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On the stability of monomial functional equations

By ATTILA GILÁNYI (Debrecen)

Abstract. In the present paper a certain form of the Hyers–Ulam stability of
monomial functional equations is studied. This kind of stability was investigated in the
case of additive functions by Th. M. Rassias and Z. Gajda.

1. Introduction

The first solution for S. Ulam’s stability problem concerning the func-
tional equation f(x+y) = f(x)+f(y) was given by D. H. Hyers [6] in the
following form: if X and Y are real normed spaces, Y is complete and for a
function f : X → Y the expression f(x+ y)− f(x)− f(y) is bounded by a
non-negative real number ε then there exists a unique function a : X → Y
satisfying a(x + y) − a(x) − a(y) = 0, such that the difference f − a is
bounded by ε. (Cf. also [8].) Th. M. Rassias [9] investigated Ulam’s
problem in a more general form and proved the following: if, for a func-
tion f : X → Y , there exist a real number ε ≥ 0 and an α < 1 such
that

‖f(x + y)− f(x)− f(y)‖ ≤ ε (‖x‖α + ‖y‖α) (x, y ∈ X),

then there exists a unique additive mapping a : X → Y for which

‖f(x)− a(x)‖ ≤ δ‖x‖α (x ∈ X),
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where δ = 2/(2 − 2α). Concerning the remaining cases, Z. Gajda [2]
showed that the statement above holds for α > 1 with δ = 2/(2α − 2),
but it is not valid for α = 1 (see [10], [11], too). The stability of the so
called square-norm functional equation in a similar sense was studied by
St. Czerwik [1].

In the present work we consider the above stability problem for mono-
mial functional equations. Throughout the paper ∆ denotes the difference
operator, which is defined, for a function f mapping from a linear space
X into Y and for a positive integer n, by

∆1
yf(x) = f(x + y)− f(x) (x, y ∈ X)

and

∆n+1
y f(x) = ∆1

y∆n
yf(x) (x, y ∈ X).

We call f a monomial function of degree n if

∆n
yf(x)− n!f(y) = 0 (x, y ∈ X).

Using this termimology we prove that if n is a positive integer, α 6= n

is a real number, the normed space Y is complete and, for a function
f : X → Y , there exists a non-negative real number ε such that

‖∆n
yf(x)− n!f(y)‖ ≤ ε (‖x‖α + ‖y‖α) (x, y ∈ X),

then there exists a real constant c and a unique monomial function g :
X → Y of degree n for which

‖f(x)− g(x)‖ ≤ cε‖x‖α (x ∈ X).

Additionally, we show that a weak regularity condition for f implies that
g is homogeneous of degree n, i.e. g(tx) = tng(x) for all t ∈ R and x ∈ X.
Moreover, by giving some counterexamples, we verify that the statement
above does not hold in the case when α = n. Obviously, our results for
n = 1 yield Th. M Rassias’ and Z. Gajda’s stability theorems, in the
case when n = 2 they imply the stability of the square-norm equation in
the sense investigated in this paper (cf. [1]), furthermore, for α = 0 they
give the known Hyers–Ulam stability of monomial functional equations
([12], [5]; cf. also [7]).
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2. Results and proofs

Lemma 1. For n, λ ∈ N, λ ≥ 2 write

A =




α
(0)
0 . . . α

(λn)
0

...
. . .

...

α
(0)
(λ−1)n . . . α

(λn)
(λ−1)n


 ,

where for i = 0, . . . , (λ− 1)n and j = −i, . . . , λn− i

α
(i+j)
i =

{
(−1)n−j

(
n
j

)
, if 0 ≤ j ≤ n,

0, otherwise.

Let ai denote the ith row in A, (i = 0, . . . , (λ − 1)n). Furthermore, let
b = (β(0) . . . β(λn)), where

β(j) =

{
(−1)n− j

λ

(
n
j
λ

)
, if λ | j,

0, if λ - j,

for j = 0, . . . , λn. Then there exist positive integers K0, . . . , K(λ−1)n such
that

K0a0 + . . . + K(λ−1)na(λ−1)n = b

and

K0 + . . . + K(λ−1)n = λn.

Proof. Cf. [3] and [4]. ¤
Lemma 2. Let X and Y be linear normed spaces, f : X → Y be a

function, n be a positive integer, and α be a real number. If there exists
a non-negative real number ε such that

(1) ‖∆n
yf(x)− n!f(y)‖ ≤ ε (‖x‖α + ‖y‖α) (x, y ∈ X),

then, for any positive integer l, there exists a real number cl = c(l, n, α)
for which

(2) ‖f(lx)− lnf(x)‖ ≤ clε‖x‖α (x ∈ X).

(Here 0α = 0 for α 6= 0 and 00 = 1.)
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Proof. Let α 6= 0 and n, l ∈ N be given and let f : X → Y satisfy
(1). Our statement is trivial for l = 1, so we suppose that l ≥ 2. We
define, for i = 0, . . . , (l − 1)n, the functions Fi : X → Y by

Fi(z) = ∆n
z f(iz)− n!f(z) (z ∈ X)

and the function G : X → Y by

G(z) = ∆n
lzf(0)− n!f(lz) (z ∈ X).

If we replace (x, y) by (0, z), (z, z), . . . , ((l − 1)nz, z) in (1) we get

(3) ‖Fi(z)‖ ≤ (iα + 1)ε‖z‖α (i = 0, . . . , (l − 1)n, z ∈ X).

Writing x = 0 and y = lz in (1) yields

(4) ‖G(z)‖ ≤ lαε‖z‖α (z ∈ X).

With the notation of Lemma 1 for λ = l we have

Fi(z) =
ln∑

j=0

α
(j)
i f(jz)− n!f(z) (i = 0, . . . , (l − 1)n, z ∈ X)

and

G(z) =
ln∑

j=0

β(j)f(jz)− n!f(lz) (z ∈ X).

By Lemma 1 there exist positive integers K0, . . . , K(l−1)n such that

K0 + · · ·+ K(l−1)n = ln

and

G(z) = K0F0(z) + · · ·+ K(l−1)nF(l−1)n(z) + lnn!f(z)− n!f(lz) (z ∈ X).

Therefore, using (3) and (4) we get

(5) ‖lnf(z)− f(lz)‖ ≤ lα +
∑(l−1)n

i=0 Ki(iα + 1)
n!

ε‖z‖α (z ∈ X)

which implies our statement in the case when α 6= 0.
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If α = 0 we get the following in a similar way

(6) ‖lnf(z)− f(lz)‖ ≤ 2(ln + 1)
n!

ε‖z‖α (z ∈ X). ¤

Theorem 1. Let X be a linear normed space, Y be a Banach space,
n be a positive integer and α 6= n be a real number. If, for a function
f : X → Y , there exists a non-negative real number ε with the property

(7) ‖∆n
yf(x)− n!f(y)‖ ≤ ε (‖x‖α + ‖y‖α) (x, y ∈ X),

then there exists a real number c = c(n, α) and a monomial function
g : X → Y of degree n such that

(8) ‖f(x)− g(x)‖ ≤ cε‖x‖α (x ∈ X).

Moreover, there is only one monomial function of degree n, for which there
exists a c ∈ R with this property. If, for each fixed x ∈ X, there exists
a measurable, bounded set Mx ⊆ R with positive Lebesgue measure such
that the function h : R → Y , h(t) = f(tx) is bounded over Mx, then the
mapping g is homogeneous of degree n.

Proof. I. At first we prove the existence part of the theorem in the
case when α < n. Let n ∈ N, α ∈ R, α < n be given and let f satisfy (7).
By Lemma 2, for a fixed integer l ≥ 2, there exists a cl ∈ R such that

∥∥∥∥
1
ln

f(lx)− f(x)
∥∥∥∥ ≤

1
ln

clε‖x‖α (x ∈ X).

It can be verified by induction on m and using the triangle inequality that

(9)
∥∥∥∥

f(lmx)
lmn

− f(x)
∥∥∥∥ ≤ clεl

−n




m−1∑

j=0

lj(α−n)


 ‖x‖α (x ∈ X, m ∈ N).

Let us consider the functions gm : X → Y

gm(x) =
f(lmx)

lmn
(x ∈ X, m ∈ N).

Because of α < n we have
∞∑

j=0

lj(α−n) =
ln

ln − lα
,
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thus,

‖gk(x)− gm(x)‖ ≤ lm(α−n)clε
1

ln − lα
‖x‖α (x ∈ X),

for k,m ∈ N, k > m. Therefore, (gk(x)) is a Cauchy sequence for each
fixed x ∈ X. Since Y is complete, the definition g : X → Y

g(x) = lim
m→∞

gm(x) (x ∈ X)

is correct. Assumption (7) gives

‖∆n
lmyf(lmx)− n!f(lmy)‖ ≤ lαmε (‖x‖α + ‖y‖α) (x, y ∈ X, m ∈ N).

Dividing this inequality by lmn and taking m →∞ we obtain

∆n
yg(x)− n!g(y) = 0 (x, y ∈ X),

thus, g is a monomial function of degree n. From (9) we get

∥∥∥∥
f(lmx)

lmn
− f(x)

∥∥∥∥ ≤ clε
1

ln − lα
‖x‖α (x ∈ X, m ∈ N),

therefore,

‖g(x)− f(x)‖ ≤ clε
1

ln − lα
‖x‖α (x ∈ X),(10)

that is, (8) holds.

II. Let now n ∈ N, α > n and we choose an arbitrary integer l ≥ 2.
By Lemma 2, for a function f : X → Y satisfying (7), we have

∥∥∥f(x)− lnf
(x

l

)∥∥∥ ≤ 1
lα

clε‖x‖α (x ∈ X).

It can be shown by induction on m that

(11)
∥∥∥lmnf

( x

lm

)
−f(x)

∥∥∥≤ l−nclε

(
m∑

j=1

lj(n−α)

)
‖x‖α (x∈X, m∈N).

Since α > n we have ∞∑

j=1

lj(n−α) =
ln

lα − ln
,
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therefore, for the functions gm : X → Y

gm(x) = lmnf
( x

lm

)
(x ∈ X, m ∈ N),

we get

‖gk(x)− gm(x)‖ ≤ lm(n−α)clε
1

lα − ln
‖x‖α (x ∈ X),

for all k, m ∈ N, k > m. Thus, (gm(x)) is a Cauchy-sequence for each
x ∈ X, so we define the function g : X → Y by

g(x) = lim
m→∞

gm(x) (x ∈ X).

By (7)
∥∥∥∆n

y
lm

f
( x

lm

)
− n!f

( y

lm

)∥∥∥ ≤ 1
lαm

ε (‖x‖α + ‖y‖α) (x, y ∈ X, m ∈ N).

Multiplying this relation by lmn and with m → ∞ we get that g is a
monomial function of degree n. Property (11) yields

∥∥∥lmnf
( x

lm

)
− f(x)

∥∥∥ ≤ clε
1

lα − ln
‖x‖α (x ∈ X, m ∈ N),

thus,

‖g(x)− f(x)‖ ≤ clε
1

lα − ln
‖x‖α (x ∈ X),(12)

that is, (8) holds in this case, too.

III. To prove uniqueness we suppose that g, ḡ : X → Y are different
monomial functions of degree n such that

‖f(x)− g(x)‖ ≤ cε‖x‖α (x ∈ X)

and

‖f(x)− ḡ(x)‖ ≤ c̄ε‖x‖α (x ∈ X)

where c, c̄ ∈ R are fixed. Using the triangle inequality we get

(13) ‖g(x)− ḡ(x)‖ ≤ (c + c̄)ε‖x‖α (x ∈ X).
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The functions g and ḡ are different, so there exists a y ∈ X for which
g(y) 6= ḡ(y). Furthermore, there exists a positive rational number r such
that

rn−α >
(c + c̄)ε‖y‖α

‖g(y)− ḡ(y)‖ .

Since g and ḡ are monomial functions of degree n, this inequality implies

‖g(ry)− ḡ(ry)‖ > (c + c̄)ε‖ry‖α

which is a contradiction to (13).
IV. Finally we prove the last statement of the theorem. Let x ∈ X

be fixed and let Mx ⊆ R denote the bounded set with positive Lebesgue
measure over which the mapping h : R→ Y , h(t) = f(tx) is bounded. Let
us consider a ϕ ∈ Y ∗ (where Y ∗ is the dual space of Y ) and we define a
function ψ : R→ R by ψ(t) = ϕ(g(tx)). Since ϕ is linear, ψ is a monomial
function of degree n, i.e.

∆n
s ψ(t)− n!ψ(s) = 0 (t, s ∈ R).

Moreover,

(14) |ψ(t)| ≤ ‖ϕ‖ (‖g(tx)− f(tx)‖+ ‖f(tx)‖) (t ∈ Mx).

By (8) we have

‖g(tx)− f(tx)‖ ≤ cεKα‖x‖α (t ∈ Mx)

where K denotes a bound for Mx. Furthermore, the function h is bounded
over Mx, so inequality (14) gives that ψ is bounded over Mx. Thus, ψ
is a real monomial function of degree n bounded over a set with posi-
tive Lebesgue measure, therefore it has the form ψ(t) = ψ(1)tn (t ∈ R)
(cf. [13]), which implies that g is homogeneous of degree n. ¤

Theorem 2. Let n be a positive integer, ε be a positive real number
and let

ε∗ =
ε

2n(2n + n!)nn
.

We consider the mapping ϕ : R→ R

ϕ(x) =





nnε∗, if x ≥ n,

ε∗xn, if − n < x < n,

(−1)nnnε∗, if x ≤ −n,
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and, for a fixed integer l ≥ 2, we define a function f : R→ R by

(15) f(x) =
∞∑

m=0

ϕ(lmx)
lmn

(x ∈ R).

For this function we have

(16) |∆n
yf(x)− n!f(y)| ≤ ε (|x|n + |y|n) (x, y ∈ R)

but there does not exist a real number c = c(n, α) for which there exists a

monomial function g : R→ R of degree n such that

(17) |f(x)− g(x)| ≤ cε|x|n (x ∈ R).

Proof. Let n, l ∈ N, l ≥ 2, ε > 0 and we define ε∗ ∈ R and ϕ : R→ R
as above. We have

|ϕ(x)| ≤ nnε∗ (x ∈ R),

therefore, the definition of the function f : R → R in (15) is correct,
furthermore

|f(x)| ≤
∞∑

m=0

nnε∗

lmn
≤ 2nnε∗ (x ∈ R).

Since ϕ is continuous and the convergence in (15) is uniform, f is contin-
uous, too.

We show that f satisfies inequality (16). In the case when x = y = 0,
property (16) holds trivially. If x, y ∈ R are fixed and 0 < |x| + |y| < 1
then there exists a positive integer m0 such that

1
lm0

≤ |x|+ |y| < 1
lm0−1

.

Therefore, |lm0−1y| < 1 and |lm0−1(x + ky)| < n for k = 0, . . . , n. Since ϕ

is a monomial function of degree n on the interval (−n, n), we have

∆n
lmyϕ(lmx)− n!ϕ(lmy) = 0

for m = 0, . . . , m0 − 1. Thus, using the well-known identity

∆n
s ϕ(t) =

n∑

k=0

(−1)n−k

(
n

k

)
ϕ(t + ks) (t, s ∈ R)



210 Attila Gilányi

and the property that lm0(|x|+|y|) ≥ 1 implies |lm0x|n+|lm0y|n ≥ 2−(n−1),
we get

|∆n
yf(x)− n!f(y)|
|x|n + |y|n ≤

∞∑
m=0

|∆n
lmyϕ(lmx)− n!ϕ(lmy)|

lmn(|x|n + |y|n)

≤
∞∑

m=m0

(2n + n!)nnε∗

lmn(|x|n + |y|n)
=

∞∑
m=0

(2n + n!)nnε∗

lmn(|lm0x|n+|lm0y|n)

≤
∞∑

m=0

(2n + n!)nnε∗

lmn2−(n−1)
≤ ε.

If |x|+ |y| ≥ 1 then |x|n + |y|n ≥ 2−(n−1), therefore,

|∆n
yf(x)− n!f(y)|
|x|n + |y|n ≤ 2n−1(2n + n!)2nnε∗ = ε

which proves (16).
Finally, we suppose that there exists a c ∈ R and a monomial function

g : R→ R of degree n satisfying (17). Since the function f is continuous,
(17) implies that g is bounded over an interval of positive length, so it has
the form

g(x) = γxn (x ∈ R),

where γ is a real constant. Furthermore, (17) gives

|f(x)− γxn| ≤ cε|x|n (x ∈ R),

therefore,

(18)
∣∣∣∣
f(x)
xn

∣∣∣∣− |γ| ≤ cε (x ∈ R).

However, there exists a positive integer m0 such that m0ε
∗ > cε + |γ| and

for an arbitrary x ∈ (
0, n

lm0−1

)
we have lmx ∈ (0, n) for m = 0, . . . ,m0−1,

thus,

∣∣∣∣
f(x)
xn

∣∣∣∣ =
f(x)
xn

≥
m0−1∑
m=0

ϕ(lmx)
lmnxn

=
m0−1∑
m=0

ε∗lmnxn

lmnxn
= m0ε

∗ > cε + |γ|

which contradicts (18). ¤
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Remark 1. The positive integer l ≥ 2 in the proofs of Theorem 1 and
Theorem 2 can be chosen arbitrarily. Thus, it would be enough to verify
Lemma 1 and Lemma 2 for λ = 2 and l = 2 and to take l = 2 in the proofs
of Theorem 1 and 2, to get our main results. However, the proofs are not
more complicated this way, so we give them in this more general form.

Remark 2. It is easy to see that with the help of formulas (5), (6),
(10), and (12) the constants c = c(n, α) ∈ R mentioned in Theorem 1 can
be given exactly. E.g., for an arbitrary n ∈ N, taking l = 2 and using
the simple property that, for λ = 2, Ki =

(
n
i

)
(i = 0, . . . , n) in Lemma 1

(cf. [4]) we get

c =
2α +

∑n
i=0

(
n
i

)
(iα + 1)

n!
1

2n − 2α

for α < n, α 6= 0 and

c =
2α +

∑n
i=0

(
n
i

)
(iα + 1)

n!
1

2α − 2n

for α > n. In the cases of some special integers n these constants can be
reduced. (E.g. in the case when n = 1, taking only x = y = z in (3) we
get the constants c = 2(2 − 2α)−1 and c = 2(2α − 2)−1.) This fact leaves
the problem of the “best constant” concerning the stability studied in the
present paper open.
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[9] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.
Amer. Math. Soc. 72 (1978), 297–300.

[10] Th. M. Rassias and P. �Semrl, On the behavior of mappings which do not satisfy
Hyers–Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989–993.

[11] Th. M. Rassias and P. �Semrl, On the Hyers–Ulam stability of linear mappings,
J. Math. Anal. Appl. 173 (1993), 325–338.

[12] L. Sz�ekelyhidi, The stability of linear functional equations, C. R. Math. Rep.
Acad. Sci. Canada 3 (1981), 63–67.

[13] L. Sz�ekelyhidi, Convolution type functional equations on topological abelian
groups, World Sci. Publ. Co., Singapore, 1991.

ATTILA GILÁNYI
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