Gauss sums and a sieve for generators of Galois fields

By STEPHEN D. COHEN (Glasgow)

To Kálmán Györy on his 60th birthday, with respect and admiration

Abstract

Given the extension E of degree n of a Galois field $F=\operatorname{GF}(q)$, it is proved that, when $n \geq 5$, there is an element of E that simultaneously (i) is a primitive element (i.e., a multiplicative generator) of E, (ii) is free (i.e., an additive generator) in E over F, (iii) has prescribed (non-zero) (E, F)-trace, (iv) has prescribed (E, F)-norm, a primitive element of F.

The keys to the method are the derivation of relevant formulae involving Gauss sums, both over E and F, and a sieving technique that produces viable lower bounds and leads to a theoretical solution. The sieve is novel insofar as it is applied to the additive, as well as the multiplicative, structure. The method will be effective, in principle, also when $n=4$.

1. Introduction

A primitive element of a finite field E is a generator of its (cyclic) multiplicative group. Given a prime power q and a positive integer n, we shall suppose E is the degree n extension $\operatorname{GF}\left(q^{n}\right)$ of the finite field $F=\mathrm{GF}(q)$. Additively too, the extension E, viewed as an $F G$-module is cyclic and a generator is called a free element of E over F. (Here G, a cyclic group generated by σ, say, is the Galois group of E over F.) The classical form of this statement - the normal basis theorem - is that E basis.
contains an element w whose conjugates $\left\{w, w^{q}, \ldots, w^{q^{n-1}}\right\}$ constitute an F-basis of $E: w$ is then free over F.

The terms primitive and free are correspondingly applied to the minimal polynomials M_{w} over F of appropriate elements w of E. Thus, a monic irreducible polynomial M of degree n over F is primitive if and only if it has (multiplicative) order $q^{n}-1$: this means that $m=q^{n}-1$ is minimal such that $M(x)$ divides $x^{m}-1$. Further, M is free over F if and only if its roots constitute an F-basis of E. An equivalent formulation is that the (additive) F-order of M (necessarily a divisor of $x^{n}-1$) is $x^{n}-1$ itself. This means that, if $g(x)$ is a monic divisor of $x^{n}-1$ over F such that M divides g^{σ} (the polynomial obtained from g by replacing x^{i} by $x^{q^{i}}$, $i \geq 0)$, then $g(x)=x^{n}-1$.

The distribution of elements of E that are both primitive and free over F can be expressed in terms of Gauss sums over E. Thus, Lenstra and Schoof [LeSc] (completing work of Davenport [Da] and Carlitz $[\mathrm{Ca}])$ proved the existence of such elements for every pair (q, n). This result has recently been strengthened by Cohen and Hachenberger in two directions. In [CoHa1] it was shown that the primitive and free element w may have an arbitrary specified non-zero (E, F)-trace a in F, i.e., $\operatorname{Tr}_{E, F}(w):=\sum_{i=0}^{n-1} w^{q^{i}}=a$. (This established a conjecture of Morgan and Mullen [MoMu].) Further, in [CoHa2], it was shown that, given an arbitrary primitive element b of F, there exists a primitive element w of E, free over F, such that w has (E, F)-norm b, i.e., $\mathrm{N}_{E, F}(w):=\prod_{i=0}^{n-1} w^{q^{i}}=w^{\frac{q^{n}-1}{q-1}}=b$. Succinctly, these conclusions are that every pair (q, n) is both a PFT-pair and a PFN-pair.

Also introduced in [CoHa 2$]$ was the PFNT-problem that combines the requirements of the PFT- and PFN-problems featured above.

Problem PFNT. Given a finite extension E / F of Galois fields, a primitive element b in F, and a non-zero element a in F, does there exist a primitive element w in E, free over F, whose (E, F)-norm and trace equal b and a, respectively?

If so for each pair (a, b), then the pair (q, n) corresponding to E / F is called a PFNT-pair.

Note that, since for $n \leq 2, w$ is prescribed by its trace and norm, we may suppose $n \geq 3$ for the PFNT-problem to be meaningful. Not only would a solution of the PFNT-problem be highly desirable in itself, it
would also have significant implications for the construction of universal generators of closures of Galois fields, see [Ha2].

In [CoHa2], drawing on more widely applicable estimates based on Gauss sums from [Ha2] (whose proofs were therefore omitted in [CoHa2]), it was shown that, for $n \geq 9$, every pair (q, n) is a PFNT-pair: indeed, whenever $n \geq 7$, every pair, aside from at most 8 exceptions, is a PFNTpair. The purpose of this paper is to refine radically the Gauss sum formulation of the PFNT-problem, employing Gauss sums both over E and over F, so that it becomes applicable whenever $n \geq 4$ (see Section 2), and to use sieving techniques (described in Section 3) to provide a complete theoretical solution for $n \geq 5$ (in Section 4). The innovative part of the sieve is that its thrust here is in regard to sifting in respect of additive orders; sieving with respect to multiplicative order has become already an established technique, see [Co1], [Co2], for example. We prove the following result.

Theorem 1.1. Let q be a prime power and $n \geq 5$ an integer. Then (q, n) is a PFNT-pair.

The PFNT-problem for $n=4$ is soluble, in principle, by the same method. Nevertheless the details would be delicate for smaller values of q and direct verification in E is likely to be necessary in some cases. We exclude this case in order to focus here on the theoretical principles of the method. The estimates fail altogether when $n=3$, and it may be impractical to expect progress on the PFNT-problem in this instance.

Finally, we observe that an affirmative solution of the PFNT-problem for (q, n) is equivalent to demonstrating the existence, for each $a, b \in F$ (as in its statement), of a primitive free polynomial $M(x)=x^{n}+M_{n-1} x^{n-1}+$ $\cdots+M_{0}$ with $M_{n-1}=-a, M_{0}=(-1)^{n} b$. In particular, Theorem 1.1 implies the solution of a case of a conjecture of Hansen and Mullen [HaMu] as follows.

Corollary 1.2. Let q be a prime power and $n \geq 5$ an integer. Then, for any non-zero M_{1} in $\mathrm{GF}(q)$, there exists a primitive free polynomial $x^{n}+M_{n-1} x^{n-1}+\cdots+M_{1} x+M_{0}$ over $\mathrm{GF}(q)$.

To derive Corollary 1.2 from Theorem 1.1, simply consider the monic form $M_{0} x^{n} M(1 / x)$ of the reciprocal polynomial of a primitive (free) polynomial postulated by the theorem. By a natural variation (simplification)
of the method the same result holds with $M_{1}=0$; the restriction to $M_{1} \neq 0$ only arises through the constraint of free-ness in Theorem 1.1.

As a paper in a collection dedicated to the distinguished numbertheorist Kálmán Győry, it is intended to be relatively self-contained as regards its main number-theoretical ideas. Nevertheless, we draw on some results from previous items to avoid unnecessary duplication of detail.

I gladly acknowledge the assistance of Dirk Hachenberger (Augsburg) in the preparation of this article. Indeed, this paper was intended to form part of a collaborative sequence that began with [CoHa1] and [CoHa2], but Dirk has graciously declined the status of co-author on this occasion. Nonetheless, the work has evidently benefited from discussions we have held throughout our association.

2. Character sum formulation

From now on, suppose that $F=\mathrm{GF}(q), E=\mathrm{GF}\left(q^{n}\right), n \geq 4$, and a, b in F with $a \neq 0$ and b a primitive element, are given. We reformulate this specific case of the PFNT-problem in terms of characters and ultimately Gauss sums. Many texts such as [LiNi], Chapter 5, could be consulted for the general background, and [Ha1] for that on additive orders.

Let $m=m(q, n)$ be the greatest divisor of $q^{n}-1$ that is relatively prime to $q-1$. Then, indeed, m divides $\frac{q^{n}-1}{(q-1) \cdot \operatorname{gcd}(n, q-1)}$, perhaps properly. Were it already known that $w \in E$ has (E, F)-norm b, then to guarantee that w be a primitive element of E, it would suffice to show that $w=v^{d}$ (where $v \in E$ and $d \mid m$) implies $d=1$; in other words, in a rather inelegant phrase, w is not any kind of m th power in E.

The additive analogue of the above is as follows. Let $M=M(q, n)$ be the monic divisor of $x^{n}-1$ (over F) of maximal degree that is prime to $x-1$. Thus, defining $p:=\operatorname{char} F$ and setting $n=p^{l} n_{0}$, where p does not divide n_{0}, we have $M=\frac{x^{n}-1}{x^{p}-1}$, a factor of $\frac{x^{n}-1}{x-1}$. The (additive) F-order of $w \in E$ is the monic divisor g (over F) of $x^{n}-1$ of minimal degree such that $g^{\sigma}(w)=0$. For a comprehensive account of this notion, see [Ha1], but, certainly, if w has F-order g, then $w=h^{\sigma}(v)$ for some $v \in E$, where $h=\left(x^{n}-1\right) / g$. In particular, were it already known that $w \in E$ has (non-zero) (E, F)-trace a, then, to guarantee that w be free over F, it would suffice to show that $w=h^{\sigma}(v)$ (where $v \in E$ and h is an F-divisor
of M) implies $h=1$, i.e., in a loose imitation of a previous phrase, w is not any kind of Mth power in E.

Because of the above correspondence, it is convenient to present a (partially) unified treatment of the multiplicative and additive parts. To this end, define $\mathcal{T}=\mathcal{T}(q, n)$ as the set of formal products $\{\tau=t T: t \mid m$, $T \mid M\}$. For $\tau=t T \in \mathcal{T}$, let $\pi(\tau)=\pi(q, n, a, b ; \tau)$ be the number (conveniently scaled (multiplied) by a factor $q(q-1)$) of elements w of E such that
(i) $\mathrm{N}_{E, F}(w)=b$;
(ii) $\operatorname{Tr}_{E, F}(w)=a$;
(iii) w is not any kind of t th power in E;
(iv) w is not any kind of T th power in E.
(We remark that the use of the scaling factor $q(q-1)$ in $\pi(\tau)$ avoids repetition of this factor in formulae. It arises because of the potential $q-1$ values of $\mathrm{N}_{E, F}(w)$ and q values of $\operatorname{Tr}_{E, F}(w)$ for $w \in E^{*}$.)

We shall refer to the distinct prime or irreducible factors of $\tau \in \mathcal{T}$ as its atoms. Their significance is that $\pi(\tau)$ depends only on the atoms of τ, i.e., on its square-free part. Of course, to ensure a solution to the PFNTproblem for given parameters q, n, a, b, we need to show that $\pi(m M)$ is positive. Nevertheless, it is useful to study more general values of $\pi(\tau)$. A further incidental comment on the definition of $\pi(q, n, a, b ; m M)$ is that the prescribed restrictions on a, b (for example, that b be primitive) are crucial in limiting the order criteria (iii), (iv) above to m, M, respectively, when applied to the PFNT-problem. From this point on, these restrictions do not feature prominently and formulae for $\pi(q, n, a, b ; \tau)$ could be derived more generally, although for example, when $a=0$, they would have a somewhat different shape.

The next stage is to express the characteristic functions of the four subsets of E (or E^{*}) defined by each of the conditions (i)-(iv) in terms of characters (whether multiplicative or additive) on E or F.
(i) $\mathrm{N}_{E, F}(w)=b, w \in E^{*}$

Let $\widehat{F^{*}}$ denote the group of multiplicative characters of F^{*}. Abbreviating $\mathrm{N}_{E, F}$ to N, we have that the characteristic function of the subset of E^{*} comprising elements w satisfying (i) is

$$
\frac{1}{q-1} \sum_{\nu \in \widehat{F^{*}}} \nu\left(N(w) b^{-1}\right), \quad w \in E^{*} .
$$

(ii) $\operatorname{Tr}_{E, F}(w)=a, w \in E$

Let λ be the canonical additive character of F. Thus, for $x \in F$,

$$
\lambda(x)=\exp \left(2 \pi i \operatorname{Tr}_{F, \operatorname{GF}(p)}(x) / p\right),
$$

where $p=\operatorname{char} F$. Then the characteristic function of the subset of E prescribed by (ii) is

$$
\frac{1}{q} \sum_{c \in F} \lambda(c(T(w)-a)), \quad w \in E
$$

where, here, T is an abbreviation for $\operatorname{Tr}_{E, F}$.
(iii) w is not any kind of t th power in $E, t \mid m, w \in E^{*}$

For any $d \mid m$, we write η_{d} for a typical character in $\widehat{E^{*}}$ of order d. In particular, η_{1} is the trivial character. Observe that, since $d \left\lvert\, \frac{q^{n}-1}{q-1}\right.$, then the restriction of η_{d} to F^{*} is the trivial character ν_{1} of $\widehat{F^{*}}$. We shall use a shorthand "integral" notation for certain weighted sums; namely, for $t \mid m$, define

$$
\int_{d \mid t} \eta_{d}:=\sum_{d \mid t} \frac{\mu(d)}{\phi(d)} \sum_{(d)} \eta_{d},
$$

where ϕ and μ denote the functions of Euler and Möbius, respectively, and the inner sum ranges over all $\phi(d)$ characters of order d. Then, according to a formula developed from one of Vinogradov (see [Ju], Lemma 7.5.3, and [Co1]), the characteristic function for the subset described by (iii) is

$$
\Theta(t) \int_{d \mid t} \eta_{d}(w), \quad w \in E^{*}
$$

where $\Theta(t):=\phi(t) / t=\prod_{l \mid t}\left(1-l^{-1}\right)$, the product running over all prime divisors of t.

At this point we append the following related material for later use. Any character $\nu \in \widehat{F^{*}}$ can be lifted to a character $\tilde{\nu} \in \widehat{E^{*}}$ by defining $\tilde{\nu}(w)=\nu(N(w)), w \in E$. We may then restrict $\tilde{\nu}$ to F^{*} to obtain ν^{*} in $\widehat{F^{*}}$. It need not be that $\nu=\nu^{*}$: indeed, if ν has order e (a divisor of $q-1$), then ν^{*} has order $\frac{e}{\operatorname{gcd}(e, n)}$. In particular, $\nu^{*}=\nu_{1}$ if and only if the order of ν divides n.
(iv) w is not any kind of T th power in $E, T \mid M, w \in E$

Let χ be the canonical additive character on E : it is just the lift of λ to E, i.e., $\chi(w)=\lambda(T(w)), w \in E$. For any (monic) F-divisor D of M, a typical character χ_{D} of order D is one such that $\chi_{D} \circ D^{\sigma}$ is the trivial character in E, and D is minimal (in respect of degree) with this property. Further, let Δ_{D} be the subset of $\delta \in E$ such that χ_{δ} has F-order D if and only if $\delta \in \Delta_{D}$, where $\chi_{\delta}(w):=\chi(\delta w), w \in E$. (Here we are using the assumption that $D \mid M$, a divisor of $x^{n}-1$; if this did not hold, some adjustments would be necessary.) Thus, we may also write $\chi_{\delta_{D}}$ for χ_{D}, where δ_{D} is some element of $\Delta_{D} ;$ moreover $\left\{\chi_{\delta_{D}}, \delta_{D} \in \Delta_{D}\right\}$ is the set of all characters of order D. Note that Δ_{D} is invariant under multiplication by F^{*}, and that, if $D=1$, then $\delta_{1}=0$ and $\chi_{D}=\chi_{0}$, the trivial character. There are, in fact, $\Phi(D)$ characters χ_{D}, where Φ is the Euler function on $F[x]$: the latter is multiplicative and is given by the formula $\Phi(D)=|D| \prod_{P \mid D}\left(1-|P|^{-1}\right)$, where the product is over all monic irreducible F-divisors of D and $|D|=q^{\operatorname{deg}(D)}$.

In analogy to (iii), for $T \mid M$, define

$$
\int_{D \mid T} \chi_{\delta_{D}}:=\sum_{D \mid T} \frac{\mu(D)}{\Phi(D)} \sum_{\left(\delta_{D}\right)} \chi_{\delta_{D}},
$$

where μ is the Möbius function on $F[x]$ and the inner sum runs over all $\Phi(D)$ elements δ_{D} of Δ_{D}. Then the characteristic function of the subset of E described by (iv) is

$$
\Theta(T) \int_{D \mid T} \chi_{\delta_{D}}(w), \quad w \in E,
$$

where $\Theta(T):=\Phi(T) /|T|$.
For later use, note that, because M and $x-1$ are co-prime, then, for any divisor $D(\neq 1)$ of T, Δ_{D} has empty intersection with F.

Using the above characteristic functions, we derive an expression for $\pi(\tau)$ in terms of Gauss sums on E and F.

For any $\eta \in \widehat{E^{*}}$, set

$$
G_{n}(\eta):=\sum_{w \in E} \chi(w) \eta(w)
$$

with the convention that $\eta_{1}(0)=1$, but $\eta(0)=0$ for $\eta \neq \eta_{1}$. Similarly, the Gauss sum over F corresponding to $\nu \in \widehat{F^{*}}$ is denoted by $G_{1}(\nu)$. The key fact is that $\left|G_{1}(\nu)\right|=\sqrt{q}$ for $\nu \neq \nu_{1}$, and hence $\left|G_{n}(\eta)\right|=q^{\frac{n}{2}}$ for $\eta \neq \eta_{1}$. Of course, $G_{1}\left(\eta_{1}\right)=G_{n}\left(\eta_{1}\right)=0$.

In the theorem which follows we establish a new type of formula for $\pi(\tau)$ that combines products of Gauss sums over E and over F. In its statement we draw on notation introduced above, though some summations will be modified as indicated. For example, $\sum_{\nu \in \widehat{F^{*}}, \nu^{*} \neq \nu_{1}}$ means that the sum will be restricted to characters ν for which ν^{*} (defined in (iii)) is non-trivial: there are $q-1-e$ such characters, where $e=\operatorname{gcd}(n, q-1)$. We shall also use bars over symbols to denote complex conjugation.

Theorem 2.1. Let the prime power q, the integer $n(\geq 4)$ and elements $a \in F^{*}$ and b, a primitive element of F, be given. Then, for any $\tau=t T \in \mathcal{T}$, where $t \mid m$ and $T \mid M$, we have

$$
\begin{equation*}
\pi(\tau)=\Theta(\tau) \cdot\left(q^{n}+A+B-C\right), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=\int_{d \mid t} \int_{D|T| T} \sum_{\substack{\nu \in \widehat{F^{*}} \\
\nu^{*} \neq \nu_{1}}} \nu^{*}(a) \bar{\nu}(b) \overline{\left(\eta_{d} \tilde{\nu}\right)}\left(\delta_{D}+1\right) \overline{G_{1}}\left(\nu^{*}\right) G_{n}\left(\eta_{d} \tilde{\nu}\right), \\
& B=\int_{d \mid t} \int_{\substack{D \mid T \\
D \neq 1}} \sum_{\substack{\nu \in \widehat{F^{*}} \\
\nu^{*}=\nu_{1}, \eta_{d} \tilde{\nu} \neq \eta_{1}}} \bar{\nu}(b)\left(\overline{\left(\eta_{d} \tilde{\nu}\right)}\left(\delta_{D}\right)-\overline{\left(\eta_{d} \tilde{\nu}\right)}\left(\delta_{D}+1\right)\right) G_{n}\left(\eta_{d} \tilde{\nu}\right), \\
& C=\int_{d \mid t} \sum_{\substack{\nu \in \widehat{F^{*}}}} \bar{\nu}(b) G_{n}\left(\eta_{d} \tilde{\nu}\right),
\end{aligned}
$$

and where Θ is extended to \mathcal{T} by multiplicativity.
Proof. From the characteristic functions (i)-(iv), taking into account the scaling factor $q(q-1)$, we have

$$
\begin{equation*}
\pi(\tau)=\Theta(\tau) \int_{d \mid t} \int_{D \mid T} \sum_{\nu \in \widehat{F^{*}}} \sum_{c \in F} \bar{\nu}(b) \bar{\lambda}(a c) \sum_{w \in E}\left(\eta_{d} \tilde{\nu}\right)(w) \chi\left(\left(\delta_{D}+c\right) w\right) . \tag{2.2}
\end{equation*}
$$

To see this, recall that $\tilde{\nu}(w)=\nu(N(w))$ and $\chi(c w)=\lambda(c T(w))$. Moreover, because the characteristic function under (ii) scores 0 when $w=0$, it is safe to extend the definition of the characteristic functions under (i) and (iii) to $w=0$, using our conventions on the values of $\nu(0)$ and $\eta_{d}(0)$.

Accordingly, the contribution to the right side of (2.2) of the terms with $d=1$ and $\nu=\nu_{1}$, or $D=1\left(\delta_{D}=0\right)$ and $c=0$ (or both) is simply $\Theta(\tau) q^{n}$. (Note, in particular, that $\delta_{D}+c=0$ implies $D=1$ and $c=0$.)

Next, the contribution of the terms in (2.2) with $c=0$ and $D \neq 1$ ($\delta_{D} \neq 0$), on replacing w by w / δ_{D}, yields

$$
\Theta(\tau) \int_{d \mid t} \sum_{\substack{\nu \in \widehat{F^{*}} \\ \eta_{d} \tilde{\nu} \not \eta_{1}}} \bar{\nu}(b) G_{n}\left(\eta_{d} \tilde{\nu}\right) \int_{\substack{D \mid T \\ D \neq 1}}\left(\overline{\eta_{d} \tilde{\nu}}\right)\left(\delta_{D}\right) .
$$

Now, $F^{*} \Delta_{D}=\Delta_{D}$ and η_{d} is trivial on F^{*}. Hence the inner sum

$$
\begin{aligned}
\int_{\substack{D \mid T \\
D \neq 1}}\left(\overline{\eta_{d} \tilde{\nu}}\right)\left(\delta_{D}\right) & =\frac{1}{q-1} \int_{\substack{D \mid T \\
D \neq 1}} \sum_{c \in F^{*}}\left(\overline{\eta_{d} \tilde{\nu}}\right)\left(c \delta_{D}\right) \\
& =\frac{1}{q-1} \int_{\substack{D \mid T \\
D \neq 1}}\left(\overline{\eta_{d} \tilde{\nu}}\right)\left(\delta_{D}\right) \sum_{c \in F^{*}} \nu^{*}(c)=0,
\end{aligned}
$$

unless $\nu^{*}=\nu_{1}$. Consequently, the terms under consideration yield the first part of the term B in (2.1), i.e., the part involving $\overline{\eta_{d} \tilde{\nu}}\left(\delta_{D}\right)$. Again, since $\Delta_{D}=c \Delta_{D}$ for $c \in F^{*}$, when $c \neq 0$, we may replace δ_{D} in (2.2) by $c \delta_{D}$ and then w by $w /\left(c\left(\delta_{D}+1\right)\right)$. As $\eta_{d}(c)=1$, the contribution of the remaining terms is therefore

$$
\Theta(\tau) \int_{d \mid t} \int_{D \mid T} \sum_{\substack{\nu \in \widehat{F^{*}} \\ \eta_{d} \tilde{\nu} \neq \eta_{1}}} \bar{\nu}(b) \overline{\left(\eta_{d} \tilde{\nu}\right)}\left(\delta_{D}+1\right) G_{n}\left(\eta_{d} \tilde{\nu}\right) \sum_{c \in F^{*}} \bar{\lambda}(a c) \bar{\nu}^{*}(a c) .
$$

The latter is equal to $\Theta(\tau)(A-Y)$, where A is as in (2.1) and

$$
Y=\int_{d|t| T \mid T} \int_{\substack{\nu \in \widehat{F^{*}} \\ \nu^{*}=\nu_{1}, \eta_{d} \tilde{\nu} \neq \eta_{1}}} \bar{\nu}(b) \overline{\left(\eta_{d} \tilde{\nu}\right)}\left(\delta_{D}+1\right) G_{n}\left(\eta_{d} \tilde{\nu}\right) .
$$

The expression for Y yields (through those terms with $D \neq 1$) the balance of the part B in (2.1) as well as the part C (through the terms with $D=1$).

From Theorem 2.1, we derive a lower bound for $\pi(\tau)$. We write $W(\tau)=W(t) W(T)=2^{\omega(\tau)}$ for the number of square-free divisors of τ, where ω counts the atoms in τ. Note that $W(T) \leq 2^{n-1}$.

Corollary 2.2. Under the conditions of Theorem 2.1, we have

$$
\pi(\tau) \geq \Theta(\tau)\left(q^{n}-(q-1-e) W(\tau) q^{\frac{n+1}{2}}-(e W(t)-1)(2 W(T)-1) q^{\frac{n}{2}}\right)
$$

where $e=\operatorname{gcd}(n, q-1)$.
Corollary 2.3. Under the conditions of Theorem 2.1, $\pi(\tau)$ is positive whenever

$$
\begin{equation*}
q^{\frac{n-3}{2}}>\left(1-\frac{e+1}{q}\right) W(\tau)+\frac{1}{q^{3 / 2}}(e W(t)-1)(2 W(T)-1), \tag{2.3}
\end{equation*}
$$

and so certainly whenever

$$
\begin{equation*}
q^{\frac{n-3}{2}}>\left(1-\frac{1}{q}\right) W(\tau), \quad q \geq 4 . \tag{2.4}
\end{equation*}
$$

For the case in which $\tau=m M$, Corollary 2.3 represents an improvement by a factor of approximately \sqrt{q} over the criterion in [CoHa 2$]$.

3. Sieving inequalities

To establish Theorem 1.1 for arbitrary large values of q and n, it is necessary first to employ Corollary 2.3 (or a weaker variant) with $\tau=$ $m M$. With the aid of some supplementary facts (such as Lemma 3.3, below), the theorem was thereby justified in [CoHa 2$]$ for $n \geq 7$, save for a few exceptional values of q when $n=7$ or 8 . But for smaller values of n, it is hopeless to contemplate a complete proof solely by these means. To overcome the considerable obstacles in these cases, we have devised a sieving process. (Actually, use of this device would have reduced the effort of [CoHa2].)

Let $\tau=t T \in \mathcal{T}$. Given $r \geq 1$, divisors $\tau_{1}=m_{1} M_{1}, \ldots, \tau_{r}=m_{r} M_{r}{ }^{1}$ of τ will be called complementary divisors of τ with common divisor τ_{0}, if the atoms (i.e., distinct primes and irreducibles) in $\operatorname{lcm}\left\{\tau_{1}, \ldots, \tau_{r}\right\}$ are precisely those in τ and, for any distinct pair (i, j), the atoms of $\operatorname{gcd}\left(\tau_{i}, \tau_{j}\right)$ are precisely those of τ_{0}. (The point is that the value of $\pi(\tau)$ depends only on the atoms of τ.) When $r=1$, take $\tau_{1}=\tau_{0}=\tau$ and recover the situation of Section 2.

The novel feature of the basic sieving inequality which follows is its applicability with M_{1}, \ldots, M_{r} proper divisors of M, i.e., to the component relating to F-order, cf. [Co2].

Theorem 3.1. Let $\tau_{1}, \ldots, \tau_{r}$ be complementary divisors of $\tau \in \mathcal{T}$ with common divisor τ_{0}. Then

$$
\pi(\tau) \geq\left(\sum_{i=1}^{r} \pi\left(\tau_{i}\right)\right)-(r-1) \pi\left(\tau_{0}\right)
$$

Proof. When $r=1$, the result is trivial. For $r=2$, denote the set of elements of E^{*} that satisfy (i)-(iv) of Section 2 by \mathcal{A}_{τ}, where $\tau=t T$, etc. Then

$$
\mathcal{A}_{\tau_{1}} \cup \mathcal{A}_{\tau_{2}} \subseteq \mathcal{A}_{\tau_{0}}, \quad \mathcal{A}_{\tau_{1}} \cap \mathcal{A}_{\tau_{2}}=\mathcal{A}_{\tau}
$$

and the inequality holds by consideration of cardinalities. For $r \geq 2$, use induction on r. Write $\tau^{\prime}=\tau_{2} \ldots \tau_{r}$, apply the result for $r=2$ to τ, τ^{\prime}, and then apply the induction hypothesis to τ^{\prime}. The result follows.

To state an inequality extending Corollary 2.3 , we require the definition of a crucial parameter: it is a generalization of the quantity $\Theta(\tau)$. Given complementary divisors $\tau_{1}, \ldots, \tau_{r}$ of τ with common divisor τ_{0}, set

$$
\Theta=\Theta\left(\tau_{1}, \ldots, \tau_{r}\right):=\left(\sum_{i=1}^{r} \Theta\left(\tau_{i}\right)\right)-(r-1) \Theta\left(\tau_{0}\right)
$$

To illustrate, suppose that $q \equiv 1(\bmod n)$ (so that p does not divide n). Thus $M=\frac{x^{n}-1}{x-1}=M_{1} \ldots M_{n-1}$, a product of $n-1$ distinct linear factors over F. Then, for the indicated set of complementary divisors with common divisor m,

$$
\begin{equation*}
\Theta\left(m M_{1}, \ldots, m M_{n-1}\right)=\Theta(m)\left(1-\frac{n-1}{q}\right), \tag{3.1}
\end{equation*}
$$

[^0]whereas, for another set with common divisor 1,
\[

$$
\begin{equation*}
\Theta\left(M_{1}, \ldots, M_{n-1}, m\right)=\Theta(m)-\frac{n-1}{q} . \tag{3.2}
\end{equation*}
$$

\]

To be useful in a given situation it is essential that Θ is positive. Indeed, the ratio $\Theta / \Theta\left(\tau_{0}\right)$, which we will denote by Θ_{0}, should not be too small.

Theorem 3.2. Assume that q is a prime power and $n(\geq 4)$ is an integer, and that a in F^{*} and b, a primitive element of F, are given. Suppose that $\tau_{1}=m_{1} M_{1}, \ldots, \tau_{r}=m_{r} M_{r}$ are complementary divisors of $\tau=m M$ with common divisor $\tau_{0}=m_{0} M_{0}$. Suppose also that $\Theta:=$ $\Theta\left(\tau_{1}, \ldots, \tau_{r}\right)$ is positive. Then $\pi(\tau)$ is positive whenever

$$
\begin{equation*}
q^{\frac{n-3}{2}} \geq R-S+\Theta^{-1} \sum_{i=1}^{r} \Theta\left(\tau_{i}\right)\left(U_{i}-V_{i}\right) \tag{3.3}
\end{equation*}
$$

where, with $e=\operatorname{gcd}(n, q-1)$,

$$
\begin{aligned}
R & =\left(1-\frac{e+1}{q}+\frac{2 e}{q^{3 / 2}}\right) W\left(\tau_{0}\right), \\
S & =\frac{1}{q^{3 / 2}}\left(e W\left(m_{0}\right)+2 W\left(M_{0}\right)-1\right), \\
U_{i} & =\left(1-\frac{e+1}{q}+\frac{2 e}{q^{3 / 2}}\right)\left(W\left(\tau_{i}\right)-W\left(\tau_{0}\right)\right), \\
V_{i} & =\frac{1}{q^{3 / 2}}\left(e\left(W\left(m_{i}\right)-W\left(m_{0}\right)\right)+2\left(W\left(M_{i}\right)-W\left(M_{0}\right)\right)\right) .
\end{aligned}
$$

In particular, it suffices that

$$
\begin{equation*}
q^{\frac{n-3}{2}}>\left(1-\frac{1}{q}\right)\left(W\left(\tau_{0}\right)+\Theta^{-1} \sum_{i=1}^{r} \Theta\left(\tau_{i}\right)\left(W\left(\tau_{i}\right)-W\left(\tau_{0}\right)\right)\right), \quad q \geq 4 \tag{3.4}
\end{equation*}
$$

Proof. From Theorems 3.1 and 2.1,

$$
\pi(\tau) \geq \Theta_{0} \pi\left(\tau_{0}\right)+\sum_{i=1}^{r} \Theta\left(\tau_{i}\right) S_{i}
$$

where S_{i} is equal to

$$
\iint_{\substack{ \\d \mid m_{i}}} \sum_{\substack{D \mid M_{i} \\ d D \nmid \tau_{0}}} \sum_{\substack{\nu \in \widehat{F^{*}}}} A_{i}+\sum_{\substack{ \\\nu^{*} \neq \nu_{1}}} \sum_{\substack{D\left|M_{i} \\ d\right| m_{i} \\ d D \nmid \tau_{0}, D \neq 1}} \sum_{\substack{\nu^{*}=\nu_{1}, \eta_{d} \tilde{\nu} \neq \eta_{1}}} C_{\substack{d \mid m_{i} \\ d \nmid m_{0}}} C_{i},
$$

with A_{i}, B_{i} and C_{i} being as in the corresponding expressions in (2.1). The bound (3.3) now follows by applying Corollary 2.3 to $\pi\left(\tau_{0}\right)$ and similar estimates used in its derivation for the remaining terms. As at (2.4), (3.4) follows since $\frac{e}{\sqrt{q}} \leq 2 e$ for $q \geq 4$.

In this paper, two types of complementary divisors suffice for the most part. (But note that for the case of $n=4$, greater ingenuity in the selection of complementary divisors will be required and therefore the flexibility offered by these detailed results will be useful.) Given that we may assume $n \leq 8$, the first use of Theorem 3.2 will be to sieve wholly on the additive part (i.e., with $\tau_{0}=m$) to deal with large values of q. For smaller values of q, we generally take the atoms of τ as complementary divisors. In the former of these applications, the inequality (3.4) takes the form

$$
\begin{equation*}
q^{\frac{n-3}{2}}>Q_{M} W(m), \tag{3.5}
\end{equation*}
$$

where $Q_{M}=Q_{M}(q)$, a rational function of q, converges rapidly to $\omega(M)+1$. The following illustration serves as a model.

Corollary 3.3. Under the assumption of Theorem 3.2, suppose that $q \equiv 1(\bmod n)$, so that $M=M_{1} \ldots M_{n-1}$, a product of linear factors over F. Then $\pi(m M)$ is positive whenever (3.5) holds, where

$$
Q_{M}(q)=\frac{(q-1)(n q-2(n-1))}{q(q-n+1)} .
$$

Proof. Take complementary divisors $\tau_{1}, \ldots, \tau_{n-1}$ as in (3.1). Thus $W\left(\tau_{i}\right)-W\left(\tau_{0}\right)=W\left(\tau_{0}\right)=W(m)$. Hence, from (3.4) and (3.1) it suffices that

$$
q^{\frac{n-3}{2}}>\left(1-\frac{1}{q}\right)\left(1+\frac{(n-1)\left(1-\frac{1}{q}\right)}{1-\frac{n-1}{q}}\right) W(m),
$$

which is equivalent to the stated result.

Note that a stronger version of Corollary 3.3 would be obtained if we used (3.3), with $e=n$, instead of (3.4). Indeed, if $q-1$ divides n, so that $e=q-1$, the main terms on the right side of (3.3) disappear, leaving only the $q^{-3 / 2}$-terms. This is consistent with Proposition 4.1 of [CoHa 2$]$ which reduced the PFNT-problem in this case to the PFN-problem which was solved completely in that paper.

Lemma 3.4. Let q be a prime power and n a positive integer. Assume that $q-1$ divides n. Then (q, n) is a PFNT-pair.

For example, Lemma 3.4 applies whenever $q=2$ or when $q=3$ and n is even. One further simplification is the following.

Lemma 3.5. Suppose that, for a given pair $(q, n), M$ is irreducible. Then $\pi(m M)$ is positive if and only if $\pi(m)$ is positive.

Proof. If w (with the prescribed non-zero trace and norm) is not any kind of m th power, then $w \notin F$. In particular, it does not have F-order $x-1$ and so must be free.

4. Proof Theorem 1.1

We deal mainly with the cases $n=5,6$. After that, it will be seen that further cases $(n=7,8, \ldots)$ are a formality. For a given pair (q, n) let ω or ω_{q} denote $\omega(m)$. We can suppose that $q>2$: indeed $q>3$ if n is even.

As a preliminary to a case by case discussion when $n=5$, note that $m \left\lvert\, \frac{q^{5}-1}{q-1}\right.$ and the latter is divisible by 5 if and only if $q \equiv 1(\bmod 5)$: even then $5 \nmid m$. Hence, in every case, all primes that are candidates to be factors of m lie in the set $\mathcal{S}_{5}=\{11,31,41,61,71,101, \ldots\}$ comprising primes $l \equiv 1(\bmod 10)$. Denote by $P_{r}(r=1,2, \ldots)$ the product of the first r primes in \mathcal{S}_{5}.
(i) $n=5, q \equiv 1(\bmod 5)$

Since $m \leq \frac{q^{5}-1}{5(q-1)}$, then $q>(5 m)^{1 / 4}-1 \geq\left(5 P_{\omega}\right)^{1 / 4}-1=: R_{\omega}$, say. Now, Corollary 3.3 (in this situation) offers the sufficient condition

$$
\begin{equation*}
q>2^{\omega} Q_{M}(q) \tag{4.1}
\end{equation*}
$$

where $Q_{M}(q)=\frac{(q-1)(5 q-8)}{q(q-4)}$, a function which decreases to 5 (being less than 5.1 for $q \geq 81$, say). Thus, it suffices to show that

$$
\begin{equation*}
R_{\omega}>2^{\omega} Q_{M}(q), \quad q \geq R_{\omega} . \tag{4.2}
\end{equation*}
$$

As ω increases it is evident that, because further primes taken into R_{ω} exceed $2^{4}=16$, the function $R_{\omega} /\left(2^{\omega} Q_{M}\left(R_{\omega}\right)\right)$ is increasing. Hence, if (4.2) is established for $\omega=\omega_{0}$, say, it will hold for $\omega \geq \omega_{0}$.

Now, $R_{6}>417>322>64 Q_{M}$ (417) and hence (4.1) holds whenever $\omega \geq 6$. Next, $R_{5}>130$. On the other hand, $32 Q_{M}(165)<162$, so that (4.1) holds when $\omega=5$, unless $131 \leq q<165$. There are, however, no prime powers q in this range with $\omega_{q}=5$. The story is similar for $\omega=4$. For $\omega=3, R_{\omega}>15$, so that $q \geq 16$. (Indeed, $m(16,5)=$ $\left(P_{3}^{5}-1\right) /\left(5\left(P_{3}-1\right)\right)$, the minimal theoretical value.) We have $8 Q_{5}(43)<$ 42 , so that $16 \leq q \leq 43$ but there are no further relevant prime powers in this range.

For $q=16, m=11 \cdot 31 \cdot 41$, so that $\omega(m M)=7$ and we take atomic complementary divisors, i.e., $M_{1}, \ldots, M_{4}, 11,31,41$. This gives $\Theta_{0}:=\Theta / \Theta(m)=4\left(1-\frac{1}{16}\right)+\frac{10}{11}+\frac{30}{31}+\frac{40}{41}-6=0.6024 \ldots$ Thus, using the abbreviation $R S_{(3.4)}$ to denote the right side of (3.4), we have

$$
R S_{(3.4)} \leq \frac{15}{16} \cdot\left(1+\Theta_{0}^{-1}\left(\Theta_{0}+6\right)\right)<11.3<q .
$$

Hence, (3.4) is satisfied.
The only prime power that remains to be dealt with is $q=11$, in which case m is prime. We use complementary divisors with common divisor m (as in Corollary 3.3) but in respect of the inequality (3.3) with $e=5$. We have $\Theta_{0}=\frac{7}{11}$ and

$$
R S_{(3.3)}=\frac{10}{11}+\frac{9}{11^{3 / 2}}+\Theta_{0}^{-1}\left(4 \cdot \frac{10}{11} \cdot\left(\frac{10}{11}+\frac{18}{11^{3 / 2}}\right)\right)<9.2<q .
$$

Thus the result holds in this case.
(ii) $n=5, q \equiv-1(\bmod 5)$

Now $M=M_{1} M_{2}$, where M_{1}, M_{2} are irreducible quadratic polynomials. Hence, in Corollary 3.3 we have $\Theta_{0}=1-\frac{2}{q^{2}}$ and $Q_{M}(q)=\frac{(q-1)\left(3 q^{2}-4\right)}{q\left(q^{2}-2\right)}<3$. Indeed, we may take $Q_{M}=3$ in (3.5). Since $m \leq\left(q^{5}-1\right) /(q-1)$, we
redefine $R_{\omega}:=P_{\omega}^{1 / 4}-1$ and then $q>R_{\omega}$. Now, $R_{6}>278>192 \geq 64 Q_{M}$, and hence the result holds for $\omega \geq 6$. For $\omega=3,4,5$ there are no relevant prime powers between R_{ω} and $3 \cdot 2^{\omega}$. Further, since $4 Q_{M}(11)<11$, only the prime powers $q=4,9$ remain: these have $\omega_{q}=2$ and we take atomic complementary divisors. For $q=4$, these are $M_{1}, M_{2}, 11,31$ so that $\Theta=2 \cdot \frac{15}{16}+\frac{10}{11}+\frac{30}{31}-3=0.7518 \ldots$. Then, in (3.3), $e=1$ and

$$
R S_{(3.3)}=\frac{7}{8}+\Theta^{-1}\left(2 \cdot \frac{1}{2} \cdot \frac{9}{10}+\frac{7}{8}\left(\frac{10}{11}+\frac{30}{31}\right)\right)<3.89<q .
$$

For $q=9, m=11 \cdot 671, \Theta_{0}=0.8829 \ldots$, and

$$
R S_{(3.4)}=\frac{8}{9}\left(1+\Theta^{-1}\left(3+\Theta_{0}\right)\right)<4.8<q
$$

Thus a sufficient condition is satisfied in every case.
(iii) $n=5, q \equiv \pm 2(\bmod 5)$ or q a power of 5

If $q \equiv \pm 2(\bmod 5)$, then M is an irreducible quartic, so that, by Lemma 3.5 it suffices to show that $\pi(1)$ is positive. Since $M=1$ when q is a power of 5 , the same conclusion can be drawn in that case, too. Hence, for $q \geq 4$, by (2.4) it suffices to show that

$$
q>\left(1-\frac{1}{q}\right) W(m)
$$

This inequality easily holds by the method of (i), (ii) for $\omega \geq 3$ or $q \geq 13$ (since R_{3} (defined as in (ii)) exceeds 9). It also holds for $q=5,7,8$, since $\omega_{q} \leq 2$ for these. Finally, for $q=3, \omega_{3}=1$, and with $\tau=m$, $R S_{(2.3)}=\frac{2}{3}+\frac{1}{3^{3 / 2}}<0.86<q$.

We now suppose $n=6$. Here, the extra \sqrt{q} that appears on the left sides of (3.3) and (3.4) is offset by the fact that any odd prime is a candidate for a factor of m. For example, 3 is always a factor if $q \equiv 2$ $(\bmod 3)$. As m is a divisor of $(q+1)\left(q^{2}+q+1\right)\left(q^{2}-q+1\right)$ and the primes $l(>3)$ dividing the quadratic factors have $l \equiv 1(\bmod 6)$, such primes must predominate the factorisation of m. Nevertheless, we do not exploit this fact here, but simply take \mathcal{S}_{6} to be the set of odd primes, possibly omitting 3 (depending on the case). By Lemma 3.4 we may assume $q>4$.
(iv) $n=6, q \equiv 1(\bmod 6)$

We follow case (i). Since 3 does not divide m, the prime 3 can be excluded from \mathcal{S}_{6} and we let P_{r} be the product of the first r odd primes (>3). Moreover, $m \leq \frac{q^{6}-1}{6(q-1)}$, and hence $q>(6 m)^{1 / 5}-1 \geq\left(6 P_{\omega}\right)^{1 / 5}-1=: R_{\omega}$. Thus, by Corollary 2.5 with $Q_{M}(q)=\frac{2(q-1)(3 q-5)}{q(q-5)}<6$, it suffices to show specifically that

$$
\begin{equation*}
q^{\frac{3}{2}}>6 \cdot 2^{\omega} \tag{4.3}
\end{equation*}
$$

or, more generally, that

$$
\begin{equation*}
R_{\omega}^{\frac{3}{3}}>6 \cdot 2^{\omega} \tag{4.4}
\end{equation*}
$$

Now, $R_{10}>374$ and $R_{10}^{3 / 2}>7234>6144=6 \cdot 2^{10}$. Hence, (4.4) holds for $\omega \geq 10$ or $q>374$. In fact, for $q<374, \omega_{q} \leq 6$. For $\omega=6,5,4$, the values of q for which $R_{\omega}^{3 / 2}<q^{3 / 2}<6 \cdot 2^{\omega}$ (so that (4.3) would fail) lie in the intervals [25,53], [13, 34], [7, 21], respectively. Yet, these intervals contain no relevant prime powers. For $\omega \leq 3$, there remains $q=7$ or 13 . But $(7,6)$ is a PFNT-pair by Lemma 3.4. For $q=13$, use the complementary divisors of Corollary 3.3 (so that $\Theta_{0}=8 / 13$) but employ (3.3) with $e=6$. Then

$$
R S_{(3.3)}=8 \cdot\left(\frac{6}{13}+\frac{5}{13^{3 / 2}}\right)+\Theta_{0}^{-1}\left(5 \cdot \frac{12}{13} \cdot\left(\frac{48}{13}+\frac{94}{13^{3 / 2}}\right)\right)<24.7
$$

which is less than $q^{3 / 2}=48.8 \ldots$ and so the result holds in every case.
(v) $\underline{n=6, q \equiv-1(\bmod 6)}$

Now, $M=M_{1} M_{2} M_{3}$, where $M_{1}=x+1$ and M_{2}, M_{3} are irreducible quadratics. Hence, in the analogue of Corollary 3.3, we have $\Theta_{0}=1-\frac{1}{q}+\frac{2}{q^{2}}$ and (3.5) holds with $Q_{M}(q)=\frac{(3 q+2)(q-1)^{2}}{q(q-2)(q+2)}<3$. This time 3 is always a factor of m so that certainly $3 \in \mathcal{S}_{6}$ and we define $R_{\omega}:=P_{\omega}^{1 / 3}-1$. In like fashion to case (ii) (say) above, we find that (3.5) holds whenever $\omega \geq 11$ or $q>374$. For lesser values of q, the maximum value of ω_{q} is 7 . For $\omega=7,6$ or 5 , there are no relevant prime powers in the range $R_{\omega}^{3 / 2}<q^{3 / 2}<3 \cdot 2^{\omega}$ (cf. case (iv)). For $\omega \leq 4$, by (3.5), we can assume $q<(48)^{2 / 3}<14$, which implies $q=5$ or 11 . For $q=11$, use the atomic complementary divisors
$M_{1}, M_{2}, M_{3}, 3,7,19,37$. Then $\Theta=\frac{10}{11}+2 \cdot \frac{120}{121}+\frac{2}{3}+\frac{6}{7}+\frac{18}{19}+\frac{36}{37}=0.3367$ and

$$
R S_{(3.4)}=\frac{10}{11}\left(1+\Theta^{-1}(\Theta+6)\right)<18.1<q^{3 / 2} .
$$

For $q=5, m=3^{2} \cdot 7 \cdot 31$, more care is needed. Take complementary divisors $3 M_{1}, 3 M_{2}, 3 M_{3}, 3 \cdot 7$ and $3 \cdot 31$ with common divisor $\tau_{0}=3$. Then $\Theta_{0}=\Theta / \Theta\left(\tau_{0}\right)=\frac{4}{5}+2 \cdot \frac{24}{25}+\frac{6}{7}+\frac{30}{31}-4=0.54488 \ldots$. Note that for each complementary divisor $\tau_{i}, W\left(\tau_{i}\right)-W\left(\tau_{0}\right)=W\left(\tau_{0}\right)=2$. Then, $e=1$ in (3.3), and

$$
R S_{(3.3)}=\frac{4}{5}+\frac{3}{5^{3 / 2}}+\Theta_{0}^{-1}\left(\left(\frac{4}{5}+\frac{4}{5^{3 / 2}}\right)\left(3-\frac{1}{5}-\frac{2}{5^{2}}+\frac{6}{7}+\frac{30}{31}\right)\right) .
$$

Thus, $R S_{(3.3)}<10.6<q^{3 / 2}=11.18 \ldots$ and the result holds in every case.
(vi) $n=6, q$ a power of $3, q \geq 9$

Now, M has a single irreducible factor $x+1$, and, by Corollary 2.3 , it suffices to show that

$$
\begin{equation*}
q^{3 / 2}>\left(1-\frac{1}{q}\right) W(m) \tag{4.5}
\end{equation*}
$$

In this case, 3 is not a member of \mathcal{S}_{6} and $m \leq \frac{q^{6}-1}{2(q-1)}$, so that $q>\left(2 P_{\omega}\right)^{1 / 5}-$ $1=: R_{\omega}$. The method used in previous cases quickly yields the result whenever $\omega_{q} \geq 6$ or $q>R_{6}>19$. This leaves only $q=9$, in which case (4.5) holds because $\omega_{q}=4$.
(vii) $n=6, q=2^{s}, s \geq 3$

Here $M=\left(x^{2}+x+1\right)^{2}$, so that M has a simple irreducible factor, if s is odd, and a pair of distinct linear factors, if s is even. (From Lemma 3.4 comes the restriction to $s \geq 3$.)

Suppose s is odd. Then, by Corollary 2.3, it suffices to satisfy (4.5). Since $3 \mid m$, then $3 \in \mathcal{S}_{6}$ and $q>R_{\omega}:=P_{\omega}^{1 / 5}-1$. As in case (vi), the result holds whenever $\omega_{q} \geq 7$ and $q>R_{7}>20$ (which implies $q \geq 32$) or $\omega_{q} \leq 6$ and $q>R_{6}>10$. This leaves only $q=8$. But $\omega_{8}=3$ and therefore (4.5) holds in this case.

Suppose s is even. Then 3 does not divide m and $q>R_{\omega}:=\left(3 P_{\omega}\right)^{1 / 5}-1$.
We have to satisfy (3.5) with $Q_{M}=\frac{(q-1)(3 q-4)}{q(q-2)}<3$. If $\omega \geq 10$, then $q>261$ and (3.5) holds. Thus $\omega_{256} \leq 9$ and therefore (3.5) is satisfied for
$q=256$. Finally, $\omega_{64}=6$ and $\omega_{16}=4$, so that (3.5) holds also for $q=64$ or 16 .
(viii) $\underline{n=7 \text { or } 8}$

For $n=7$, only members of $\mathcal{S}_{7}=\{29,43,71, \ldots\}$ comprising primes $l \equiv 1$ $(\bmod 14)$ are candidates to be divisors of m. Thus, it is plain that the method of the previous cases will quickly yield success and only very small values of q could be in doubt. We check only the case $q=4$ (unsettled in Theorem 1.2 of [CoHa2]). For this, M is a product of two irreducible cubics and $m=43 \cdot 127$. Thus, $\omega(m M)=4$ and, with $\tau=m M$,

$$
R S_{(2.4)}=\frac{48}{49} \cdot 16<q^{2}=16
$$

therefore $(4,7)$ is a PFNT-pair. Easily, so also is $(64,7)$, the other pair left unsettled in [CoHa2].

Finally, when $n=8$, although any odd prime may be a divisor of m, the power $q^{5 / 2}$ on the left side of (3.3) or (3.4) is decisive. Moreover, $q=2,3,5$ all yield to Lemma 3.4 and $M=1$ for $q=4$ or 8 . We therefore simply check the cases $q=7,13,17$ (unsettled in [CoHa2]). From these, the other cases $q=25,41,89$, unsettled in [CoHa 2], will also be clear. For $q=7,13,17$ we have $\omega(M)=4,5,7$ and $\omega(m)=2,4,4$, respectively. For $q=7$ or 13 , we have $q^{5 / 2}>W(m M)$ and so the result holds by (2.4). For $q=17$, by Corollary 3.3 , we have to satisfy

$$
1191.5 \ldots=q^{5 / 2}>16 \cdot \frac{2(q-1)(4 q-7)}{q(q-7)}=183.7 \ldots
$$

From the above and [CoHa2], the proof of Theorem 1.1 is complete.

References

[Ca] L. Carlitz, Primitive roots in a finite field, Trans. Amer. Math. Soc. 73 (1952), 373-382.
[Co1] S. D. Cohen, Pairs of primitive roots, Mathematika 32 (1985), 276-285.
[Co2] S. D. Cohen, Primitive elements and polynomials: existence results, in: Proceedings of the First International Conference on Finite Fields and Applications (Mullen, G.L. and Shiue, P.J.-S., eds.), Lecture Notes in Pure and Applied Mathematics 141, Dekker, 1993, 43-55.
[CoHa1] S. D. Cohen and D. Hachenberger, Primitive normal bases with prescribed trace, Applic. Alg. Engin. Comm. Comp. 9 (1999), 383-403.
[CoHa2] S. D. Cohen and D. Hachenberger, Primitivity, freeness, norm and trace, Discrete Math. (to appear).
[Da] H. Davenport, Bases for finite fields, J. London Math. Soc. 43 (1968), 21-49.
[Ha1] D. Hachenberger, Finite fields: normal bases and completely free elements, Kluwer Academic Publishers, Boston, 1997.
[Ha2] D. Hachenberger, Universal generators for primary closures of Galois fields, (submitted).
[HaMu] T. Hansen and G. L. Mullen, Primitive polynomials over finite fields, Math. Comp. 59 (1992), 639-643.
[Ju] D. Jungnickel, Finite fields, Structure and arithmetics, BI-Wissenschaftsverlag, Mannheim, 1993.
[LeSc] H. W. Lenstra, Jr. and R. J. Schoof, Primitive normal bases for finite fields, Math. Comp. 48 (1987), 217-231.
[LiNi] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Massachusetts, 1983; 2nd edn: Cambridge University Press, Cambridge, 1997.
[MoMu] I. H. Morgan and G. L. Mullen, Primitive normal polynomials over finite fields, Math. Comp. 63 (1994), 759-765.

STEPHEN D. COHEN
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF GLASGOW
GLASGOW G12 8QW
SCOTLAND
E-mail: sdc@maths.gla.ac.uk
(Received February 4, 1999; revised August 30, 1999)

[^0]: ${ }^{1}$ We use m_{1}, M_{1}, \ldots rather than t_{1}, T_{1}, \ldots because in all applications we will have $\tau=m M$, where m, M are as in Section 2 .

