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A. Baker’s conjecture and Hausdorff dimension

By V. BERESNEVICH (Minsk) and V. BERNIK (Minsk)

Dedicated to the 60th birthday of Professor Kálmán Győry

Abstract. It this paper we discuss an application of the Hausdorff dimension to
the set of very well multiplicatively approximable points (x, . . . , xn). In 1998 D. Klein-
bock and G. Margulis proved A. Baker’s conjecture stating that this set is of measure
zero. We show that for any natural n multiplicatively approximable points (x, . . . , xn)
to order 1 + ε form a set of Hausdorff dimension at least 2/(1 + ε). It is conjectured
that this number is the exact value of the dimension. We also prove this conjecture for
n = 2.

Introduction

We will use the following notation. The Vinogradov symbol ¿ (À)
means ‘≤ (≥) up to a positive constant multiplier’; a ³ b is equivalent
to a ¿ b ¿ a. The Lebesgue measure of A ⊂ R is denoted by |A|. We
denote by Pn the set of polynomials P ∈ Z[x] with deg P ≤ n. Given a
polynomial P (x) = anxn + · · ·+a1x+a0 ∈ Z[x], we define the height of P
as H(P ) = max{|a0|, . . . , |an|}.

Let ε > 0, n ∈ N and Sn(ε) denote the set of x ∈ R such that the
inequality

(1) |P (x)| < H(P )−n(1+ε)

has infinitely many solutions P ∈ Pn. In 1932 K. Mahler, in his classifica-
tion of real numbers, conjectured that for any ε > 0 the Lebesgue measure
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of Sn(ε) is zero. Mahler’s problem was settled by V. Sprindzuk [5] in
1964. The concept of Hausdorff dimension (see [4]) makes it possible to
differ sets of measure zero. In particular, this was applied to Sn(ε). In 1970
A. Baker and W. Schmidt [2] established a lower bound for dimSn(ε),
the Hausdorff dimension of Sn(ε). Later it was proved by V. Bernik [3]
that this value is also an upper bound for dimSn(ε) resulting in

(2) dim Sn(ε) =
n + 1

n + 1 + nε
.

In 1975 A. Baker raised a problem by replacing the right hand side of
(1) with the function Π+(P )−1−ε, where P (x) = anxn+· · ·+a1x+a0 ∈ Pn

and Π+(P ) =
∏n

i=1 max(1, |ai|). Given ε > 0 and n ∈ N, let Mn(ε) be the
set of x ∈ R such that the inequality

(3) |P (x)| < Π+(P )−1−ε

has infinitely many solutions P ∈ Pn. A. Baker [1] conjectured that for
any n ∈ N one has |Mn(ε)| = 0 for any ε > 0.

Notice that Baker’s conjecture is stronger than that of Mahler. In-
deed, since H(P )n ≥ Π+(P ), we have H(P )−(1+ε)n ≤ Π+(P )−(1+ε).
Therefore, if (1) is soluble infinitely often, then so is (3). In particular, it
means that

(4) Sn(ε) ⊂ Mn(ε).

Baker’s conjecture was proved by D. Kleinbock and G. Margulis [7]
in 1998.

As in the case of Sn(ε), it is also of interest to determine the Hausdorff
dimension of Mn(ε). We will use the following properties [4]:

1) dim A ≤ dim B for any A, B ⊂ R with A ⊂ B;
2) dim A = supi=1,2,... dim Ai, where A =

⋃∞
i=1 Ai and Ai ⊂ R.

Conjectures and results

First of all, notice that

(5) Mk(ε) ⊂ Mn(ε) for any k, n ∈ N with k < n.

It follows from (4) and (5) that S1(ε) ⊂ Mn(ε) for any n ∈ N. Therefore,
we have dim Mn(ε) ≥ dim S1(ε). Now applying (2) gives
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Theorem 1. For any n ∈ N and any ε > 0

(6) dim Mn(ε) ≥ 2
2 + ε

.

Conjecture H1. For any n ∈ N and ε > 0 one has

dim Mn(ε) =
2

2 + ε
.

This conjecture is trivial for n = 1. Indeed, it is easy to notice that
for any δ > 0 we have the inclusion M1(ε) ⊂ S1(ε − δ). Therefore, for
any δ with 0 < δ < ε we have dim M1(ε) ≤ dim S1(ε − δ). By (2), we
conclude that dim M1(ε) ≤ 2/(2 + ε− δ). Since δ ∈ (0, ε) is arbitrary, we
have dim M1(ε) ≤ 2/(2 + ε). In this paper we also prove the conjecture
for n = 2.

Theorem 2. For any ε > 0 we have

dim M2(ε) =
2

2 + ε
.

Proof of Theorem 2. By (6), it is sufficient to show that dim M2(ε) ≤
2/(2 + ε). Let {Ik}∞k=1 be a collection of closed intervals such that R \
{0} =

⋃∞
k=1 Ik. The existence of such a collection is easily verified.

Then, M2(ε) = {0} ∪ (
⋃∞

k=1 M2(ε) ∩ Ik). Since dim{0} = 0, by prop-
erty 2 of Hausdorff dimension above, we have the inequality dimM2(ε) ≤
supk=1,2,... dim(M2(ε) ∩ Ik). Therefore, it is sufficient to show that
dim(M2(ε) ∩ Ik) ≤ 2/(2 + ε) for any k. Let I be one of the inter-
vals Ik. There is no loss of generality in assuming that I = [a, b] with
0 < a < b < ∞.

Let x ∈ I and P (t) = a2t
2 + a1t + a0 ∈ P2 be a solution of (3). It

follows from (3) that

|a0| = |P (x)− a2x
2 − a1x| ≤ Π+(P )−1−ε + |a2|x2 + |a1|x

≤ 1 + |a2|b2 + |a1|b ≤ (1 + b + b2)max{|a1|, |a2|}.

Therefore, we have

(7) max{|a1|, |a2|} ≤ H(P ) ≤ (1 + b + b2)max{|a1|, |a2|}.
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Now define the constant

(8) C = min(a, 1/2)/(1 + b + b2).

Let M1
2 (ε, I) be the subset of M2(ε)∩ I consisting of x ∈ I such that there

are infinitely many P ∈ P2 satisfying

(9)
{ |P (x)| < Π+(P )−1−ε,

|P ′(x)| < CH(P ).

Let x ∈ I and P (t) = a2t
2 + a1t + a0 be a solution of (9). We have the

following two possibilities:

1) |a2| ≥ |a1|;
2) |a1| ≥ |a2|.
Consider the first one. It follows from (7) and (9) that

|2x + a1/a2| ≤ CH(P )/|a2| ≤ C(1 + b + b2) ≤ a.

Since x ≥ a, we have |a1/a2| = |2x− (2x + a1/a2)| ≥ |2x| − |2x + a1/a2| ≥
2a− a = a. Therefore, we obtain a ≤ |a1/a2| ≤ 1.

Consider the other possibility: |a1| ≥ |a2|. It follows from (7) and (9)
that

|2xa2/a1 + 1| ≤ CH(P )/|a1| ≤ C(1 + b + b2) ≤ 1/2.

Hence, |2xa2/a1| = |1−(2xa2/a1+1)| ≥ 1−|2xa2/a1+1| ≥ 1−1/2 = 1/2.
Since x ≤ b, we have |a2/a1| ≥ 1/(4b). Therefore, we obtain 1/(4b) ≤
|a2/a1| ≤ 1.

As a result we conclude that |a1| ³ |a2| for both the possibilities.
Moreover, by (7), we have |a1| ³ |a2| ³ H(P ). Therefore, Π+(P ) ³ H(P )2

and the first inequality of (9) implies that

(10) |P (x)| ¿ H(P )−2(1+ε).

Now if x ∈ M1
2 (ε, I), then inequality (10) holds for infinitely many poly-

nomials P ∈ P2 and for any δ > 0 the inequality |P (x)| < H(P )−2(1+ε−δ)

has infinitely many solutions P ∈ P2. It follows that M1
2 (ε, I) ⊂ S2(ε− δ)

for any δ with 0 < δ < ε. By (2), we obtain

dim M1
2 (ε, I) ≤ dim S2(ε− δ) =

3
3 + 2(ε− δ)

.
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Since δ ∈ (0, ε) is arbitrary, we get

(11) dim M1
2 (ε, I) ≤ 3

3 + 2ε
<

2
2 + ε

.

Now we consider the set M2
2 (ε, I) = (M2(ε)∩ I) \M1

2 (ε, I). It is easy
to verify that for any x ∈ M2

2 (ε, I) the system

(12)
{ |P (x)| < Π+(P )−1−ε,

|P ′(x)| ≥ CH(P )

holds for infinitely many polynomials P ∈ P2. Given a polynomial P ∈ P2,
let σ(P ) denote the set of x ∈ I satisfying (12). It is easy to notice that
σ(P ) is a union of at most three intervals, say σi(P ) with i = 1, 2, 3.
Also if x ∈ M2

2 (ε, I) then x belongs to σi(P ) for infinitely many different
polynomials P ∈ P2.

Fix P ∈ P2 and x, y ∈ σi(P ). By the Mean Value Theorem, we have
P (x) − P (y) = P ′(θ)(x − y), where θ is a point between x and y. Since
σi(P ) is an interval, θ ∈ σi(P ) and, therefore, |P ′(θ)| ≥ CH(P ). Hence,

|x− y| ≤ |P (x)|+ |P (y)|
|P ′(θ)| ≤ 2Π+(P )−1−ε

CH(P )
.

Thus,

(13) |σi(P )| ¿ Π+(P )−1−ε ·H(P )−1.

Let 2/(2 + ε) < ρ < 1. We have the following inequality

∑

P∈P2

3∑

i=1

|σi(P )|ρ(14)

¿
∞∑

k=0

∞∑

l=0

∑

2k≤|a1|<2k+1

∑

2l≤|a2|<2l+1

∑
a0

3∑

i=1

|σi(P )|ρ,

where P (x) = a2x
2 + a1x + a0. If 2k ≤ |a1| < 2k+1 and 2l ≤ |a2| < 2l+1

then, by (13), |σi(P )| ¿ 2−(1+ε)(k+l)−max{k,l}. Moreover, by (7), the
number of different a0 such that σ(P ) 6= ∅ is ¿ 2max{k,l}. Now it follows
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from (14) that

∑

P∈P2

3∑

i=1

|σi(P )|ρ

¿
∞∑

k=0

∞∑

l=0

∑

2k≤|a1|<2k+1

∑

2l≤|a2|<2l+1

2max{k,l} ·
(
2−(1+ε)(k+l)−max{k,l}

)ρ

¿
∞∑

k=0

∞∑

l=0

2k · 2l · 2max{k,l} ·
(
2−(1+ε)(k+l)−max{k,l}

)ρ

=
∞∑

k=0

∞∑

l=0

2(1−ρ(1+ε))(k+l)+(1−ρ) max{k,l}

≤
∞∑

k=0

∞∑

l=0

2(1−ρ(1+ε))(k+l)+(1−ρ)(k+l) =
∞∑

k=0

∞∑

l=0

2(2−ρ(2+ε))(k+l)

=

( ∞∑

k=0

2(2−ρ(2+ε))k

)
·
( ∞∑

l=0

2(2−ρ(2+ε))l

)
.

Since ρ > 2/(2 + ε), we have 2 − ρ(2 + ε) < 0. It is now easy to see that
the sum

∑∞
l=0 2(2−ρ(2+ε))l converges. Therefore, we have

(15)
∑

P∈P2

3∑

i=1

|σi(P )|ρ < ∞

for any ρ with 2/(2+ε) < ρ < 1. By Lemma 4 in [4, pp. 94], the Hausdorff
dimension of the set consisting of x ∈ I, which belongs to infinitely many
intervals σi(P ), is at most ρ. This set is exactly M2

2 (ε, I). Since ρ ∈
(2/(2 + ε), 1) is arbitrary, we have dim M2

2 (ε, I) ≤ 2/(2 + ε). Combining
this and (11) completes the proof of Theorem 2. ¤
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