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On the number of solutions of index form equations

By A. BÉRCZES (Debrecen)

To Professor K. Győry on his 60th birthday

Abstract. In Evertse and Gy}ory [3], [4] and Evertse [2] explicit upper bounds
have been established for the numbers of solutions of index form equations. In the case
when the Galois group of the splitting field of the index form is triply transitive, recently
Gy}ory [11] has considerably improved the bounds of [3] and [2]. The purpose of the
present paper is to give, under the same assumption concerning the Galois group, a
significant improvement of the bound in [4], which is valid for all but at most finitely
many possible values of the constant term of the equation.

1. Introduction

Let K be an algebraic number field of degree n ≥ 3 with discriminant
DK and ring of integers OK . Let σ1 = id, σ2, . . . , σn denote the Q-
isomorphisms of K in C. For any α ∈ K, put α(i) = σi(α). Consider
an integral basis {1, α2, . . . , αn} in OK , and the linear forms l(i)(X) =
X1 + α

(i)
2 X2 + · · · + α

(i)
n Xn for i = 1, . . . , n, with the convention that

l(1)(X) = l(X). Putting lij(X) = l(i)(X)− l(j)(X),

(1.1) DK/Q(l(X)) :=
∏

1≤i<j≤n

l2ij(X)
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is a decomposable form with coefficients in Z. It can be written in the
form

(1.2) DK/Q(l(X)) = (I(X))2DK ,

where I(X) = I(X2, . . . , Xn) is a decomposable form of degree n(n−1)/2
with coefficients in Z. If α is a primitive integral element of K and
α = x1 + x2α2 + · · · + xnαn with x1, . . . , xn ∈ Z, then |I(x2, . . . , xn)|
is precisely the index I(α) of α, i.e. the index of the subgroup Z+[α] in
the additive group O+

K of OK . Hence I(X) is called the index form of the
basis {1, α2, . . . , αn}.

Let I denote a positive rational integer, and S = {p1, . . . , ps} a finite
set of s ≥ 0 distinct rational primes. Consider the index form equation

(1.3)

I(x2, . . . , xn) = ±Ipz1
1 . . . pzs

s

in x2, . . . , xn ∈ Z,

and z1, . . . , zs ∈ Z≥0

with (x2, . . . , xn, p1 . . . ps) = 1 if s > 0.

We may and shall assume that I is relatively prime to p1, . . . , ps. For
s = 0, the assumption (x2, . . . , xn, p1 . . . ps) = 1 is omitted. We identify
the solutions x = (x2, . . . , xn), z1, . . . , zs and x′ = (x′2, . . . , x

′
n), z′1, . . . , z

′
s

of (1.3) if x′ = ±x.
In the most interesting case when s = 0, Győry [7] proved that (1.3)

has only finitely many solutions, and gave an effective upper bound for
the solutions. Later, this theorem was extended to the case s > 0 by
Trelina [13] and Győry and Papp [12]. For surveys presenting further
generalizations, we refer to [8], [9], [6].

The first explicit upper bound for the number of solutions of (1.3) was
derived by Evertse and Győry [3]. They showed as a consequence of a
more general result that (1.3) has at most

(1.4)
(
4 · 7g(2s+2ω(I)+3)

)n−2

solutions. Here ω(I) denotes the number of distinct prime factors of I,
and g is the degree of the normal closure of K over Q. Hence n ≤ g ≤ n!.

It follows from a result of Evertse [2] on decomposable form equa-
tions that the number of solutions of (1.3) does not exceed

(1.5)
(
233r2

)(n−1)3(s+ω(I)+1)
,
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where r = n(n − 1)/2. When n is large and g is large with respect to n,
this bound is better than (1.4).

Put

Ψ(I) =
(

r

n− 2

)ω(I) ∏

p|I
p prime

(
ordp(I) + n− 2

n− 2

)

with r = n(n − 1)/2, where the product is taken over all distinct prime
factors of I and ordp(I) denotes the greatest rational integer a for which
pa divides I in Z. As a consequence of a more general theorem concerning
decomposable form equations, Evertse and Győry [4] derived in 1997
the upper bound

(1.6)
(
233r2

)e(n)(s+1)
Ψ(I)

for the number of solutions of (1.3). Here e(n) = 1
3 (n − 1)n(2n − 1) − 2.

The bound (1.6) is better than (1.5) when all the exponents ordp(I) are
small.

An important special case is when the Galois group, G, of the normal
closure of K over Q is triply transitive. In other words, for any ordered
subsets {i1, i2, i3} and {i′1, i′2, i′3} of {1, . . . , n} there is a σ ∈ G such that
if α ∈ K then σ(α(ik)) = α(i′k) for k = 1, 2, 3. For example, G is triply
transitive if n ≥ 5 and G = Sn or An. Under this assumption concerning G
Győry [11] has recently showed that for s = 0, equation (1.3) has at most

24n(n−1)(ω(I)+1)+8

solutions*. This is a considerable improvement of (1.4) and (1.5) for s = 0.
The purpose of our paper is to improve (1.6) under the same assumption
concerning G.

Theorem 1. Suppose that the Galois group G is triply transitive.
Then apart from finitely many values of I, equation (1.3) has at most

2Ψ(I)

solutions. Further, the number of the exceptional I’s is at most

e3020n2(s+1).

*For simplicity, this result was proved in [11] for s = 0 only, but the same arguments
work for s > 0 as well and give the same upper bound with ω(I) + s instead of ω(I).
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This means that under the assumption of Theorem 1 and apart from
finitely many values of I, the factor (233r2)e(n)(s+1) in (1.6) can be replaced
by 2.

For s = 0, we obtain as a special case the following result for the
equation

(1.7) I(x2, . . . , xn) = ±I in x2, . . . , xn.

Theorem 2. Suppose again that the Galois group G is triply transi-

tive. Then apart from at most e3020n2
values of I, equation (1.7) has at

most 2Ψ(I) solutions.

In the proof of Theorem 1 we shall combine some methods from [8]
and [11] with some recent results from [10], [1], [4] and [6].

2. Auxiliary results

Let G ⊂ C∗ be a finitely generated subgroup of the multiplicative
group C∗, and let a, b, a′, b′ be non-zero complex numbers. Then the
equations

ax + by = 1 in x, y ∈ G(2.1)

and

a′x′ + b′y′ = 1 in x′, y′ ∈ G

are called equivalent if a
a′ ∈ G and b

b′ ∈ G. Equivalent equations have
obviously the same number of solutions.

The number of solutions of the equation

x1 + · · ·+ xn = 1 in x1, . . . , xn ∈ G(2.2)

with
∑

i∈I

xi 6= 0 for each non-empty subset I of {1, . . . , n}

is finite. Denote by νn = νn,G this number.

Lemma 1. The number of equivalence classes of equations of the form

(2.1) which have more than two solutions is at most

ν5 + 12ν3 + 30ν2
2 .
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Proof. See [10]. This lemma is a quantitative version of the main
result of [5]. ¤

Lemma 2. Let G be a finitely generated subgroup of C∗ with rank r.

Then equation (2.2) has at most

e(r+2)(6n)4n

solutions.

Proof. Lemma 2 is a special case of Theorem 2 of [6]. ¤

For n = 2, a better bound has been obtained in [1].

Lemma 3. Let G be a finitely generated subgroup of (C∗)2 with

rank r. Then the number of solutions of the equation

x + y = 1 in (x, y) ∈ G

is bounded by 28r+8.

Proof. This is a special case of Theorem 1.1 of [1]. ¤

Lemmas 1 and 2 give the following

Lemma 4. The number of equivalence classes of equations (2.1) hav-

ing more than two solutions is at most

2e(r+2)3020
.

As in Section 1, let S = {p1, . . . , ps} be a set of s ≥ 0 rational primes.
Let ZS denote the ring of S-integers, and Z∗S the group of S-units in Q.
For any algebraic number field L, denote by OL the ring of integers and
by O∗L the group of units in L. Further, denote by ML the set of all places
of L, and by SL the subset of ML consisting of all infinite places of L and
of those finite places of L which correspond to prime ideals of OL lying
above rational primes from S. Consider the ring of SL integers OSL

and
the group of SL-units O∗SL

in L.
Suppose that L is of degree l overQ. LetM denote a finitely generated

ZS-module in L. By the dimension of M we mean the dimension of the Q-
vector spaceMQ. Assume thatM has dimension k overQ. Let α1, . . . , αm

be a set of generators of M and let l(X) := α1X1 + · · · + αmXm. Then
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M = {x = l(x) : x ∈ Zm
S }. Fix an element c ∈ Q∗ for which cNL/Q(l(X))

has its coefficients in ZS . Consider the equation

(2.3) cNL/Q(x) ∈ I · Z∗S in x ∈M,

where I denotes a fixed positive rational integer which is relatively prime
to p1, . . . , ps if s > 0.

Lemma 5. The set of solutions of (2.3) is contained in some union

x1O∗SL
∪ · · · ∪ xqO∗SL

, where

q ≤
(

l

k − 1

)ω(I)

·
∏

p|I
p prime

(
ordp(I) + k − 1

k − 1

)

and where x1, . . . , xq are solutions of (2.3).

Proof. This is a special case of Lemma 4 of [4] ¤

3. Proof of Theorem 1

We shall use Lemma 5 and Győry’s method (see e.g. [8, Ch. IV] and
[11, Section 5]) to reduce equation (1.3) to an appropriate system of unit
equations. Then we shall apply Lemmas 3 and 4 concerning unit equations.

First we introduce some further notation and make some preliminary
observations. Let ξ be a primitive integral element of K. Denote by d the
index of ξ in OK . Then DK/Q(ξ) = d2 ·DK . In view of (1.1) and (1.2) it
follows that each solution x ∈ Zn−1, z1, . . . , zs ∈ Z≥0 of (1.3) satisfies

∏

1≤i<j≤n

l2ij(x) = DKI2p2z1
1 . . . p2zs

s ,

whence

(3.1) c
∏

1≤i<j≤n

d · lij(x)
ξ(i) − ξ(j)

= ±Ipz1
1 . . . pzs

s

where c = d1−n(n−1)
2 .

Let K(i) := Q(ξ(i)) for i = 1, . . . , n. For any distinct i, j in {1, . . . , n}
consider the subfield Kij = Q(ξ(i) + ξ(j), ξ(i) · ξ(j)) of the field K(i)K(j).
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By assumption G, the Galois group of the normal closure of K over Q, is
triply transitive. Hence the field K(i)K(j) is of degree n(n − 1) over Q.
Each σ ∈ G permutes the elements of {1, . . . , n} where σ(i) is defined by
σ(ξ(i)) = ξσ(i). This implies a Galois action on the ordered pairs (i, j).
Each σ ∈ G for which σ(i, j) = (j, i) leaves fixed the elements of Kij .
Therefore Kij is a proper subfield of K(i)K(j). More precisely, K(i)K(j) is
a quadratic extension of Kij , and hence Kij is of degree n(n−1)/2 over Q.
Denote by λ(i,j) the conjugate of any λ = λ(1,2) ∈ K1,2 corresponding to
ξ(i) + ξ(j), ξ(i)ξ(j) (1 ≤ i < j ≤ n) and for simplicity we let λ(i,j) = λ(j,i).

Since dOK ⊆ Z[ξ], it follows that for every α ∈ OK and each different
i, j from {1, . . . , n}, d(α(i)−α(j))

ξ(i)−ξ(j) is an integer in Kij . Denote by M the ZS-

module in K1,2, generated by the coefficients of the linear form d·l1,2(X)

ξ(1)−ξ(2) .
The module M is of rank at most n− 1. For any solution x, z1, . . . , zs of
(1.3), put

δ = δ(1,2) =
d · l1,2(x)
ξ(1) − ξ(2)

.

Then δ ∈ K1,2, and the numbers δ(i,j) = d·lij(x)

ξ(i)−ξ(j) are the conjugates of δ

with respect to K1,2/Q. Hence equation (3.1) leads to the equation

(3.2) cNK1,2/Q(δ) ∈ IZ∗S in δ ∈M.

By Lemma 5 we deduce that there are solutions δ1, . . . , δq of (3.2) such
that any solution δ of (3.2) is contained in δ1O∗SK1,2

∪ · · · ∪ δqO∗SK1,2
and

that q ≤ Ψ(I) with the Ψ(I) introduced in Section 1.
Consider now those solutions x, z1, . . . , zs of (1.3) for which the corre-

sponding δ belong to the same coset, say δ1O∗SK1,2
. Let i, j, k be arbitrary,

but fixed and pairwise distinct elements of {1, . . . , n}. Then we have

(3.3) lij(x) + ljk(x) + lki(x) = 0

for any solution x, z1, . . . , zs under consideration. We can write δ =
δ(1,2) = δ

(1,2)
1 ε(1,2) with an appropriate ε(1,2) ∈ O∗SK1,2

. Now we infer
from (3.3) that

(3.4) ρ1
ε(i,j)

ε(i,k)
+ ρ2

ε(j,k)

ε(i,k)
= 1
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where

ρ1 =
δ
(i,j)
1 (ξ(i) − ξ(j))

δ
(i,k)
1 (ξ(i) − ξ(k))

and ρ2 =
δ
(j,k)
1 (ξ(j) − ξ(k))

δ
(i,k)
1 (ξ(i) − ξ(k))

.

Observe that (3.4) is a unit equation in the unknowns
(

ε(i,j)

ε(i,k) ,
ε(j,k)

ε(i,k)

)
. For

given i, k, let {ε1, . . . , εt} be a fundamental system of SKik
-units in the

field Kik. Then

t ≤ n(n− 1)
2

(s + 1).

Further, we have
ε(i,k) = θεb1

1 . . . εbt
t ,

where θ is a root of unity of Kik and b1, . . . , bt are rational integers. The
ε(i,j) and ε(j,k) being conjugates of ε(i,k), there exist Q-isomorphisms ϕ

and χ of Kik such that ε(i,j) = ϕ(ε(i,k)) and ε(j,k) = χ(ε(i,k)). Then (3.4)
can be written in the form

ρ1
ϕ(θ)

θ

(
ϕ(ε1)

ε1

)b1

. . .

(
ϕ(εt)

εt

)bt

+ ρ2
χ(θ)

θ

(
χ(ε1)

ε1

)b1

. . .

(
χ(εt)

εt

)bt

= 1.

Now suppose that equation (1.3) has two different solutions x, z1, . . . , zs

and x′, z′1, . . . , z
′
s for which the corresponding solutions

(
ε(i,j)

ε(i,k) ,
ε(j,k)

ε(i,k)

)
and(

ε′(i,j)

ε′(i,k) ,
ε′(j,k)

ε′(i,k)

)
of (3.4) coincide, that is

ε(i,j)

ε(i,k)
=

ε′(i,j)

ε′(i,k)
and

ε(j,k)

ε(i,k)
=

ε′(j,k)

ε′(i,k)
,

and thus
ε(i,j)

ε′(i,j)
=

ε(k,i)

ε′(k,i)
=

ε(j,k)

ε′(j,k)
.

Put β(i,j) = ε(i,j)

ε′(i,j) . Then β(i,j) is an SKij -unit in the field Kij . Since G
is triply transitive, K(i)K(j) has a Q-isomorphism which lives ξ(i) fixed
and moves ξ(j) to ξ(l) for arbitrary l ∈ {1, 2, . . . , n} \ {i}. Among the
conjugates of β(i,j) there are at least two, namely β(i,j) = β(k,i), which are
equal. But β(i,j) and β(k,i) are conjugates over K(i), too. Furthermore, G
being triply transitive, K(i)K(j) is a primitive extension of K(i). Together



On the number of solutions of index form equations 259

with β(i,j) = β(k,i) this means that all conjugates of β(i,j) over K(i) are
equal. Thus β(i,j) ∈ K(i), and similarly β(k,i) ∈ K(k). But β(i,j) = β(k,i),
hence we get β(i,j) ∈ K(i) ∩K(k). It follows from the triply transitivity of
G that [K(i)K(k) : K(i)] = n− 1 and thus K(i) 6= K(k). Further K(i) is a
primitive extension of Q (because of the doubly transitivity of G), hence
we get K(i) ∩K(k) = Q and so β(i,j) ∈ Q. But β(i,j) is an SKij -unit, thus
we get β(i,j) ∈ Z∗S .

The above arguments lead us to the conclusion that ε = ηε′, with
some η ∈ Z∗S , where ε =

(
ε(i,j)

)
1≤i 6=j≤n

and ε′ =
(
ε′(i,j)

)
1≤i6=j≤n

. Thus

lij(x) = ηlij(x′) for 1 ≤ i, j ≤ n with i 6= j and so

(α2 − α
(2)
2 )(x2 − ηx′2) + · · ·+ (αn − α(2)

n )(xn − ηx′n) = 0.

Since K is a primitive extension of Q and α2, . . . , αn are Q-linearly inde-
pendent, it follows that α2 − α

(2)
2 , . . . , αn − α

(2)
n are also Q-linearly inde-

pendent. Hence we infer that x = ηx′ with η ∈ Z∗S . But by assumption
(x2, . . . , xn, p1 . . . ps) = 1 and (x′2, . . . , x

′
n, p1 . . . ps) = 1, hence η = ±1 fol-

lows. Thus we have shown that different solutions of (1.3) lead to different
solutions of the unit equation (3.4).

Now suppose that equation (1.3) has more than two solutions cor-
responding to the same δ1. Then for every fixed i, j, k, equation (3.4)
has also at least three solutions. Equation (3.4) can be considered as an
equation of the type (2.1), where G is the subgroup of C∗ generated by

{
ϕ(θ)

θ
,
ϕ(ε1)

ε1
, . . . ,

ϕ(εt)
εt

,
χ(θ)

θ
,
χ(ε1)

ε1
, . . . ,

χ(εt)
εt

}
.

Thus by Lemma 4 there exists a finite set C1 of pairs (κ1, κ2) ∈ (C∗)2

which is independent of I such that

ρ1 = κ1η1 and ρ2 = κ2η2

with (κ1, κ2) ∈ C1 and with some fixed η1, η2 ∈ G. Furthermore, by Lem-
ma 4

#C1 ≤ 2 · e(2t+4)3020 ≤ 2 · e(n(n−1)(s+1)+4)3020
:= c1(n, s).
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For the moment fix (κ1, κ2) ∈ (C∗)2. Then
(
η1

ε(i,j)

ε(k,i) , η2
ε(j,k)

ε(k,i)

)
is a

solution of the equation

(3.5) κ1u
′ + κ2v

′ = 1 in u′, v′ ∈ G.

But equation (3.5) leads to the equation

(3.6) u′′ + v′′ = 1 in (u′′, v′′) ∈ G′

where G′ is the subgroup of (C∗)2 generated by
{

(κ1, 1) ,

(
ϕ(θ)

θ
, 1

)
,

(
ϕ(ε1)

ε1
, 1

)
, . . . ,

(
ϕ(εt)

εt
, 1

)
,

(
χ(θ)

θ
, 1

)
,

(
χ(ε1)

ε1
, 1

)
, . . . ,

(
χ(εt)

εt
, 1

)
,

(1, κ2) ,

(
1,

ϕ(θ)
θ

)
,

(
1,

ϕ(ε1)
ε1

)
, . . . ,

(
1,

ϕ(εt)
εt

)
,

(
1,

χ(θ)
θ

)
,

(
1,

χ(ε1)
ε1

)
, . . . ,

(
1,

χ(εt)
εt

)}
.

Then
(
κ1η1

ε(i,j)

ε(k,i) , κ2η2
ε(j,k)

ε(k,i)

)
is a solution of equation (3.6), which by Lem-

ma 3 has at most

28(4t+6)+8 ≤ 28(2n(n−1)(s+1)+6)+8 := c2(n, s)

solutions. Thus, allowing now (κ1, κ2) to vary through C1, ρ1
ε(i,j)

ε(k,i) =

κ1η1
ε(i,j)

ε(k,i) can assume at most c(n, s) := c1(n, s) · c2(n, s) different values

and so does δ
(i,j)
1

δ
(k,i)
1

· ε(i,j)

ε(k,i) .

Taking k = 1 this yields that for every distinct i, j,

δ
(i,j)
1 ε(i,j) = µijδ

(1,i)
1 ε(1,i),

where µi,j can assume at most c(n, s) values. Put i := 2, j := 3, L :=
K(1)K(2)K(3) and l := [L : K2,3]. Taking the L/Q-norm of the above
equation and using (3.2) we have

(I/c)l Z∗S 3 NL/Q(δ(2,3)
1 ε(2,3)) = NL/Q(δ(1,2)

1 ) ·NL/Q(ε(1,2)) ·NL/Q(µ2,3).
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However, c and δ1 are fixed and NL/Q(µ2,3) can take at most c(n, s) distinct
values. So it follows that apart from a factor from Z∗S , I can assume also at
most c(n, s) distinct values. Now a simple computation proves the bound
for the number of exceptional I’s, given in Theorem 1.

If I does not take any of these values, then the number of solutions
of (1.3) is at most the product of the number of solutions of (3.4) and
the number of the possibilities for δ1. Because of the choice of I (3.4) has
at most 2 solutions. Further, by Lemma 5 we have at most Ψ(I) choices
for δ1. This completes the proof of Theorem 1.
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K. Győry, for his help in writing this paper, and the referees, for their
valuable remarks.

References

[1] F. Beukers and H. P. Schlickewei, The equation x+y = 1 in finitely generated

groups, Acta Arith. 78 (1996), 189–199.

[2] J. -H. Evertse, The number of solutions of decomposable form equations, Invent.

Math. 122 (1995), 559–601.

[3] J. -H. Evertse and K. Gy}ory, On unit equations and decomposable form equa-

tions, J. Reine Angew. Math. 358 (1985), 6–19.

[4] J. -H. Evertse and K. Gy}ory, The number of families of solutions of decompos-

able form equations, Acta Arith. 80 (1997), 367–394.

[5] J. -H. Evertse, K. Gy}ory, C. L. Stewart and R. Tijdeman, S-unit equations

in two unknowns, Invent. Math. 92 (1988), 461–477.

[6] J. -H. Evertse and H. P. Schlickewei, The absolute subspace theorem and

linear equations with unknowns from a multiplicative group, Number Theory in
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