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Fundamental systems of S-units with small height
and their applications to Diophantine equations

By YANN BUGEAUD (Strasbourg)

À Kálmán Győry pour son soixantième anniversaire

Abstract. We give a survey of recent results on fundamental systems of S-units
and their applications to Diophantine equations, including S-unit equations, Thue–
Mahler equations and superelliptic equations. Further, we show how they can be used
in order to considerably improve lower bounds for the greatest prime factor and for the
greatest square-free part of axm + byn, obtained by Kotov and Shorey some twenty
years ago.

1. Introduction

Since works of Thue, Siegel and Mahler, it is known that S-unit equa-
tions and Thue–Mahler equations have only finitely many solutions. How-
ever, one had to wait until Baker’s theory of linear forms in the logarithms
of algebraic numbers to be able to compute effectively upper bounds for
the size of these solutions. Many authors, including Baker, Coates, Győry,
Kotov, Papp and Sprindžuk, provided such estimates, and the current best
bounds are due to Bugeaud & Győry (see [10, 11, 25, 26] for references).
As already noticed by Siegel, the proofs involve fundamental (or indepen-
dent) systems of S-units of a suitable number field, with small height. The
most significantly improvements obtained in [10, 11] for effective upper es-
timates for the size of the solutions of S-unit equations and Thue–Mahler
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equations concern the dependence on the set of places S and are achieved
thanks to the use of systems of S-units, whose heights depend only slightly
on S.

This survey paper is organized as follows. The key lemmas are recalled
in Section 2, and we display some of the new estimates for the size of the
solutions of classical Diophantine equations in Section 3, including S-unit
equations, Thue–Mahler equations and superelliptic equations. It appears
that this approach also leads to considerable sharpenings of previous lower
bounds for the greatest prime factor of axm +byn obtained by Kotov [20]
and Shorey [23]. We outline the proofs of our new results in Sections 4
and 5, and we try to point out where is the source of the improvement.
By the same method, we also provide new lower estimates for the greatest
square-free divisor of axm + byn.

In Sections 3 to 5, for sake of simplicity, we do not state our results
in full generality, and we choose to restrict ourselves to the case where the
ground field is the field Q.

2. Notations and the key lemmas

The following notation will be used throughout this work.
For an algebraic number field K of degree d, we denote by OK the

ring of integers in K and by ΩK the set of places on K. We choose a
valuation | · |v for every v ∈ ΩK in the following way: if v is infinite and
corresponds to σ : K → C then we put, for α ∈ K, |α|v = |σ(α)|dv , where
dv = 1 or 2 according as σ(K) is contained in R or not; if v is finite and is
associated to the prime ideal p in K then we put |α|v = N(p)− ordp(α) for
α ∈ K \ {0} and |0|v = 0. The (absolute) height of α ∈ K is defined by

h(α) =
∏

v∈ΩK

max{1, |α|v}1/d.

It depends only on α, and not on the choice of K.
Further, there exists a λ(d) > 0, depending only on d, such that

log h(α) ≥ λ(d) for any non-zero algebraic number α of degree d which is
not a root of unity. For d ≥ 2, Voutier [28] has shown that one can take

λ(d) =
2

d(log(3d))3
,
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while λ(1) = log 2 is suitable.
Let S be a finite subset of ΩK containing the set of infinite places S∞.

Denote by OS the ring of S-integers, and by O∗S the group of S-units in
K. For α ∈ K \ {0}, the ideal (α) generated by α can be uniquely written
in the form a1a2 where the ideal a1 (resp. a2) is composed of prime ideals
outside (resp. inside) S. The S-norm of α, denoted by NS(α), is defined as
N(a1). The S-norm is multiplicative, and, for S = S∞, we have NS(α) =
|NK/Q(α)|. For any α ∈ K\{0}, we see that NS(α) =

∏
v∈S |α|v. Further,

if α ∈ OS \ {0}, then NS(α) is a positive integer and NS(α) ≤ (
h(α)

)d.
Denote by s the cardinality of S. Let v1, . . . , vs−1 be a subset of S, and

let {ε1, . . . , εs−1} be a fundamental system of S-units in K. Denote by RS

the absolute value of the determinant of the matrix (log |εi|vj
)i,j=1,...,s−1.

It is easy to verify that RS is a positive number which is independent
of the choice of v1, . . . , vs−1 and of the fundamental system of S-units
{ε1, . . . , εs−1}. We call RS the S-regulator of K. If in particular S = S∞,
then RS is just the regulator, RK, of K.

Throughout this paper, we stand the notation log∗ a for max{log a, 1}.
As mentioned in the Introduction, upper estimates for the size of the

solutions of S-unit equations depend on the product of the logarithmic
heights of an independent (or a fundamental) system of S-units. That is
the reason why we need independent (or fundamental) systems of S-units
with small height. A result similar to Lemma 1 below has been proved by
Hajdu [19], and we shall also mention works of Brindza [3] and Pethő

[21]. In order to compare the estimates provided by Lemma 1 with pre-
vious ones, we have to bound the new quantity introduced there, namely
the S-regulator. This is the purpose of Lemma 2, which has been indepen-
dently obtained by Bilu [1]. Further, Lemma 3 asserts that every principal
integer ideal in K has a generator with small height. This is very useful
since most of the proofs depend on the factorization of ideals in number
fields, see e.g. [5].

For the proofs of Lemmas 1 to 3 below we refer the reader to [10]. A
variant of Lemma 3 is also proved in [6].

Put

c1 = c1(d, s) =
(
(s− 1)!

)2
/(2s−2ds−1), c′1 = c′1(d, s) = (s− 1)!/ds−1,

c2 = c2(d, s) = c1

(
λ(d)

)2−s
, c′2 = c′2(d, s) = c′1

(
λ(d)

)2−s
,
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and

c3 = c3(d, s) = c1d
s−2/λ(d), c′3 = c′3(d, s) = c′1d

s−2/λ(d).

Lemma 1. There exists in K a fundamental (resp. independent) sys-

tem {ε1, . . . , εs−1} of S-units with the following properties:

s−1∏

i=1

log h(εi) ≤ c1RS (resp. c′1RS);(i)

log h(εi) ≤ c2RS , (resp. c′2RS) i = 1, . . . , s− 1;(ii)

the absolute values of the entries of the inverse matrix(iii)
of (log |εi|vj )i,j=1,...,s−1 do not exceed c3 (resp. c′3).

Denote by hK and r = rK the class number and unit rank of K,
respectively. Let p1, . . . , pt be the prime ideals corresponding to the finite
places in S, and denote by P the largest of the rational primes lying below
p1, . . . , pt. Put c4 = c4(d, r) = 1

2rr+1
(
dλ(d)

)−(r−1).

Lemma 2. If t > 0, then we have

RS ≤ RKhK

t∏

i=1

log N(pi) ≤ RKhK(d log∗ P )t

and

RS ≥ RK

t∏

i=1

log N(pi) ≥ 0.2(log 2)d(log∗ P ).

Lemma 3. For every α ∈ OS \ {0} and every integer n ≥ 1 there

exists an S-unit ε such that

h(εnα) ≤ NS(α)1/d exp
{
n(c4RK + thK log∗ P )

}
.

In the next sections, we will point out numerous consequences of these
three lemmas.
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3. Applications to S-unit equations
and some other classical Diophantine equations

Let K be as in Section 2 and let α, β be non-zero elements of K with

max{h(α), h(β)} ≤ H (H ≥ e).

Consider the S-unit equation

(1) αx + βy = 1 in x, y ∈ O∗S .

When S = S∞ (i.e. t = 0) then (1) is an (ordinary) unit equation. Two
new totally explicit bounds for the size of the solutions of (1) have recently
been given in [10] and by Bombieri [2]. The beginnings of their proofs are
the same and differ slightly from the earlier approach. Namely, assuming
that h(x) is not less than h(y) and using a fundamental system ε1, . . . , εs−1

of S-units of K provided by Lemma 1, we can write

αx = 1− ζβεb1
1 . . . ε

bs−1
s−1 ,

where ζ is a root of unity and the b′is are rational integers. Thus, we have
explained how a fundamental system of S-units occurs. In [10], we then
apply the theory of linear forms in logarithms in order to have a lower
bound for |αx|v, where v is a place on K such that |αx|v ≤ |αx|w, for all
places w. And, as is well known, we encounter the quantity

∏
log h(εi),

which also naturally appears in Bombieri’s method [2]. The latter does
not depend on Baker’s theory and is slightly more difficult to explain,
hence we refer the reader respectively to [10], [2], [6], where all the details
can be found. Here, we quote the main result of [10].

Theorem 1. With the notation of Section 2, all solutions x, y of (1)
satisfy

max{h(x), h(y)}(2)

< exp
{
c5P

dRS(log∗RS)(log∗(PRS)/ log∗ P ) log H
}
,

where

c5 = c5(d, s,K) = 325
(
9d/λ(d)

)s+1
s5s+10.
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Further, if in particular S = S∞ (i.e. t = 0), then the bound in (2) can be

replaced by

exp
{
c6RK(log∗RK) log H

}

where

c6 = c6(d, r,K) = 3r+27(r + 1)5r+17d2−rλ(d)−(r+1).

Compare now Theorem 1 with the earlier bounds (see [13–15], [25],
[26]). The numerical constants have been significantly improved, and this
is essentially a consequence of the recent sharpenings for lower bounds
for linear forms in logarithms, due, in the archimedean case, to Wald-

schmidt [29] and, in the non-archimedean case, to Yu [30]. Here, we are
mostly interested in the dependence on S and, thanks to Lemma 2, we
see that we have managed to replace a factor Rs

K by a factor RK, hence
to remove the dependence on s in the exponent of the regulator. This
improvement also occurs in Theorem 2 (compare with [18], [25], [26]) and
in Theorem 3 below (compare with [25], [26]). It is ultimately the cause
of the significant sharpening stated in Theorem 5.

We now quote a corollary of the main theorem of [11]. For sake of
simplicity, we do not state our result in their full generality.

Theorem 2. Let α be an algebraic number of degree d ≥ 3 and height

less than A (≥ e), and put K = Q(α). Let p1 < · · · < pt be distinct prime

numbers, and put T = {p1, . . . , pt,∞}. Denote by OT the set of T -integers

in Q and let S stand for the set of all extensions to K of the places in T .

We use the same notation as in Section 2. Let 0 6= b ∈ Q with (absolute)

height at most B and with T -norm not exceeding B∗ (≥ e). Then all

solutions x, y ∈ OT of

NK/Q(x + αy) = b

satisfy

max{h(x), h(y)} < B1/d(3)

× exp
{
c7p

N
t RS(log∗RS)

(
log∗(ptRS)/ log∗ pt

)(
RK + thK + log(AB∗)

)}

where N = d(d− 1)(d− 2) and

c7 = c7(d, t,N) = 3t+25t5t+12N3t+4d.
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Further, if t = 0, then the bound in (3) can be replaced by

(4) B1/d exp
{
c8RK(log∗RK)(RK + log(AB∗))

}

where

c8 = c8(d, r) = 3r+26(r + 1)7r+19d4r+2d2(d+r+6).

Remarks. In [11], we prove Theorem 2 without using bounds for S-
unit equations. However, as shown by Győry [16], a slighlty less sharp
estimate can be obtained as a corollary of a more general result on decom-
posable form equations (see below), the proof of which rests on Theorem 1.

Although the constant c8 is huge, the estimate (4) appears to be
sharp enough in some particular applications. Indeed, in [12], we have
delt, among others, with the equation

(5) 5X71 − 4Y 71 = 1.

Our goal was to prove that (5) has no solution (X, Y ) with X or Y a
perfect power. We did not completely solve (5), but the bound (4) was
good enough to show that, for an integer solution (X,Y ) of (5), neither
X nor Y can be an n-th power, for any n ≥ 10700. This was sufficient for
our purpose, since we managed to treat the case n ≤ 10700 by means of
congruence arguments. To be more precise, we had to rework the proof of
Theorem 2 and to use the precise shape of (5) in order to get the above
bound; notice that a direct application of (4) leads to around 101300, which
is far too large.

As is well-known, superelliptic equations

(6) f(x) = ym,

where m ≥ 2 and f(X) ∈ K[X] is an irreducible monic polynomial of
degree n ≥ 2 with mn ≥ 6, reduce to unit equations and Thue equations.
Following this classical method, we apply Theorems 1 and 2 to compute
in [5] new upper bounds for the size of the S-integer solutions of (6), in a
more general setting. To illustrate our new results, we quote the following
corollary of the Proposition of [8], which appears to be crucial for the proof
of Theorem 5 in the next section.

For any polynomial g(X) with integer coefficients, we denote by H(g)
its height, defined as the maximum of the absolute values of its coefficients.
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Theorem 3. Let p1 < · · · < pt be distinct prime numbers and set

T = {p1, . . . , pt,∞}. Let m ≥ 3 be an integer. Let f ∈ Z[X] be a monic

irreducible polynomial of degree n ≥ 2, with height H(f) and discriminant

∆f . Then all the solutions (x, y) ∈ Q2 of (6) with x a T -integer satisfy

h(x) ≤ H(f)m+1(7)

× exp
{(

c9nm(t+1)
)c10n2m(t+1)

pn2m3

t (log∗ pt)tn2m|∆f |5nm
(
log |∆f |

)2n2m}
,

where c9 and c10 are effectively computable positive absolute constants.

We point out that in the previous bounds (see [25, 26]) the exponent
of |∆f | depends linearly on t, the number of prime numbers in T . This
improvement is a direct consequence of the improvements concerning the
dependence on the set of places S obtained in Theorems 1 and 2. Indeed,
to prove (7), we work in a number field K generated by two roots of f , and
we bound the product RKhK (which occurs by applications of Theorem 1,
Theorem 2 and Lemma 2) in terms of DK, the discriminant of K, hence,
ultimately, in terms of ∆f .

Remark. It is possible to slightly improve upon Theorem 3. Indeed,
in (7), one can replace ∆f by the product of its distinct prime factors.
This allows us to sharpen the generalization to arbitrary number fields of
Theorem 5 below, proved in [8].

We recall that, by definition, decomposable form equations over the
rationals are equations of the form

F (x1, . . . , xm) = b in (x1, . . . , xm) ∈ Zm,

where b ∈ Z \ {0} and F ∈ Z[X1, . . . , Xm] is an homogeneous polynomial
which factorizes into linear forms with algebraic coefficients. For instance,
they include Thue equations. It is known that a large class C of decompos-
able form equations ultimately reduce to unit equations. Hence, applying
Theorem 1, Győry [16] proves a new upper bound for the size of the so-
lutions of the equations belonging to C. His results cover the more general
case of S-integer solutions over an arbitrary number field. They include
new upper bounds for the size of the solutions of discriminant form equa-
tions and index form equations, and also the following statement about
polynomials with given discriminant.



Fundamental systems of S-units with small height . . . 287

Theorem 4. Let f(X) ∈ Z[X] be a monic polynomial with degree n

and non-zero discriminant ∆f . Let K be the splitting field of f . Then,

there exists an integer a ∈ Z such that the polynomial f∗(X) := f(X + a)
satisfies

H(f∗) < exp
{(

c11n
c12n|∆f |

)(n+1)!
}

,

where c11 and c12 are effectively computable positive absolute constants.

Proof. This is Corollary 4 of [17], combined with the Lemma of [9]
and inequality (5) of [10]. ¤

The above polynomials f and f∗ have clearly the same discriminant.
Hence, one can deduce from Theorems 3 and 4 an upper bound for |y|,
when x and y are integers satisfying (6), depending only on the discrimi-
nant of f and not on its height.

Corollary 1. Let f ∈ Z[X] be a monic irreducible polynomial of

degree n ≥ 3 and discriminant ∆f . Let (x, y) ∈ Z2 be a solution of (6).
Then there exist effectively computable positive absolute constants c13 and

c14 such that

|y| ≤ exp
{(

(c13mn)c14n|∆f |
)m(n+1)!

}
.

Further, one should mention that Poulakis [22] applied Theorem 1
to establish explicit upper bounds for the size of solutions of a wide class
of Diophantine equations, including elliptic equations and Thue equations.
Namely, let F (X,Y ) ∈ K[X, Y ] be an absolutely irreducible polynomial
and denote by C the algebraic curve defined by the equation F (x, y) = 0
and by K[C] the ring of regular functions on C over K. Assuming that
there is a unit φ in K[C]\K such that 1−φ is also a unit, Poulakis obtained
explicit upper bounds for the size of the algebraic integers x, y ∈ OK

satisfying F (x, y) = 0.

4. The greatest prime factor of axm + byn

when m and n are fixed

Unless the contrary is explicitly stated, the constants c15, . . . , c39 oc-
curring below are effective absolute positive constants.
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In this section and in the next one, we denote by P [z] (resp. by Q[z])
the greatest prime factor (resp. the greatest square-free part) of a ratio-
nal integer z, with the convention that P [−1] = P [1] = P [0] = Q[1] =
Q[−1] = Q[0] = 1. We observe that we always have Q[z] ≤ exp{P [z]}.
Further, we will often use the fact that there exist two numerical con-
stants c15 and c16 such that the t-th prime number belongs to the interval
[c15t log t, c16t log t].

The following lower bound for P [axm + byn] has been proved in [9] in
the case of an arbitrary number field (see also [8]). It considerably improves
previous work by Kotov [20]. Notice that the estimate for Q[axm + byn]
given in Theorem 5 has not been stated explicitly previously.

Theorem 5. Let m ≥ 2 and n ≥ 2 be integers such that mn ≥ 6. Let

a and b be non-zero integers. Then there exist effective absolute constants

c17 > 0 and c18 > 0 and an effective constant c19, depending on m, n, a

and b, such that

Q[axm + byn] ≥ (
log∗max

{|x|, |y|})1/(c17mn min{m,n})

and

P [axm + byn] ≥ c18

log∗ log∗max
{|x|, |y|}

mnmin{m,n} ,

provided that x and y are two coprime integers satisfying

max
{|x|, |y|} ≥ c19.

Proof. For simplicity, we sketch the proof in the case a = 1 and
b = −1. If m = n, the theorem follows from the main result of [11]
and also from Corollary 1 of [16]. We may then assume that n > m. If
|xm−yn| = 1, then Tijdeman [27] proved that |x| and |y| are bounded by
an absolute constant. Hence, we may suppose that |xm−yn| > 1 and write
xm−yn = ±pu1

1 . . . put
t , where the ui’s are positive rational integers, hence

Q[xm − yn] = p1 . . . pt. Using Euclidean divisions, we obtain a T -integer
solution (x′, y′), with x′ = (x/pv1

1 . . . pvt
t ) and y′ = (y/pw1

1 . . . pwt
t ), of the

Diophantine equation Xm ± pr1
1 . . . prt

t = Y n, where 0 ≤ ri < nm and
T = {p1, . . . , pt,∞}. Notice that, by the Lemma of [9], the discriminant
∆ of the polynomial Xm ± pr1

1 . . . prt
t satisfies |∆| ≤ mm2

(p1 . . . pt)m.
Since n ≥ 3, we can apply Theorem 3 and we get for |x′| and |y′| the
bound exp

{
ec20m2nt log tec21m4n3t

}
. However, we observe that c22t log t ≤
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log Q and that et ≤ c23Q
1/ log∗ log∗ Q (to see this, distinguish the cases

t ≥ log∗Q/ log∗ log∗Q and t ≤ log∗Q/ log∗ log∗Q), whence we get

max{|x′|, |y′|} ≤ exp
{
Qc24m2nQc25m4n3/ log∗ log∗ Q

}
.

This yields log max{|x′|, |y′|} ≤ Qc26m2n, provided that max{|x′|, |y′|} is
large enough in terms of m and n. The theorem follows since x and y are
coprime. If we use the previous estimates for the size of the solutions of
superelliptic equations, we have to replace the |∆f | occurring in Theorem 4
by |∆f |t, and arguing as above, we get log max{|x′|, |y′|} ≤ Qc27m2nt,
hence log max{|x′|, |y′|} ≤ Qc28m2n log∗ Q/ log∗ log∗ Q. This yields a lower
bound for log∗Q of the shape (log∗ log∗max{|x|, |y|})1/2(log∗ log∗ log∗×
max{|x|, |y|})1/2 and implies the result of Kotov [20] on the greatest
prime factor of xm − yn. ¤

In order to improve upon Theorem 5, it seems necessary to develop
new arguments, because even a dramatic sharpening for linear forms in
logarithms would presumably not be sufficient.

5. The greatest prime factor of axm + byn when n is fixed

Since the work of Shorey et al. [24], it is known that if a, b and n ≥ 2
are fixed non-zero rational integers, then P [axm + byn] tends effectively to
infinity as the integer m grows to infinity, independently of the coprime
non-zero rational integers x and y with |x| > 1. An explicit form of this
result is due to Shorey [23], and Shorey & Tijdeman [25, Chapter 10]
generalized it to the number field case. Thanks to Lemmata 1 to 3, we
are now able to considerably sharpen Shorey’s estimate, as shown in [7].
Notice that the lower bound for Q[axm + byn] given in Theorem 6 has not
been stated explicitly previously.

Theorem 6. Let a, b, x, y and n be rational integers satisfying

ab 6= 0, |x| > 1, y 6= 0, (ax, by) = 1 and n ≥ 2.

There exist effective absolute constants c29 and c30 and an effective con-
stant c31, depending on a, b and n, such that

Q[axm + byn] > mc29/n

and

P [axm + byn] > c30
log m

n
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for any integer m ≥ c31.

Proof. Let us briefly sketch the proof. Assume for simplicity that
a = 1 and b = −1. Let x, y and n be integers satisfying the hypothesis
of the theorem, and let m ≥ 2. Write xm − yn = ±pu1

1 . . . put
t , where the

ui’s are positive rational integers, hence Q[xm − yn] = p1 . . . pt. Then, we
observe that we have yn − Azn = xm, where z is composed by the pi’s
and A = ±pt1

1 . . . pts
s , with 0 ≤ ti < n. We work in the number field K

generated by an n-th root of A, and, taking for S the set of places on K
composed by the infinite places and the places induced by the pi’s, we
apply Lemma 1 to get a fundamental system ξ1, . . . , ξv−1 of S-units in K
with small height.

The upper bound for m mainly depends on the quantity
v−1∏
i=1

log h(ξi),

and thus on the discriminant D of the field K, whose absolute value is not
greater than nn2

(p1 . . . pt)n−1. More precisely, we have then the estimate

(8) m ≤ Qc32nQc33n2/ log∗ log∗ Q,

yielding Q ≥ m1/c34n provided that m is large enough.
In his work, Shorey [23] did not use a fundamental system of S-

units and he obtained the upper bound m ≤ Qc35n2t to get finally a lower
estimate for log Q of the shape (log m)1/2(log log m)1/2. Our improvement
rests once again on Lemmata 1 to 3. ¤

We observe that the proof of Theorem 6 shows also that there exists
an effective absolute constant c36 and an effective constant c37, depending
on a and b such that P [axm+byn] > c36(log m)/n2 for any integer m ≥ c37.
Putting this together with Theorem 5, we get

Corollary 2. Let a, b, x and y be non-zero integers with (x, y) = 1,
|x| ≥ 2 and (ax, by) = 1. Fix an integer n ≥ 2. There exists an effective
positive constant c38 depending on a and b such that

P [axm + byn] ≥ c38

n2

(
log m +

log∗ log∗max{|x|, |y|}
m

)
.

for every integer m ≥ 2 with mn ≥ 6.

Further, we recover a result of a similar strength as Theorem 1 of [4].
Namely, we infer from (8) that there exists a positive constant c39 such
that for any integers x ≥ 1, y ≥ 2, n ≥ 2, m ≥ 2 with xn 6= ym, we have

|xn − ym| ≥ Q[xn − ym] ≥ mc39/n2
.
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This is slightly weaker than Theorem 1 of [4], which yields the estimate

|xn − ym| ≥ m2/5nn−52−6−42/n.

We remark that the proof of the latter lower bound is more direct and
does not involve estimates for linear forms in non-archimedean logarithms,
unlike the proof of Theorem 6.
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7, RUE RENÉ DESCARTES
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