset K$, $F \subset \bar{K}$ be extension fields, $f: K \rightarrow \bar{K}$ an F-linear map, $A \in K^{\times}, B \in \bar{K}^{\times}$ and

$$
\begin{equation*}
f\left(A x^{n}\right)=B f(x)^{n} \quad \text { for all } x \in K \backslash \operatorname{Ker}(f) . \tag{1}
\end{equation*}
$$

Then either $f=0$, or $e=f(1) \neq 0$, and $e^{-1} f: K \rightarrow \bar{K}$ is a field monomorphism.

Proof. We set $V=\operatorname{Ker}(f)$ and $e=f(1)$. If $e \neq 0$, then (1) implies $f(A)=B e^{n}$, and thus $A \notin V$.

Case 1: $n>0$. If $a, b \in K$ and $\lambda \in F$ are such that $a+\lambda b \notin V$ or $a+\lambda b=0$, then (1) implies

$$
f\left(A(a+\lambda b)^{n}\right)=B f(a+\lambda b)^{n} .
$$

Expanding both sides according to powers of λ and observing that f is F-linear, we obtain

$$
\begin{equation*}
\sum_{\nu=0}^{n}\binom{n}{\nu} \lambda^{\nu}\left[f\left(A a^{n-\nu} b^{\nu}\right)-B f(a)^{n-\nu} f(b)^{\nu}\right]=0 . \tag{2}
\end{equation*}
$$

Suppose first that $V=\{0\}$. If $a, b \in K$, then (2) holds for all $\lambda \in F$ and hence identically in λ, since $\# F>n$. In particular (for $\nu=1$), we have

$$
n\left[f\left(A a^{n-1} b\right)-B f(a)^{n-1} f(b)\right]=0,
$$

and since $\operatorname{char}(K) \nmid n$,

$$
\begin{equation*}
f\left(A a^{n-1} b\right)=B f(a)^{n-1} f(b) \quad \text { for all } a, b \in K . \tag{3}
\end{equation*}
$$

In (3) we replace a by $a+\lambda$ (where $\lambda \in F$), expand according to powers of λ and obtain

$$
\begin{equation*}
\sum_{\nu=0}^{n-1}\binom{n-1}{\nu} \lambda^{\nu} f\left(A a^{n-1-\nu} b\right)=B \sum_{\nu=0}^{n-1}\binom{n-1}{\nu} \lambda^{\nu} e^{\nu} f(a)^{n-1-\nu} f(b) . \tag{4}
\end{equation*}
$$

Again, (4) holds identically in λ, and a comparison of the coefficients of λ^{n-2} implies (since char $(F) \nmid n-1$)

$$
\begin{equation*}
f(A a b)=B e^{n-2} f(a) f(b) \quad \text { for all } a, b \in K \tag{5}
\end{equation*}
$$

If $a=A^{-1} x$, where $x \in K$, and $b=1$, (5) implies $f(x)=B e^{n-1} f\left(A^{-1} x\right)$. Therefore we obtain, for all $x, y \in K$,

$$
\begin{aligned}
\left(e^{-1} f\right)(x y) & =e^{-1} f\left(A\left(A^{-1} x\right) y\right)=B e^{n-3} f\left(A^{-1} x\right) f(y) \\
& =e^{-2} f(x) f(y)=\left(e^{-1} f\right)(x)\left(e^{-1} f\right)(y),
\end{aligned}
$$

which proves our assertion.
It remains to show that either $V=\{0\}$ or $V=K$. We distinguish two cases.

Case 1A: $e=0,1 \in V$. If $x \in K \backslash V$, then we have $x+\lambda \in K \backslash V$ for all $\lambda \in F$, and (2) holds for $a=x, b=1$ and all $\lambda \in F$. Hence (2) holds identically in λ, and we obtain (for $\nu=n-1$)

$$
n f(A x)=0 \quad \text { and thus } x \in A^{-1} V .
$$

We have proved that $K \backslash V \subset A^{-1} V$, and consequently $K \subset V \cup A^{-1} V$. Since V and $A^{-1} V$ are vector spaces over F, it follows that $V=K$.

Case 1B: $e \neq 0,1 \notin V$. If $x \in V$, then we have $x+\lambda \in K \backslash V$ for all $\lambda \in F^{\times}$, and (2) holds for $a=x, b=1$ and all $\lambda \in F^{\times}$. Since $f(x)=0$ and $f(A)=B e^{n}$, we obtain

$$
\begin{equation*}
\sum_{\nu=0}^{n-1}\binom{n}{\nu} \lambda^{\nu} f\left(A x^{n-\nu}\right)=0 \quad \text { for all } \lambda \in F^{\times} . \tag{6}
\end{equation*}
$$

Since $\# F^{\times}>n-1$, (6) holds identically in λ. We focus on the coefficients of $\lambda^{1}, \lambda^{n-2}$ and λ^{n-1} and observe that $\operatorname{char}(F) \nmid n(n-1)$ in order to obtain

$$
\begin{equation*}
\left\{A x, A x^{2}, A x^{n-1}\right\} \subset V \tag{7}
\end{equation*}
$$

and thus (by induction) also

$$
\begin{equation*}
A^{m} x \in V \quad \text { for all } m \geq 1 \tag{8}
\end{equation*}
$$

We assume now that there exists an element $x \in V \backslash\{0\}$ and distinguish two cases.

Case 1Ba: $x^{-1} \in V$. Since $x, x^{-1},\left(x+x^{-1}\right) \in V$, (7) implies $A x^{2}$, $A x^{-2}, A\left(x+x^{-1}\right)^{2} \in V$ and hence

$$
A=\frac{1}{2}\left[A\left(x+x^{-1}\right)^{2}-A x^{2}-A x^{-2}\right] \in V,
$$

a contradiction.
Case $1 B b: x^{-1} \notin V$. By (7), we have $A x^{n-1} \in V$ and hence $x^{-1}+$ $\lambda A x^{n-1} \notin V$ for all $\lambda \in F$. We apply (2) for $a=x^{-1}$ and $b=A x^{n-1}$ and obtain

$$
\begin{equation*}
\sum_{\nu=0}^{n}\binom{n}{\nu} \lambda^{\nu} f\left(A^{1+\nu} x^{n(\nu-1)}\right)=0 \quad \text { for all } \lambda \in F \tag{9}
\end{equation*}
$$

Again, (9) holds identically in λ, and we obtain (for $\nu=1$) $n f\left(A^{2}\right)=0$ and hence $A^{2} \in V$. By (8), we deduce that $A^{m} \in V$ for all $m \geq 2$, and in particular $A^{n+1} \in V$. Since $A \notin V$, (1) implies however that $f\left(A^{n+1}\right)=f\left(A A^{n}\right)=B f(A) \neq 0$, a contradiciton.

Case 2: $n<0$. If $x \notin V$, then $f\left(A x^{n}\right)=B f(x)^{n} \neq 0$, hence $A x^{n} \notin V$ and

$$
f\left(A^{n+1} x^{n^{2}}\right)=f\left(A\left(A x^{n}\right)^{n}\right)=B f\left(A x^{n}\right)^{n}=B^{2} f(x)^{n^{2}} .
$$

Hence it follows by Case 1 that either $f=0$ or $e^{-1} f$ is a field monomorphism.

Remark. The functional equation

$$
f\left(\frac{1}{x^{2}}\right)=\frac{1}{f\left(x^{2}\right)} \quad \text { for all } x \in K \backslash\{0\}
$$

(for an injective additive function $f: K \rightarrow \bar{K}$) can also be treated by applying f to the identity

$$
\frac{1}{(2 x)^{2}\left(1-x^{2}\right)^{2}}-\frac{1}{(2 x)^{2}\left(1+x^{2}\right)^{2}}=\frac{1}{\left(1-x^{4}\right)^{2}} .
$$

In a forthcoming paper of the first author more general such identities will be investigated to study further functional equations for additive functions.

References

[1] M. Kuczma, Introduction to the theory of functional equations and inequalities, Panstwowe Wydawnictwo Naukowe, Uniwersytet Slaski, Warszawa-Krakow-Katowice, 1985.
[2] F. Halter-Koch and L. Reich, On additive functions commuting with Möbius transformations and field monomorphisms, Aequationes Math. 58 (1999), 176-182.

```
FRANZ HALTER-KOCH
INSTITUT FÜR MATHEMATIK
KARL-FRANZENS-UNIVERSITÄT GRAZ
HEINRICHSTRASSE }3
8010 GRAZ
AUSTRIA
E-mail: franz.halterkoch.kfunigraz.ac.at
LUDWIG REICH
INSTITUT FÜR MATHEMATIK
KARL-FRANZENS-UNIVERSITÄT GRAZ
HEINRICHSTRASSE }3
8010 GRAZ
AUSTRIA
```

(Received January 19, 1999; revised April 26, 1999)

