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System of multi-valued variational inequalities

By G. KASSAY (Cluj) and J. KOLUMBÁN (Cluj)

Abstract. In this paper we give an existence result for a system of two varia-
tional inequalities defined by two multi-valued mappings. We show that by our result,
Brouwer’s fixed point theorem can be easily deduced.

1. Introduction

Variational inequalities with a mapping defined on a subset of a certain
Banach space have been extensively studied in the literature (see e.g. [4],
[9], and the references therein). Usually, in these results, the monotonicity
or a generalized monotonicity property of the mapping involved plays a
crucial role.

Let X and Y be two reflexive real Banach spaces and A ⊆ X, B ⊆ Y
be nonempty closed convex sets. Denote by X∗ and Y ∗ the dual spaces of
X and Y , respectively. Consider two multi-valued mappings, F : A×B →
2X∗

and G : A×B → 2Y ∗ . The aim of this paper is to establish an existence
result for the following problem (system of two variational inequalities):

Problem 1. Find (a, b) ∈ A×B such that

sup
w∈F (a,b)

〈w, x− a〉 ≥ 0, ∀x ∈ A(1)

and

sup
z∈G(a,b)

〈z, y − b〉 ≥ 0, ∀y ∈ B.(2)
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The idea of considering a system of type (1)–(2) originates in the
following problem known as existence of a Nash equilibrium point. Let
K1, . . . , Kn (n ≥ 2) be nonempty sets, and fi : K1 × · · · × Kn → R
(i = 1, . . . , n) be given functions. A point (x1, . . . , xn) ∈ K1 × · · · ×Kn is
called a Nash equilibrium point if

fi(x1, . . . , xi, . . . , xn) ≤ fi(x1, . . . , yi, . . . , xn), ∀yi ∈ Ki

holds for i = 1, . . . , n. An important existence theorem is due to Nash [6].
This notion has been turned out to be very useful in game theoretical and
economical applications. The result of Nash offers a sufficient condition for
the existence of an equilibrium point, however, equilibrium points may ex-
ist even if the conditions imposed by Nash (continuity and quasiconvexity
in the i-th variable) are not satisfied. This fact motivated the authors in [3]
to introduce the notion of Nash stationary point, i.e. such a point in which
a certain kind of derivative is nonnegative. In the paper mentioned, the
autors established results where the Nash stationary points are obtained
as solutions of a system of inequalities defined by those kind of derivatives.
That system (in case n = 2) is a particular case of our Problem 1 above,
where the mappings F and G are of subdifferential type.

In this paper, the multi-valued mappings F and G are in general
not subdifferentials of certain functions, permitting thus to extend the
applicability of Problem 1. The main result (Theorem 2.1) gives a sufficient
condition for the existence of a solution of Problem 1. As an application,
we establish a solvability result for a certain type of variational inequalities
(Theorem 2.2), from which Brouwer’s fixed point theorem can easily be
deduced (Corollary 2.1).

We first recall some definitions. Let K be a nonempty subset of a
Banach space B and T : K → 2B∗ . The operator T is called monotone, if
for every x, y ∈ K and every u ∈ T (x), v ∈ T (y) we have that

〈u− v, x− y〉 ≥ 0.

Note that the (single-valued) operator T : K → X∗ is called pseu-
domonotone if for every net (xα) converging weakly to the element x

(xα, x ∈ K) such that

lim sup
α

〈T (xα), xα − x〉 ≤ 0,
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we also have

〈T (x), x− z〉 ≤ lim inf
α

〈T (xα), xα − z〉, ∀z ∈ K.

If B and B′ are two Banach spaces, then the mapping T : B → 2B′

is said to be upper semicontinuous (on B) if for every x0 ∈ B and any
open set V containing T (x0), there exists a neighbourhood U of x0 in B
such that T (x) ⊆ V for all x ∈ U . The mapping T is said to be lower
semicontinuous (on B) if for every x0 ∈ B, any y0 ∈ T (x0) and any
neighbourhood V of y0, there exists a neighbourhood U of x0 such that
T (x) ∩ V 6= ∅ for every x ∈ U .

The following famous lemma of Ky Fan [2] plays a crucial role in the
proof of our result.

Lemma 1.1. Let Z be a nonempty subset of a Hausdorff topological
vector space E. For each z ∈ Z, let F (z) be a closed subset of E such that
the convex hull of every finite subset {z1, . . . , zn} of Z is contained in the
corresponding union

⋃n
i=1 F (zi). If there exists a point z0 ∈ Z such that

F (z0) is compact, then
⋂

z∈Z F (z) 6= ∅.
We also need the following lemma of Shih and Tan [7].

Lemma 1.2. Let K be a nonempty convex subset of a Banach space
B, let T : K → 2B∗ be such that each T (x) is a weak∗ compact subset
of B∗, and let T be upper semicontinuous from the line segments of K in
the weak∗ topology of B∗. Then for y ∈ K the inequality

inf
u∈T (x)

〈u, x− y〉 ≥ 0, ∀x ∈ K

implies

sup
w∈T (y)

〈w, x− y〉 ≥ 0, ∀x ∈ K.

In order to establish an existence result for Problem 1, let us introduce
an auxiliary problem.

Problem 2. Find (a, b) ∈ A×B such that

inf
u∈F (x,b)

〈u, x− a〉 ≥ 0, ∀x ∈ A(3)

and

inf
v∈G(a,y)

〈v, y − b〉 ≥ 0, ∀y ∈ B.(4)
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Then we have the following

Proposition 1.1. Suppose that for every x ∈ A and y ∈ B the map-

pings F ( . , y) : A → 2X∗
and G(x, . ) : B → 2Y ∗ are monotone and upper

semicontinuous from the line segments of A (resp. B) in the weak topology

of X∗ (resp. Y ∗).
Then Problems 1 and 2 are equivalent, namely they have the same

set of solutions.

Proof. Suppose first that the pair (a, b) ∈ A × B is a solution of
Problem 1. Fix x ∈ A. Observe, by reflexivity, that the weak and the
weak∗ topologies of X∗ (and Y ∗) coincide. Since F (a, b) is weakly compact,
there exists ū ∈ F (a, b) such that

〈ū, x− a〉 = sup
w∈F (a,b)

〈w, x− a〉 ≥ 0.

By the monotonicity of F ( . , b) we also have

〈u, x− a〉 ≥ 0, ∀u ∈ F (x, b),

and so (3) holds. A similar argument shows that (4) also holds, by using
the monotonicity of G(a, . ).

The reverse implication, i.e. that each solution of Problem 2 is also
a solution of Problem 1 follows by Lemma 1.2, applying it first to the
mapping F ( . , b) and then to the mapping G(a, . ). ¤

2. Existence results

Recall that X and Y are (as in Section 1) two reflexive Banach spaces,
A ⊆ X, B ⊆ Y are nonempty closed convex sets, and F : A × B → 2X∗

,
G : A×B → 2Y ∗ two multi-valued mappings.

To establish the main result of this paper we need the following weak
continuity concept.

Condition (C). Let x ∈ A and y ∈ B be fixed. We say that the
mapping pair F (x, . ) : B → 2X∗

and G( . , y) : A → 2Y ∗ satisfies condition
(C) if for any nets (aα) and (bα) converging weakly to the elements a and
b, respectively, where aα, a ∈ A and bα, b ∈ B, and for each uα ∈ F (x, bα)
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and vα ∈ G(aα, y) such that uα converges weakly to u ∈ F (x, b) and vα

converges weakly to v ∈ G(a, y), we have

〈u, a〉+ 〈v, b〉 ≤ lim sup
α

[〈uα, aα〉+ 〈vα, bα〉].

If X and Y are finite dimensional, then condition (C) is clearly sat-
isfied. Below we specify two situations, each of which them guarantees
condition (C).

1. Let F : A × B → X∗, G : A × B → Y ∗ be given (single-valued
mappings) and for each x ∈ A and y ∈ B consider the mapping Hx,y :
A×B → X∗ × Y ∗ given by

Hx,y(a, b) := (F (x, b), G(a, y)).

If here Hx,y is pseudomonotone, then condition (C) is satisfied. In-
deed, let aα and bα be two nets converging weakly to the elements a and
b, where aα, a ∈ A and bα, b ∈ B are such that the corresponding nets
F (x, bα) and G(aα, y) converge weakly to the elements F (x, b) and G(a, y),
respectively. We distinguish two cases. First, if

(5) lim sup
α

[〈F (x, bα), aα − a〉+ 〈G(aα, y), bα − b〉] ≤ 0,

then by pseudomonotonicity (see Section 1) one obtains that

〈F (x, b), a〉+ 〈G(a, y), b〉 ≤ lim inf
α

[〈F (x, bα), aα〉+ 〈G(aα, y), bα〉].

Secondly, if the relation (5) does not hold, then we have that

0 < lim sup
α

[〈F (x, bα), aα − a〉+ 〈G(aα, y), bα − b〉]

= lim sup
α

[〈F (x, bα), aα〉+ 〈G(aα, y), bα〉]− 〈F (x, b), a〉 − 〈G(a, y), b〉.

Clearly, in both cases, the relation required in condition (C) follows.

2. Suppose that for each x ∈ A and y ∈ B the (single-valued) map-
pings F (x, . ) : B → X∗ and G( . , y) : A → Y ∗ are completely continu-
ous, i.e. continuous from the weak topology to the strong topology. Then
condition (C) is satisfied. To show this, consider the nets (aα) and (bα)
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converging weakly to the elements a and b respectively, where aα, a ∈ A

and bα, b ∈ B. By the hypothesis, F (x, bα) converges strongly to F (x, b),
while G(aα, y) converges strongly to G(a, y). Then

〈F (x, b), a〉+ 〈G(a, y), b〉 = lim
α

[〈F (x, bα), aα〉+ 〈G(aα, y), bα〉],

which shows that condition (C) is satisfied.

Now we can state the main result of this paper.

Theorem 2.1. Suppose that the following conditions are satisfied:

(i) for every x ∈ A and y ∈ B the mappings F ( . , y) : A → 2X∗
and

G(x, . ) : B → 2Y ∗ are monotone and upper semicontinuous from the line

segments of A (resp. B) in the weak topology of X∗ (resp. Y ∗);

(ii) for each x ∈ A and y ∈ B the mappings F (x, . ) : B → 2X∗
and

G( . , y) : A → 2Y ∗ are weakly lower semicontinuous and satisfy condi-

tion (C);

(iii) for each x ∈ A and y ∈ B the sets F (x, y) and G(x, y) are weakly

compact subsets of X∗, respectively Y ∗;

(iv) there exist bounded sets C ⊆ A and D ⊆ B, and x0 ∈ C, y0 ∈ D

such that

(6)
sup

u∈F (x,y)

〈u, x0 − x〉+ sup
v∈G(x,y)

〈v, y0 − y〉 < 0,

∀(x, y) ∈ (A×B) \ (C ×D).

Then Problem 1 admits a solution.

If in addition F (a, b) and G(a, b) are convex sets, then there exist

ū ∈ F (a, b) and v̄ ∈ G(a, b) such that

〈ū, x− a〉 ≥ 0, ∀x ∈ A(7)

and

〈v̄, y − b〉 ≥ 0, ∀y ∈ B.(8)

Proof. Introduce, for each (x, y) ∈ A×B, the sets

S(x, y) := {(a, b) ∈ A×B : sup
w∈F (a,b)

〈w, x− a〉+ sup
z∈G(a,b)

〈z, y − b〉 ≥ 0}



System of multi-valued variational inequalities 191

and

T (x, y) := {(a, b) ∈ A×B : inf
u∈F (x,b)

〈u, x− a〉+ inf
v∈G(a,y)

〈v, y − b〉 ≥ 0}.

By monotonicity of F ( . , b) and G(a, . ) it is easy to see that S(x, y) ⊆
T (x, y) for each (x, y) ∈ A × B. Furthermore, since the solution sets
of Problem 1 and Problem 2 coincide with the sets

⋂
(x,y)∈A×B S(x, y)

and
⋂

(x,y)∈A×B T (x, y), respectively, we have by Proposition 1.1 that⋂
(x,y)∈A×B S(x, y) =

⋂
(x,y)∈A×B T (x, y).

Now, for each finite set of pairs (x1, y1), . . . , (xn, yn) ∈ A × B, the
inclusion

(9) co{(x1, y1), . . . , (xn, yn)} ⊆
n⋃

i=1

S(xi, yi)

holds, where co stands for the convex hull operator. To prove this, let ∆n

be the set {λ = (λ1, . . . , λn) ∈ Rn : λi ≥ 0, i = 1, . . . , n,
∑n

i=1 λi = 1} and
suppose by contradiction that there exists λ = (λ1, . . . , λn) ∈ ∆n such that
the element (xλ, yλ) :=

∑n
k=1 λk(xk, yk) /∈ S(xi, yi) for any i ∈ {1, . . . , n}.

Then

sup
w∈F (xλ,yλ)

〈w, xi − xλ〉+ sup
z∈G(xλ,yλ)

〈z, yi − yλ〉 < 0, ∀i ∈ {1, . . . , n}.

If we take some fixed elements w ∈ F (xλ, yλ) and z ∈ G(xλ, yλ), the
latter relations imply

〈w, xi − xλ〉+ 〈z, yi − yλ〉 < 0, ∀i ∈ {1, . . . , n}.

By multiplying each of these relations with λi, i ∈ {1, . . . , n} and then
taking their sum we obtain the contradiction 0 < 0, which shows that (9)
holds true.

We now show that the set S(x0, y0) is bounded, where x0 and y0 are
the elements specified in (iv). Indeed, as it can be seen, S(x0, y0) ⊆ C×D.
If not, i.e. there exists a pair (a, b) ∈ S(x0, y0) such that (a, b) /∈ C ×D,
then we have supu∈F (a,b)〈u, x0 − a〉 + supv∈G(a,b)〈v, y0 − b〉 ≥ 0, which
contradicts (6).
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Now, since X and Y were supposed to be reflexive, the weak clo-
sure clw S(x0, y0) of the bounded set S(x0, y0) is weakly compact. By
Lemma 1.1 of Ky Fan applied to the sets clw S(x, y) one obtains

(10)
⋂

(x,y)∈A×B

clw S(x, y) 6= ∅.

Next we show that the set T (x, y) is weakly closed for each (x, y) ∈
A×B. Indeed, for fixed x and y, let us consider a net (aα, bα) ∈ T (x, y),
α ∈ I, which converges weakly to an element (a, b) ∈ A×B and show that
this element belongs to T (x, y).

Let ū ∈ F (x, b) and v̄ ∈ G(a, y) be such that infu∈F (x,b)〈u, x − a〉 =
〈ū, x−a〉 and infv∈G(a,y)〈v, y−b〉 = 〈v̄, y−b〉. (Observe that this is possible
since the sets F (x, b) and G(a, y) are supposed to be weakly compact.)

By the weak lower semicontinuity, we can specify nets uα ∈ F (x, bα)
and vα ∈ G(aα, y) such that uα converges weakly to ū and vα converges
weakly to v̄.

Since (aα, bα) ∈ T (x, y) for every α ∈ I, we have infu∈F (x,bα)〈u, x −
aα〉+infv∈G(aα,y)〈v, y−bα〉 ≥ 0 and therefore 〈uα, x−aα〉+〈vα, y−bα〉 ≥ 0
for each α ∈ I. This (passing to the limsup) yields

lim sup
α

[〈uα, aα〉+ 〈vα, bα〉] ≤ 〈ū, x〉+ 〈v̄, y〉.

Using condition (C) one obtains

〈ū, a〉+ 〈v̄, b〉 ≤ 〈ū, x〉+ 〈v̄, y〉,

or
〈ū, x− a〉+ 〈v̄, y − b〉 ≥ 0,

which shows that (a, b) ∈ T (x, y), i.e. the set T (x, y) is weakly closed.
Consequently, clw S(x, y) ⊆ T (x, y) for each (x, y) ∈ A × B, and by

(10) it follows that
⋂

(x,y)∈A×B T (x, y) 6= ∅, and since the last set equals⋂
(x,y)∈A×B S(x, y) this leads to

⋂

(x,y)∈A×B

S(x, y) 6= ∅,

which shows that Problem 1 admits a solution.
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Suppose now that the sets F (a, b) and G(a, b) are convex. Observe
that inequality (1) can also be written as infx∈A supw∈F (a,b)〈w, x−a〉 ≥ 0.
By the well-known minimax theorem of Kneser [5], it follows that

(11) sup
w∈F (a,b)

inf
x∈A

〈w, x− a〉 = inf
x∈A

sup
w∈F (a,b)

〈w, x− a〉 ≥ 0,

(see also Yao [8]). Note that the real-valued function

w 7−→ inf
x∈A

〈w, x− a〉

is concave and upper semicontinuous, therefore it is also weakly upper
semicontinuous. Since the set F (a, b) is weakly compact, it follows from
(11) that there exists ū ∈ F (a, b) such that

〈ū, x− a〉 ≥ 0, ∀x ∈ A,

i.e. relation (7) holds. The existence of an element v̄ ∈ G(a, b) satisfying
relation (8) can be proved similarly, therefore we omit it. This completes
the proof. ¤

Observe that our proof of the above theorem is based on Ky Fan’s
lemma (Lemma 1.1). As it is well-known, the latter is equivalent to
Brouwer’s fixed point theorem (see for instance Zeidler [9]). In the fol-
lowing we show that Brouwer’s fixed point theorem can easily be deduced
from our Theorem 2.1. To this end, we first establish an existence result
for a special type of variational inequality.

Theorem 2.2. Let X and Y be reflexive (real) Banach spaces, and

A ⊆ X, B ⊆ Y be bounded closed convex sets. Suppose T : A → B is a

compact operator and F : A×B → 2X∗
satisfies the following conditions:

(i’) for each y ∈ B, the mapping F ( . , y) : A → 2X∗
is monotone and

upper semicontinuous on line segments in A to the weak topology of X∗;

(ii’) for each x ∈ A, the mapping F (x, . ) : B → 2X∗
is weakly lower

semicontinuous and satisfies the following property: if (bα) is a net con-

verging strongly to the element b (bα, b ∈ B) and (uα), uα ∈ F (x, bα), is

a net converging weakly to the element u ∈ F (x, b), then there exists a

subnet (uαj ) converging strongly to u;

(iii’) for each (x, y) ∈ A × B, the set F (x, y) is a weakly compact

convex subset of X∗.
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Then there exist a ∈ A and ū ∈ F (a, T (a)) such that

(12) 〈ū, x− a〉 ≥ 0, ∀x ∈ A.

Proof. By hypothesis, the set B1 := cl(coT (A)) is a compact and
convex subset of B, where cl denotes the closure, while co denotes the
convex hull operation. Let F1 be the restriction of the mapping F to
the set A × B1 and let J : Y → 2Y ∗ be the duality mapping of the
space Y . By Asplund’s theorem ([1]) we can suppose that Y ∗ is strictly
convex. Recall that in this case, J is single-valued and demicontinuous,
i.e. continuous from the strong topology of Y to the weak topology of Y ∗.
Furthermore, since J is the subdifferential of the continuous and convex
function f : Y → R given by

f(y) :=
1
2
‖y‖2,

it is also monotone. Define now the mapping G1 : A × B1 → Y ∗ by
G1(x, y) := J(y − T (x)). The pair (F1, G1) satisfies conditions (i), (iii)
and (iv) of Theorem 2.1. We show that (ii) is also satisfied. Indeed, let
(aα) and (bα) be two nets converging weakly to the elements a and b, where
aα, a ∈ A and bα, b ∈ B, while uα ∈ F1(x, bα) and vα = G1(aα, y) are
converging weakly to u ∈ F (x, b) and v = G1(a, y) respectively. Since B1

is compact, one can choose a strongly convergent subnet of (bα) (denoted
also by (bα)). By (ii’) there exists a strongly convergent subnet (denoted
in the same way) of (uα), converging to u. Therefore we have

〈u, a〉+ 〈v, b〉 = lim
α

[〈uα, aα〉+ 〈vα, bα〉],

hence (ii) is satisfied.
By Theorem 2.1 there exist (a, b) ∈ A×B1 and ū ∈ F (a, b) such that

〈ū, x− a〉 ≥ 0, ∀x ∈ A(13)

and

〈J(b− T (a)), y − b〉 ≥ 0, ∀y ∈ B1.

Replacing y by T (a) the latter implies that b = T (a). Now by (13) we
obtain (12). This completes the proof. ¤

By the previous result we easily deduce Brouwer’s fixed point theorem:
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Corollary 2.1. Let K be a convex compact subset of Rn, and let
f : K → K be continuous. Then f admits a fixed point.

Proof. Take F : K ×K → Rn given by F (x, y) := x− f(y). Then,
by Theorem 2.2 for T the identity operator, one obtains the existence of
an element a ∈ K such that

〈F (a, a), x− a〉 = 〈a− f(a), x− a〉 ≥ 0, ∀x ∈ K.

If we put x := f(a) ∈ K, the latter reduces to a = f(a). ¤
Observe that Corollary 2.1 can also be deduced directly from Theo-

rem 2.1.
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FACULTY OF MATHEMATICS
BABES–BOLYAI UNIVERSITY
STR. M. KOGALNICEANU 1
R–3400 CLUJ
ROMANIA

E-mail: kolumban@math.ubbcluj.ro

(Received February 4, 1999)


