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Discrepancy of point sequences on fractal sets
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Abstract. We consider asymptotic bounds for the discrepancy of point sets on
a class of fractal sets. By a method of R. Alexander, we prove that for a wide class
of fractals, the L2-discrepancy (and consequently also the worst-case discrepancy) of

an N -point set with respect to halfspaces is at least of the order N−1/2−1/2s, where
s is the Hausdorff dimension of the fractal. We also show that for many fractals, this
bound is tight for the L2-discrepancy. Determining the correct order of magnitude of
the worst-case discrepancy remains a challenging open problem.

1. Introduction

In the last few years the mathematical notion of fractal sets has turned
out to be a powerful tool to effectively describe a variety of physical phe-
nomena [8], [11]. As many state equations for physical structures lead
to high-dimensional integrals, the practical calculation of their numerical
solutions are of great importance. For a large class of functions, Quasi-
Monte-Carlo-methods converge much faster than classical Monte-Carlo by
using suitably chosen, low-discrepancy (in a sense evenly distributed) point
sets instead of random points (for a survey on the subject see e.g. [14]). It
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is thus essential to study discrepancy bounds for point sequences on fractal
sets.

In the sequel we will recall some of the important definitions and no-
tions of fractals and discrepancy. Section 2 investigates bounds for the
discrepancy with respect to halfspaces and Section 3 discusses the discrep-
ancy for some other set systems.

Let | · | denote the usual norm on the d-dimensional Euclidean space
Rd. By the diameter of U ⊂ Rd we mean ‖U‖ = supx,y∈U |x − y|, and a
δ-covering of a given Borel set F is a countable family of sets {Ui}, each of
diameter at most δ, whose union covers the set F . For F ⊂ Rd and s ≥ 0
we now define for every δ > 0

Hs
δ(F ) = inf

{ ∞∑

i=1

‖Ui‖s : Ui is a δ-covering of F

}
,

and subsequently the s-dimensional Hausdorff measure of F by

(1) Hs(F ) = lim
δ→0

Hs
δ(F ).

This limit exists for every Borel set F and possesses the scaling property
Hs(λF ) = λsHs(F ) for λ > 0. Hs is a monotonically decreasing function
in s and there exists a unique value of s where Hs jumps from ∞ to 0.
This value is called the Hausdorff dimension of F

dimH F = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) = ∞}.

The Hausdorff measure generalizes the concept of the Lebesgue measure in
Rd (Hd is, up to a constant, equal to the d-dimensional Lebesgue measure
in Rd). A set F ⊂ Rd is called a fractal set if dimH F is bigger than its
topological dimension, which is always an integer. For a description of
properties and techniques for practical calculations of dimH F , as well as
for some different concepts of dimension, see [7].

In the following we outline some basic facts and concepts of fractal
geometry: A β-similitude in Rd is a mapping ψ : Rd → Rd of the form

(2) ψ(x) = β−1U(x) + α,
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where U : Rd → Rd is a unitary, linear map and β ∈ R, α ∈ Rd are
constants. Given a finite family ψ = {ψ1, . . . , ψa} of β-similitudes and a
set A ⊂ Rd, define

ψ(A) =
a⋃

i=1

ψi(A).

Hutchinson [10] proved that for a given family ψ with β > 1 there
exists a unique compact set F ⊂ Rd such that F = ψ(F ) and, moreover,
if A ⊂ Rd is any compact set, the iterates ψn(A) converge to F in the
Hausdorff metric. Based on this result we can define a self-similar fractal
with volume scaling factor a and linear scaling factor β to be a pair (ψ,F )
consisting of a system ψ = {ψ1, . . . , ψa} of β-similitudes and its unique
fixed point F , for which Hs(ψi(F ) ∩ ψj(F )) = 0 ∀i 6= j holds.

The similarity dimension of a self-similar fractal F is defined by

dimS F =
log a

log β
,

and it is always greater than or equal to the Hausdorff dimension dimH F .
Equality holds, if the system ψ = {ψ1, . . . , ψa} satisfies the so-called open-
set condition, namely if there is a non-empty, bounded open set V such
that

(3) ψ(V ) =
a⋃

i=1

ψi(V ) ⊂ V,

with the union disjoint (see e.g. [15]).
Typical examples of self-similar fractals that satisfy the open-set con-

dition (3) are the Sierpiński gasket G ⊂ R2 and the Vićsek set V5 ⊂ R2.
The Sierpiński gasket is the fixed point of the system ψ = { 1

2x+(0, 0), 1
2x+

( 1
2 , 0), 1

2x + ( 1
4 ,
√

3
4 )}; cf. [7]. The Vićsek set is obtained by partitioning a

square into a 3× 3-chessboard, deleting all four black squares, and repeat-
ing this procedure for every remaining square. Here we have U : R2 → R2,
U(x) = x, β = 3, a = 5, α1 = (0, 0), α2 = ( 2

3 , 0), α3 = ( 1
3 , 1

3 ), α4 = (0, 2
3 ),

α5 = ( 2
3 , 2

3 ), and ψ(V5) = V5.
The notion of discrepancy on fractals has first been introduced in [9] (where
the special case of the Sierpiński gasket G has been considered): Let D be
some system of Borel sets A, such that the boundary of each A is a µ-null
set. Then the (volume) discrepancy of a point sequence X = (x1, . . . , xN )
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Figure 1: The Sierpiński
gasket G

Figure 2: The Vićsek set V5

on a bounded fractal set F (embedded in the Euclidean space Rd) with
respect to D is defined by

DD
N (X) = sup

A∈D

∣∣∣∣µ(A)− 1
N

N∑
n=1

χA(xn)
∣∣∣∣,

where χA is the characteristic function of the set A and µ is the Hausdorff
measure Hs normalized so that µ(F ) = 1. Important examples of systems
D are the set B of all balls B(x, ε) = {y ∈ F | |x − y| < ε} or the set U
of all upper halfspaces H ⊂ Rd whose bounding hyperplanes intersect the
convex hull of F (note that all other upper halfspaces always have zero
discrepancy). For a detailed survey on discrepancy systems D we refer
to [6]. We will also write DD

N [F ] for infX DD
N (X), where the infimum is

over all N -term sequences X = (x1, . . . , xN ), x1, x2, . . . , xN ∈ F .

In the definition above, DN is a “worst-case” discrepancy. However,
in many cases it is more convenient to work with an “average” discrepancy.
An average discrepancy can be introduced by fixing a probability measure
ω0 on our set system D and then defining

(4) DD
p,N (X) =

( ∫

D

∣∣∣∣µ(A)− 1
N

N∑
n=1

χA(xn)
∣∣∣∣
p

dω0(A)
) 1

p

to be the Lp-discrepancy of X with respect to D (p ≥ 1). Obviously
DD

p,N (X) ≤ DD
N (X).

For the case D = U , we will use the particular measure ω0 introduced
below. As is well-known, there exists a motion-invariant measure ω on the
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(d− 1)-dimensional hyperplanes in Rd, which is unique up to scaling (see
e.g. [13]). The ω-measure of the set of hyperplanes intersecting a given line
segment in Rd is proportional to the length of the segment. In the plane,
more generally, the ω-measure of the set of lines intersecting a given convex
set K is proportional to the perimeter of K (so-called Crofton’s formula).
The measure ω on hyperplanes induces a measure, denoted by ω0, on the
set U of the upper halfspaces whose boundaries intersect the convex hull
of F . We assume that the scaling is chosen so that ω0(U) = 1, i.e. ω0 is a
probability measure on U .

2. Discrepancy with respect to halfspaces

2.1. Lower bounds

The following theorem is a straightforward generalization of the results
of Alexander [2], [3].

Theorem 1. Let F ⊂Rd be a compact set of Hausdorff dimension

s> 1, and let µ be the s-dimensional Hausdorff measure Hs on F , normal-

ized so that µ(F ) = 1. Suppose that

(5) µ(B(x, r)) ≤ Crs ∀x ∈ F ∀r > 0

(with B(x, r) denoting the Euclidean ball of radius r centered at x and C

being a constant). Then, for any finite point sequence X = (x1, . . . , xN ),
x1, x2, . . . , xN ∈ F , we have

(6) DU
N (X) ≥ DU

2,N (X) À N− 1
2− 1

2s ,

where U is the system of all upper halfspaces H ⊆ Rd whose boundaries

intersect the convex hull of F , and the constant implied by À depends on

F , d and s.

Proof. Let ν be the signed (discrepancy) measure

(7) ν = ν+ − ν− =
(

1
N

N∑
n=1

δxn

)
− µ,
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on Rd (concentrated on F ), where δx denotes the Dirac measure at a
point x. We observe that ν(F ) = 0. We introduce the functional I by

I(ν) =
∫

Rd

∫

Rd

|p− q| d ν(p) d ν(q).

As shown by Alexander [1], the L2-discrepancy can be expressed using
I(ν); in our case

(8)
(
DU

2,N (X)
)2

=
∫

H∈U
ν(H)2 dω0(H) = −γF I(ν),

where γF > 0 is a constant depending on the scaling factor of the measure
ω0 (for example, if F ⊂ R2 and the convex hull of F has perimeter 1 then
γF = 1). It remains to prove that

(9) −I(ν) À N−1− 1
s .

First we recall several lemmata of Alexander.

Lemma 1 (Alexander [3]). Let φ be a signed discrete measure con-

centrated on the points r1, r2, . . . , rk ∈ Rd and let ψ be a signed bounded

measure with compact support on Rd and with ψ(Rd) = 0. For x ∈ Rd,

let ψx denote the translated measure given by ψx(M) = ψ(M − x), and

define the convolution ψ ∗ φ by setting ψ ∗ φ =
∑k

i=1 φ(ri)ψri . Then we

have

−I(ψ ∗ φ) ≤ −|φ|2I(ψ),

where |φ| = ∑k
i=1 |φ(ri)| denotes the total variation of φ.

In the sequel, φ is a measure on R with finite support. We will work in
the (d+1)-dimensional space Rd+1. We consider Rd embedded in Rd+1 as
the coordinate hyperplane xd+1 = 0, while the real line R supporting φ is
identified with the xd+1-axis in Rd+1. In this way, φ can also be considered
as a measure in Rd+1. If ψ is a measure in Rd then ψ × φ and ψ ∗ φ can
be regarded as the same signed measure on Rd+1.

Analogous to the definition of I, we let J be the “cross-term” func-
tional

J(ν1, ν2) =
∫

Rd

|p− q|d ν1(p) d ν2(q).
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Lemma 2 (Alexander [3]). Let ψ1, ψ2 be bounded signed measures
on Rd and let φ be a signed measure on R with finite support. Then

J(ψ1 × φ, ψ2 × φ) =
∫

Rd

∫

Rd

J(φp, φq) d ψ1(p) d ψ2(q).

The next lemma provides some key properties of J(φp, φq). We recall
that the tth moment of a measure φ as above is

∫∞
−∞ xt d φ(x).

Lemma 3 (Alexander [3]). Let φ be a signed measure with finite
support contained in the interval [− 1

4 , 1
4 ], with φ(R) = 0, with variation

|φ| = 1, and such that the first t moments of φ are 0. Let a ∈ Rd be a
vector; we consider it as a vector in Rd+1 orthogonal to the xd+1-axis. Then
J(φ, φa) only depends on |a|, −J(φ, φa) is a strictly decreasing function in
|a|, we have −J(φ, φa) ≥ 0 for all a ∈ Rd, and

−J(φ, φa) < |a|−2t−1 for |a| ≥ 2.

Finally, we need to remark that measures φ as in the lemma (with
the first t moments vanishing) exist such that −I(φ) is a positive constant
(depending on t). An explicit construction of such a φ, using a finite-
differencing formula, is provided in [5].

Following the proof of Theorem A in Alexander [3], we now look,
instead of F and the sequence X = (x1, . . . , xN ), at the similar set F ∗ =
K

1
s F and the sequence Y = (y1, . . . , yN ), where yn = K

1
s xn, and K > 0

is a parameter to be specified later. Notice that, by the scaling property
of fractal sets, µ(F ∗) = K. Furthermore, if we define

ν̄ = ν̄+ − ν̄− =
(

K

N

N∑
n=1

δyn

)
− µ,

then we get
I(ν̄) = K2+ 1

s I(ν).

In the following we will estimate −I(ν̄). We let φ be a finitely supported
measure on R as in Lemma 3 (for t = d + 1; i.e. the support is contained
in [− 1

4 , 1
4 ], φ(R) = 0, |φ| = 1, the first d+1 moments vanish, and −I(φ) =

c1 > 0). By Lemma 1 we get the inequality

−I(ν̄) ≥ −I(ν̄ ∗ φ) = −I(ν̄ × φ)

= −I(ν̄+ × φ) + 2J(ν̄+ × φ, ν̄− × φ)− I(ν̄− × φ).
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We will show that the term −I(ν̄+ × φ) is large and that the other terms
are either positive or sufficiently small in absolute value. We have, using
Lemma 2,

−I(ν̄+ × φ) =
∫

Rd

∫

Rd

−J(φp, φq) d ν̄+(p) d ν̄+(q).

Since ν̄+ is concentrated on the points y1, y2, . . . , yN , the last integral is
actually a finite sum. We distinguish two types of terms in the sum: those
with p = q and those with p 6= q. The latter ones are all nonnegative by
Lemma 3, and so their contribution (whose magnitude we cannot control
in general) cannot decrease the estimate for −I(ν̄). For the terms with
p = q, we have −J(φp, φp) = −I(φp) = −I(φ) = c1 > 0. Therefore,

(10) −I(ν̄+ × φ) ≥ −I(φ)
N∑

n=1

ν̄(yn)2 = c1
K2

N
.

The term −I(ν̄−×φ) is easily seen to be nonnegative (using an analogue of
(8) or the nonnegativity of −J(φp, φq) from Lemma 3). For the remaining
term J(ν̄+ × φ, ν̄− × φ) we get, by Lemma 2,

J(ν̄+ × φ, ν̄− × φ) =
N∑

n=1

ν̄+(yn)
∫

Rd

J(φ, φyn−q) d µ(q).

To estimate the integral behind the summation sign, we divide the integra-
tion domain into the two regions {q : |q − yn| ≤ 2} and {q : |q − yn| > 2}.
For the first region, we have

−
∫

|yn−q|≤2

J(φ, φyn−q) d µ(q) ≤ |φ|2
∫

|yn−q|≤2

dµ(q) ≤ C2s,

where the last inequality uses condition (5) and the scaling property of the
Hausdorff measure:

µ(F ∗∩B(x∗,K1/sr)) = Kµ(F ∩B(x, r)) ≤ KCrs = C
(
K1/sr

)s

∀r > 0

and therefore

µ(F ∗ ∩B(x∗, r∗)) < C(r∗)s ∀r∗ > 0 ∀x∗ ∈ F ∗.



Discrepancy of point sequences on fractal sets 241

The integral over the second region is handled by

−
∫

|yn−q|>2

J(φ, φyn−q) d µ(q) = −
∞∑

l=1

∫

2l<|yn−q|≤2l+1

J(φ, φyn−q) d µ(q)

≤ −
∞∑

l=1

J2l

∫

2l<|yn−q|≤2l+1

dµ(q)

≤ −C1

∞∑

l=1

J2l2s(l+1),

where J2l denotes the value of J(φ, φyn−q) for |yn − q| = 2l and C1 is a
constant depending on d. Lemma 3 then yields (t = d + 1)

−J2l ≤ (2l)−2(d+1)−1 < 2−(d+1)(l+1).

Since s < d, we have
−J2l < 2−(s+1)(l+1).

Summing up the geometric series yields

−
∫

|yn−q|>2

J(φ, φyn−q) d µ(q) <
1
2
C1

and for the entire integration domain

−
∫

Rd

J(φ, φyn−q) d µ(q) ≤ C2s +
1
2
C1 = C2.

Then

(11) −2J(ν̄+ × φ, ν̄− × φ) ≤ 2C2K.

For the choice K = 3C2
c1

N , (10) and (11) together imply

−I(ν̄) ≥ c1
K2

N
− 2C2K >

C2
2

c1
N.

Since I(ν̄) = K2+ 1
s I(ν), we have established (9), and this completes the

proof. ¤
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Remark to the proof. An alternative version of the proof of Theorem 1
is possible using the ideas of Chazelle, Matoušek, and Sharir [5].
The main difference is in that the measure φ is written down explicitly,
using a finite-differencing formula. Formally, one does not need to speak
about the convolution (or product) of measures as in the proof above; in-
stead, one may think of placing shifted signed copies of F in a suitable
higher-dimensional space. Finally, while the nonnegativity of −J(φp, φq)
in Lemma 3 is not entirely easy to prove, the nonnegativity of the corre-
sponding functional −G(p, q) in the proof of Chazelle et al. is rather easy.
For reader’s convenience, we sketch this alternative presentation of the
proof of Theorem 1 here.

Let t be a sufficiently large integer, and we consider the set F̃ =
F × [−1, 1]t ⊂ Rd+t. Let Ut denote the set of all upper halfspaces in Rd+t

with boundary intersecting the convex hull of F̃ . Regard ν (as defined
above) as a signed measure in Rd+t (concentrated in the d-dimensional
coordinate hyperplane xd+1 = xd+2 = · · · = 0) and let ω0 be a probability
measure on Ut (defined in the same way as ω0 was defined for U). So the
L2-discrepancy of X can be written as

DU
2,N (X) = γF

∫

H∈Ut

ν(H)2 dω0(H).

Let now w = cN−1/s be a parameter, where the constant c > 0 is chosen
sufficiently small. For j = 1, 2, . . . , t, let wj ∈ Rd+t be the vector with
w in the (d + j)-th position and with 0’s elsewhere. We define a new
“replicated” measure ν̃ by setting

ν̃(A) =
∑

b∈{0,1}t

(−1)
Pt

j=1 bj ν
(
A−

t∑

j=1

bjwj

)
.

As in [5], it can be shown that (analogue of Lemma 1)
∫

Ut

ν(H)2 dω0(H) À
∫

Ut

ν̃(H)2 d ω0(H),

and hence it is enough to deal with ν̃. Following (8), we have

(12)
∫

Ut

ν̃(H)2 d ω0(H) = −
∫

Rd+t

∫

Rd+t

|p− q|d ν̃(p) d ν̃(q).
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By the definition of ν̃, (12) can be further expressed as

(13) −
∫

Rd

∫

Rd

G(p, q) d ν(p) d ν(q),

where

G(p, q) = 2t
t∑

j=0

(−1)j

(
t

j

)√
|p− q|2 + jw2.

The following properties of G(p, q) are proved in [5], using basic properties
of finite differencing:

(i) −G(p, p) = c3w for a positive constant c3 (dependent on d and t).

(ii) |G(p, q)| = O(|p− q|), with the constant of proportionality depending
on d and t.

(iii) For |p − q| ≥ t, we have |G(p, q)| = O(w2t/|p − q|2t−1), with the
constant of proportionality depending on d and t.

(iv) G(p, q) ≤ 0 for all p, q.

Substituting the definition of ν into (13), we get
∫

Ut

ν̃(H)2 d ω0(H) = −
∫

Rd

∫

Rd

G(p, q) d ν(p) d ν(q)(14)

= Eµµ + EµX + EX2 + EXX ,

where

Eµµ = −
∫

Rd

∫

Rd

G(p, q) d µ(p) d µ(q),

EµX =
1
N
·
∑

p∈X

∫

q∈F

G(p, q) d µ(q),

EX2 = − 1
N2

∑

p∈X

G(p, p),

and

EXX = − 1
N2

∑

p,q∈X: p 6=q

G(p, q).
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By (i), we have EX2 = c2w
N . By (iv), we get EXX ≥ 0 and Eµµ ≥ 0.

Finally, for EµX , we have

|EµX | ≤ 1
N

∑

p∈X

∫

q∈Rd

|G(p, q)| dµ(q)

and, using (ii) and (iii),
∫

q∈Rd

|G(p, q)| dµ(q) ≤
∫

|p−q|≤tw

O(w) d µ(q)

+
∫

|p−q|>tw

O
(

w2t

|p− q|2t−1

)
d µ(q)

= O
(
wµ(B(p, tw)) +

∞∑

k=0

w2t

(2ktw)2t−1
µ(B(p, 2ktw))

)

= O
(

w1+s + w

∞∑

k=1

2−k(2t−1)(2ktw)s

)

= O(w1+s)

provided that 2t − 1 > s. Thus, we get that |EµX | ≤ c4w
1+s, with a

constant c4 depending on d, t and s but not on the constant c in the
definition of w. By choosing c small enough, we get that the right-hand
side of (14) is Ω(N−1−1/s), and Theorem 1 follows. ¤

Remark. Theorem 1 gives a lower bound for the L2-discrepancy w.r.t.
halfspaces for all fractal sets satisfying (5) with finiteHs. Hutchinson [10]
has shown that all self-similar fractals F (as defined in Section 1) for which
the open-set condition (3) is fulfilled, satisfy (5) and 0 < Hs(F ) < ∞.
Thus Theorem 1 is applicable for this large class of fractal sets.

It can be shown (see [7]) that every fractal F contains a compact
subset E with Hs(E) > 0, for which condition (5) is satisfied. However,
the following construction shows that not necessarily E = F : Consider the
Sierpiński gasket G ⊂ R2 ⊂ R3 (with Hausdorff dimension s = log 3/ log 2)
and generate infinitely, but countably many copies of G by rotating G
in R3 around one of its base lines. Since a countable union of sets with
Hausdorff dimension s still has Hausdorff dimension s, the union G1 ⊂ R3

of these copies has Hausdorff dimension s = log 3/ log 2, and, as can easily
be verified, condition (5) does not hold for the points x ∈ G1 where all the
copies of G meet. Thus (5) is not a property of all fractal sets.
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2.2. Optimality for the L2-discrepancy

In this section, we show that the the lower bound for the L2-discrep-
ancy in Theorem 1 is asymptotically optimal for many fractals. To get a
low-discrepancy N -point sequence, we use a random sampling similar to
the one employed by Beck [4] in a slightly different context (let us remark
that a similar sampling is used, in computer graphics, where it is called
jittered sampling).

Let us consider self-similar sets F with parameters a and β > 1 as
defined in Section 1. Using the mappings ψ1, . . . , ψa, the set F is naturally
subdivided into ak subsets of level k, k = 1, 2, . . . . The subsets of level 1
are ψ1(F ), ψ2(F ), . . . , ψa(F ), the sets of level 2 are ψi(ψj(F )), i, j =
1, 2, . . . , a, etc. For example, in the Sierpiński gasket, the sets of level k

are the (nonempty) intersections of G with the equilateral triangles arising
by k-times iterated subdivision of the top-level triangle.

We will only consider the values N=ak, k=1, 2, . . . . If F1, F2, . . . , Fak

are the sets of level k, we sample the point xn from Fn at random, ac-
cording to the probability distribution given by the restriction of the frac-
tal measure µ to Fn, and the choices being mutually independent for all
n = 1, 2, . . . , N = ak.

Let H ∈ U be a fixed halfspace, and let us consider the expectation of
the squared discrepancy

(
µ(H) − 1

N

∑N
n=1 χH(xn)

)2. If Fn is completely
contained in H or disjoint from H, then the contribution of xn to the
quantity µ(H) − 1

N

∑N
n=1 χH(xn) is 0. If the boundary of H intersects

the convex hull of Fn, then the contribution of xn to this quantity is a
random variable with zero expectation whose values lie in [− 1

N , 1
N ]. Thus,

if the boundary of H intersects the convex hull of κ(H) of the Fn, then
µ(H)− 1

N

∑N
n=1 χH(xn) is the sum of κ(H) independent random variables

with zero expectation. The expected squared discrepancy of H is thus the
variance of this sum, and it is bounded by κ(H)/N2.

The expectation of (DU
N (X))2, over a random choice of the N -point

sequence X as above, is at most 1
N2

∫
U κ(H) d ω0(H). If Un ⊆ U is the set

of the upper halfspaces whose boundary intersect the convex hull of Fn,
we have ω0(Un) = β−k (recall that ω0(U) = 1). Therefore

∫

U
κ(H) d ω0(H) =

ak∑
n=1

ω0(Un) = akβ−k = N1−1/s,
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where s = log a/ log β is the similarity dimension of F . It follows that
there exists an N -point sequence X with DU

2,N (X) ≤ N−1/2−1/2s. If F is
a self-similar fractal set that fulfills the open-set condition (3), the sim-
ilarity dimension of F equals its Hausdorff dimension and thus we have
shown that for the wide class of self-similar fractals satisfying the open-set
condition (3), the lower L2-bound (6) is also optimal.

2.3. Worst-case upper bounds

We shortly recall some definitions (see [12] for more details). Let S be
a set system on a point (multi)set X = {x1, . . . , xN}. A coloring χ is any
mapping X → {−1, 1}. The combinatorial discrepancy of S is defined by

disc(S) = min
χ

max
S∈S

|χ(S)|,

where the minimum is taken over all colorings χ of Xand χ(S)=
∑

x∈S χ(x).
The primal shatter function πS(m) is the maximum possible number of dis-
tinct intersections of the sets of S with an m-point subset of X and the
dual shatter function is the maximum number of equivalence classes on X

defined by an m-element subfamily Y ⊂ S, where two points x, y ∈ X are
equivalent w.r.t. Y if x belongs to the same sets of Y as y does. Shat-
ter functions can be used to derive upper bounds for the combinatorial
discrepancy (cf. [12]).

In our case, we consider the set system S induced by halfspaces on
an N -point (multi)set {x1, x2, . . . , xN}, x1, x2, . . . , xN ∈ F . If we can
prove a bound of f(N) for the combinatorial discrepancy of any N -point
set in this case, for some function f(N), it follows that the geometric
discrepancy with respect to the fractal measure µ can also be bounded by
O(f(N)); that is, for all N , there are sequences X = (x1, x2, . . . , xN ) with
DU

N (X) = O(f(N)) (see [12] for a formulation with the Lebesgue measure
instead of the measure µ; the generalization to the fractal measure µ is
straightforward).

The primal shatter function for a set system induced by halfspaces
in Rd is always bounded by O(md). Moreover, set systems with pri-
mal shatter function bounded by O(md) have combinatorial discrepancy
O(N−1/2−1/2d) (for any d > 1; see [12]). Consequently, we have the fol-
lowing bound for the discrepancy with respect to halfspaces, for point sets
on fractals in Rd:

DU
N [F ] = O

(
N−1/2−1/2d

)
.
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One might wonder whether this bound could be improved by showing
a better estimate for the primal or dual shatter functions for point sets
selected from a fractal. Unfortunately, this is not the case in general.

For the primal shatter function, let us consider a fractal embedded in
R2 and take two parallel lines, each cutting the fractal at infinitely many
points (say), and choose m/2 points on each of the lines. Then there are
Ω(m2) subsets cut off by a halfplane. A similar construction can be done
in Rd, showing a lower bound of Ω(md).

For the dual shatter function, let us consider the Sierpiński gasket and
choose m/2 parallel lines very close to the base of the top-level triangle,
and m/2 other suitable lines perpendicular to the base. Then, among the
regions defined by these lines in the plane, there are Ω(m2) intersected
by the considered fractal, and so the dual shatter function is Ω(m2), too.
This indicates that the shatter functions are both too large and thus are
not the appropriate tool to obtain better upper bounds for the worst-
case discrepancy in the fractal case. Deciding whether the lower bound in
Theorem 1 is tight (possibly up to a logarithmic factor) at least for some
nontrivial fractals, such as the Sierpiński gasket, is a challenging open
problem.

3. Discrepancy with respect to other set systems

Axis-parallel boxes. For the discrepancy w.r.t. axis-parallel boxes there
exists an upper bound for the combinatorial discrepancy in the Euclidean
space Rd [12]. Again these results immediately lead to upper bounds for
the discrepancy on fractals:

DKd

N [F ] = O
(

logd+1/2 N

√
log log N

N

)
,

where Kd denotes the set of axis-parallel boxes.
For lower bounds a derivation of a general result (possibly by adapting

Roth’s or Beck’s lower bound methods; see e.g. [12]) seems intriguing, and
it is not even clear what bounds should be expected.

For the case of the Lebesgue measure and axis-parallel boxes (the
classical discrepancy problem), the L2-discrepancy is known to be of the
order (log N)(d−1)/2/N (by the celebrated results of Roth). The worst-
case discrepancy in this situation, for d = 2, is known to be of the order
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(log N)/N (results of Schmidt and Van der Corput); for larger d, the order
of magnitude is not known but it is generally believed to be (log N)d−1/N .
One might thus be tempted to conjecture that for an s-dimensional frac-
tal measure, the discrepancy for axis-parallel boxes might be of the order
(log N)s−1/N (worst case) and (log N)(s−1)/2/N (L2-average case). The
following simple example shows that this is false. Namely, let C ⊂ [0, 1] be
the classical Cantor “middle third” set (cf. [7]), and put F = C×C. There
is a measure-preserving and monotone bijection g between [0, 1] with the
Lebesgue measure and C \ E with the Hausdorff measure, where E is a
countable set (the right endpoint of the intervals forming [0, 1] \C). Then
g×g is a measure-preserving map of [0, 1] to F minus a negligibly small set
and, moreover, axis-parallel rectangles are mapped to axis-parallel rectan-
gles. Consequently, the discrepancy with respect to the fractal measure on
F behaves in the same way as the “usual” discrepancy w.r.t. the Lebesgue
measure. For example, we have

DK2
N [F ] = Θ

(
log N

N

)
.

It would be very interesting to find good lower and upper bounds for some
fractal sets that do not have such a simple product structure, such as the
Vićsek set or the Sierpiński gasket. In particular, is there a set of Hausdorff
dimension s ∈ (1, 2) in the plane, such that the worst-case discrepancy
w.r.t. its fractal measure (for axis-parallel rectangles) is o((log N)/N)?

Elementary Sets. Self-similar fractals can be constructed by recursion
using elementary sets and mapping them in each level of construction
according to (2). It is thus natural to consider these elementary sets as
the set system D. As is shown in [9], the elementary discrepancy of a set
similar to the classical Van der Corput set is O( 1

N ), showing that there is
no nontrivial lower bound for the worst-case discrepancy.
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