A. Baker's conjecture and Hausdorff dimension

By V. BERESNEVICH (Minsk) and V. BERNIK (Minsk)

Dedicated to the 60th birthday of Professor Kálmán Györy

Abstract

It this paper we discuss an application of the Hausdorff dimension to the set of very well multiplicatively approximable points $\left(x, \ldots, x^{n}\right)$. In 1998 D. Kleinbock and G. Margulis proved A. Baker's conjecture stating that this set is of measure zero. We show that for any natural n multiplicatively approximable points (x, \ldots, x^{n}) to order $1+\varepsilon$ form a set of Hausdorff dimension at least $2 /(1+\varepsilon)$. It is conjectured that this number is the exact value of the dimension. We also prove this conjecture for $n=2$.

Introduction

We will use the following notation. The Vinogradov symbol $\ll(\gg)$ means ' $\leq(\geq)$ up to a positive constant multiplier'; $a \asymp b$ is equivalent to $a \ll b \ll a$. The Lebesgue measure of $A \subset \mathbb{R}$ is denoted by $|A|$. We denote by \mathcal{P}_{n} the set of polynomials $P \in \mathbb{Z}[x]$ with $\operatorname{deg} P \leq n$. Given a polynomial $P(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$, we define the height of P as $H(P)=\max \left\{\left|a_{0}\right|, \ldots,\left|a_{n}\right|\right\}$.

Let $\varepsilon>0, n \in \mathbb{N}$ and $S_{n}(\varepsilon)$ denote the set of $x \in \mathbb{R}$ such that the inequality

$$
\begin{equation*}
|P(x)|<H(P)^{-n(1+\varepsilon)} \tag{1}
\end{equation*}
$$

has infinitely many solutions $P \in \mathcal{P}_{n}$. In 1932 K . Mahler, in his classification of real numbers, conjectured that for any $\varepsilon>0$ the Lebesgue measure
of $S_{n}(\varepsilon)$ is zero. Mahler's problem was settled by V. Sprindzuk [5] in 1964. The concept of Hausdorff dimension (see [4]) makes it possible to differ sets of measure zero. In particular, this was applied to $S_{n}(\varepsilon)$. In 1970
A. Baker and W. Schmidt [2] established a lower bound for $\operatorname{dim} S_{n}(\varepsilon)$, the Hausdorff dimension of $S_{n}(\varepsilon)$. Later it was proved by V. Bernik [3] that this value is also an upper bound for $\operatorname{dim} S_{n}(\varepsilon)$ resulting in

$$
\begin{equation*}
\operatorname{dim} S_{n}(\varepsilon)=\frac{n+1}{n+1+n \varepsilon} \tag{2}
\end{equation*}
$$

In 1975 A . BaKER raised a problem by replacing the right hand side of (1) with the function $\Pi_{+}(P)^{-1-\varepsilon}$, where $P(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathcal{P}_{n}$ and $\Pi_{+}(P)=\prod_{i=1}^{n} \max \left(1,\left|a_{i}\right|\right)$. Given $\varepsilon>0$ and $n \in \mathbb{N}$, let $M_{n}(\varepsilon)$ be the set of $x \in \mathbb{R}$ such that the inequality

$$
\begin{equation*}
|P(x)|<\Pi_{+}(P)^{-1-\varepsilon} \tag{3}
\end{equation*}
$$

has infinitely many solutions $P \in \mathcal{P}_{n}$. A. BAKER [1] conjectured that for any $n \in \mathbb{N}$ one has $\left|M_{n}(\varepsilon)\right|=0$ for any $\varepsilon>0$.

Notice that Baker's conjecture is stronger than that of Mahler. Indeed, since $H(P)^{n} \geq \Pi_{+}(P)$, we have $H(P)^{-(1+\varepsilon) n} \leq \Pi_{+}(P)^{-(1+\varepsilon)}$. Therefore, if (1) is soluble infinitely often, then so is (3). In particular, it means that

$$
\begin{equation*}
S_{n}(\varepsilon) \subset M_{n}(\varepsilon) \tag{4}
\end{equation*}
$$

Baker's conjecture was proved by D. Kleinbock and G. Margulis [7] in 1998.

As in the case of $S_{n}(\varepsilon)$, it is also of interest to determine the Hausdorff dimension of $M_{n}(\varepsilon)$. We will use the following properties [4]:

1) $\operatorname{dim} A \leq \operatorname{dim} B$ for any $A, B \subset \mathbb{R}$ with $A \subset B$;
2) $\operatorname{dim} A=\sup _{i=1,2, \ldots} \operatorname{dim} A_{i}$, where $A=\bigcup_{i=1}^{\infty} A_{i}$ and $A_{i} \subset \mathbb{R}$.

Conjectures and results

First of all, notice that

$$
\begin{equation*}
M_{k}(\varepsilon) \subset M_{n}(\varepsilon) \quad \text { for any } k, n \in \mathbb{N} \text { with } k<n \tag{5}
\end{equation*}
$$

It follows from (4) and (5) that $S_{1}(\varepsilon) \subset M_{n}(\varepsilon)$ for any $n \in \mathbb{N}$. Therefore, we have $\operatorname{dim} M_{n}(\varepsilon) \geq \operatorname{dim} S_{1}(\varepsilon)$. Now applying (2) gives

Theorem 1. For any $n \in \mathbb{N}$ and any $\varepsilon>0$

$$
\begin{equation*}
\operatorname{dim} M_{n}(\varepsilon) \geq \frac{2}{2+\varepsilon} . \tag{6}
\end{equation*}
$$

Conjecture H1. For any $n \in \mathbb{N}$ and $\varepsilon>0$ one has

$$
\operatorname{dim} M_{n}(\varepsilon)=\frac{2}{2+\varepsilon} .
$$

This conjecture is trivial for $n=1$. Indeed, it is easy to notice that for any $\delta>0$ we have the inclusion $M_{1}(\varepsilon) \subset S_{1}(\varepsilon-\delta)$. Therefore, for any δ with $0<\delta<\varepsilon$ we have $\operatorname{dim} M_{1}(\varepsilon) \leq \operatorname{dim} S_{1}(\varepsilon-\delta)$. By (2), we conclude that $\operatorname{dim} M_{1}(\varepsilon) \leq 2 /(2+\varepsilon-\delta)$. Since $\delta \in(0, \varepsilon)$ is arbitrary, we have $\operatorname{dim} M_{1}(\varepsilon) \leq 2 /(2+\varepsilon)$. In this paper we also prove the conjecture for $n=2$.

Theorem 2. For any $\varepsilon>0$ we have

$$
\operatorname{dim} M_{2}(\varepsilon)=\frac{2}{2+\varepsilon} .
$$

Proof of Theorem 2. By (6), it is sufficient to show that $\operatorname{dim} M_{2}(\varepsilon) \leq$ $2 /(2+\varepsilon)$. Let $\left\{I_{k}\right\}_{k=1}^{\infty}$ be a collection of closed intervals such that $\mathbb{R} \backslash$ $\{0\}=\bigcup_{k=1}^{\infty} I_{k}$. The existence of such a collection is easily verified. Then, $M_{2}(\varepsilon)=\{0\} \cup\left(\bigcup_{k=1}^{\infty} M_{2}(\varepsilon) \cap I_{k}\right)$. Since $\operatorname{dim}\{0\}=0$, by property 2 of Hausdorff dimension above, we have the inequality $\operatorname{dim} M_{2}(\varepsilon) \leq$ $\sup _{k=1,2, \ldots} \operatorname{dim}\left(M_{2}(\varepsilon) \cap I_{k}\right)$. Therefore, it is sufficient to show that $\operatorname{dim}\left(M_{2}(\varepsilon) \cap I_{k}\right) \leq 2 /(2+\varepsilon)$ for any k. Let I be one of the intervals I_{k}. There is no loss of generality in assuming that $I=[a, b]$ with $0<a<b<\infty$.

Let $x \in I$ and $P(t)=a_{2} t^{2}+a_{1} t+a_{0} \in \mathcal{P}_{2}$ be a solution of (3). It follows from (3) that

$$
\begin{aligned}
\left|a_{0}\right| & =\left|P(x)-a_{2} x^{2}-a_{1} x\right| \leq \Pi_{+}(P)^{-1-\varepsilon}+\left|a_{2}\right| x^{2}+\left|a_{1}\right| x \\
& \leq 1+\left|a_{2}\right| b^{2}+\left|a_{1}\right| b \leq\left(1+b+b^{2}\right) \max \left\{\left|a_{1}\right|,\left|a_{2}\right|\right\} .
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\max \left\{\left|a_{1}\right|,\left|a_{2}\right|\right\} \leq H(P) \leq\left(1+b+b^{2}\right) \max \left\{\left|a_{1}\right|,\left|a_{2}\right|\right\} . \tag{7}
\end{equation*}
$$

Now define the constant

$$
\begin{equation*}
C=\min (a, 1 / 2) /\left(1+b+b^{2}\right) . \tag{8}
\end{equation*}
$$

Let $M_{2}^{1}(\varepsilon, I)$ be the subset of $M_{2}(\varepsilon) \cap I$ consisting of $x \in I$ such that there are infinitely many $P \in \mathcal{P}_{2}$ satisfying

$$
\left\{\begin{array}{l}
|P(x)|<\Pi_{+}(P)^{-1-\varepsilon}, \tag{9}\\
\left|P^{\prime}(x)\right|<C H(P) .
\end{array}\right.
$$

Let $x \in I$ and $P(t)=a_{2} t^{2}+a_{1} t+a_{0}$ be a solution of (9). We have the following two possibilities:

1) $\left|a_{2}\right| \geq\left|a_{1}\right|$;
2) $\left|a_{1}\right| \geq\left|a_{2}\right|$.

Consider the first one. It follows from (7) and (9) that

$$
\left|2 x+a_{1} / a_{2}\right| \leq C H(P) /\left|a_{2}\right| \leq C\left(1+b+b^{2}\right) \leq a .
$$

Since $x \geq a$, we have $\left|a_{1} / a_{2}\right|=\left|2 x-\left(2 x+a_{1} / a_{2}\right)\right| \geq|2 x|-\left|2 x+a_{1} / a_{2}\right| \geq$ $2 a-a=a$. Therefore, we obtain $a \leq\left|a_{1} / a_{2}\right| \leq 1$.

Consider the other possibility: $\left|a_{1}\right| \geq\left|a_{2}\right|$. It follows from (7) and (9) that

$$
\left|2 x a_{2} / a_{1}+1\right| \leq C H(P) /\left|a_{1}\right| \leq C\left(1+b+b^{2}\right) \leq 1 / 2 .
$$

Hence, $\left|2 x a_{2} / a_{1}\right|=\left|1-\left(2 x a_{2} / a_{1}+1\right)\right| \geq 1-\left|2 x a_{2} / a_{1}+1\right| \geq 1-1 / 2=1 / 2$. Since $x \leq b$, we have $\left|a_{2} / a_{1}\right| \geq 1 /(4 b)$. Therefore, we obtain $1 /(4 b) \leq$ $\left|a_{2} / a_{1}\right| \leq 1$.

As a result we conclude that $\left|a_{1}\right| \asymp\left|a_{2}\right|$ for both the possibilities. Moreover, by (7), we have $\left|a_{1}\right| \asymp\left|a_{2}\right| \asymp H(P)$. Therefore, $\Pi_{+}(P) \asymp H(P)^{2}$ and the first inequality of (9) implies that

$$
\begin{equation*}
|P(x)| \ll H(P)^{-2(1+\varepsilon)} . \tag{10}
\end{equation*}
$$

Now if $x \in M_{2}^{1}(\varepsilon, I)$, then inequality (10) holds for infinitely many polynomials $P \in \mathcal{P}_{2}$ and for any $\delta>0$ the inequality $|P(x)|<H(P)^{-2(1+\varepsilon-\delta)}$ has infinitely many solutions $P \in \mathcal{P}_{2}$. It follows that $M_{2}^{1}(\varepsilon, I) \subset S_{2}(\varepsilon-\delta)$ for any δ with $0<\delta<\varepsilon$. By (2), we obtain

$$
\operatorname{dim} M_{2}^{1}(\varepsilon, I) \leq \operatorname{dim} S_{2}(\varepsilon-\delta)=\frac{3}{3+2(\varepsilon-\delta)}
$$

Since $\delta \in(0, \varepsilon)$ is arbitrary, we get

$$
\begin{equation*}
\operatorname{dim} M_{2}^{1}(\varepsilon, I) \leq \frac{3}{3+2 \varepsilon}<\frac{2}{2+\varepsilon} . \tag{11}
\end{equation*}
$$

Now we consider the set $M_{2}^{2}(\varepsilon, I)=\left(M_{2}(\varepsilon) \cap I\right) \backslash M_{2}^{1}(\varepsilon, I)$. It is easy to verify that for any $x \in M_{2}^{2}(\varepsilon, I)$ the system

$$
\left\{\begin{array}{l}
|P(x)|<\Pi_{+}(P)^{-1-\varepsilon} \tag{12}\\
\left|P^{\prime}(x)\right| \geq C H(P)
\end{array}\right.
$$

holds for infinitely many polynomials $P \in \mathcal{P}_{2}$. Given a polynomial $P \in \mathcal{P}_{2}$, let $\sigma(P)$ denote the set of $x \in I$ satisfying (12). It is easy to notice that $\sigma(P)$ is a union of at most three intervals, say $\sigma^{i}(P)$ with $i=1,2,3$. Also if $x \in M_{2}^{2}(\varepsilon, I)$ then x belongs to $\sigma^{i}(P)$ for infinitely many different polynomials $P \in \mathcal{P}_{2}$.

Fix $P \in \mathcal{P}_{2}$ and $x, y \in \sigma^{i}(P)$. By the Mean Value Theorem, we have $P(x)-P(y)=P^{\prime}(\theta)(x-y)$, where θ is a point between x and y. Since $\sigma^{i}(P)$ is an interval, $\theta \in \sigma^{i}(P)$ and, therefore, $\left|P^{\prime}(\theta)\right| \geq C H(P)$. Hence,

$$
|x-y| \leq \frac{|P(x)|+|P(y)|}{\left|P^{\prime}(\theta)\right|} \leq \frac{2 \Pi_{+}(P)^{-1-\varepsilon}}{C H(P)} .
$$

Thus,

$$
\begin{equation*}
\left|\sigma^{i}(P)\right| \ll \Pi_{+}(P)^{-1-\varepsilon} \cdot H(P)^{-1} . \tag{13}
\end{equation*}
$$

Let $2 /(2+\varepsilon)<\rho<1$. We have the following inequality

$$
\begin{align*}
\sum_{P \in \mathcal{P}_{2}} & \sum_{i=1}^{3}\left|\sigma^{i}(P)\right|^{\rho} \tag{14}\\
& \ll \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \sum_{2^{k} \leq\left|a_{1}\right|<2^{k+1}} \sum_{2^{l} \leq\left|a_{2}\right|<2^{l+1}} \sum_{a_{0}} \sum_{i=1}^{3}\left|\sigma^{i}(P)\right|^{\rho},
\end{align*}
$$

where $P(x)=a_{2} x^{2}+a_{1} x+a_{0}$. If $2^{k} \leq\left|a_{1}\right|<2^{k+1}$ and $2^{l} \leq\left|a_{2}\right|<2^{l+1}$ then, by (13), $\left|\sigma^{i}(P)\right| \ll 2^{-(1+\varepsilon)(k+l)-\max \{k, l\}}$. Moreover, by (7), the number of different a_{0} such that $\sigma(P) \neq \emptyset$ is $\ll 2^{\max \{k, l\}}$. Now it follows
from (14) that

$$
\begin{aligned}
& \sum_{P \in \mathcal{P}_{2}} \sum_{i=1}^{3}\left|\sigma^{i}(P)\right|^{\rho} \\
& \quad \ll \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \sum_{2^{k} \leq\left|a_{1}\right|<2^{k+1}} \sum_{2^{l} \leq\left|a_{2}\right|<2^{l+1}} 2^{\max \{k, l\}} \cdot\left(2^{-(1+\varepsilon)(k+l)-\max \{k, l\}}\right)^{\rho} \\
& \quad<\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} 2^{k} \cdot 2^{l} \cdot 2^{\max \{k, l\}} \cdot\left(2^{-(1+\varepsilon)(k+l)-\max \{k, l\}}\right)^{\rho} \\
& \quad=\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} 2^{(1-\rho(1+\varepsilon))(k+l)+(1-\rho) \max \{k, l\}} \\
& \quad \leq \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} 2^{(1-\rho(1+\varepsilon))(k+l)+(1-\rho)(k+l)}=\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} 2^{(2-\rho(2+\varepsilon))(k+l)} \\
& \quad=\left(\sum_{k=0}^{\infty} 2^{(2-\rho(2+\varepsilon)) k}\right) \cdot\left(\sum_{l=0}^{\infty} 2^{(2-\rho(2+\varepsilon)) l}\right) .
\end{aligned}
$$

Since $\rho>2 /(2+\varepsilon)$, we have $2-\rho(2+\varepsilon)<0$. It is now easy to see that the sum $\sum_{l=0}^{\infty} 2^{(2-\rho(2+\varepsilon)) l}$ converges. Therefore, we have

$$
\begin{equation*}
\sum_{P \in \mathcal{P}_{2}} \sum_{i=1}^{3}\left|\sigma^{i}(P)\right|^{\rho}<\infty \tag{15}
\end{equation*}
$$

for any ρ with $2 /(2+\varepsilon)<\rho<1$. By Lemma 4 in [4, pp. 94], the Hausdorff dimension of the set consisting of $x \in I$, which belongs to infinitely many intervals $\sigma^{i}(P)$, is at most ρ. This set is exactly $M_{2}^{2}(\varepsilon, I)$. Since $\rho \in$ $(2 /(2+\varepsilon), 1)$ is arbitrary, we have $\operatorname{dim} M_{2}^{2}(\varepsilon, I) \leq 2 /(2+\varepsilon)$. Combining this and (11) completes the proof of Theorem 2.

References

[1] A. Baker, Transcendental number theory, Cambridge Univ. Press, 1975.
[2] A. Baker and W. Schmidt, Diophantine approximation and Hausdorff dimension, Proc. London Math. Soc. 21 (1970), 1-11.
[3] V. I. Bernik, Application of Hausdorff dimension in the theory of Diophantine approximation, Acta Arithmetica 42 (1983), 219-253. (in Russian)
[4] V. I. Bernik and Yu. V. Melnichuk, Diophantine approximation and Hausdorff dimension, Minsk, 1988. (in Russian)
[5] V. G. Sprindžuk, Mahler's problem in the metric theory of numbers, Amer. Math. Soc., Translations of Mathematical Monographs, vol. 25, 1969.
[6] V. G. Sprindžuk, Achievements and problems in Diophantine approximation theory, Uspekhi Mat. Nauk 35 (1980), 3-68; English translation in Russian Math. Surveys 35 (1980), 1-80.
[7] D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. Math. 148 (1988), 339-360.
V. BERESNEVICH

INSTITUTE OF MATHEMATICS
THE BELARUS ACADEMY OF SCIENCES
220072, SURGANOVA 11, MINSK
BELARUS
E-mail: beresnevich@im.bas-net.by
V. BERNIK

INSTITUTE OF MATHEMATICS
THE BELARUS ACADEMY OF SCIENCES
220072, SURGANOVA 11, MINSK
BELARUS
E-mail: bernik@im.bas-net.by
(Received August 5, 1999)

