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Gauss sums and a sieve for generators of Galois fields

By STEPHEN D. COHEN (Glasgow)

To Kálmán Győry on his 60th birthday, with respect and admiration

Abstract. Given the extension E of degree n of a Galois field F = GF(q), it is
proved that, when n ≥ 5, there is an element of E that simultaneously

(i) is a primitive element (i.e., a multiplicative generator) of E,
(ii) is free (i.e., an additive generator) in E over F ,
(iii) has prescribed (non-zero) (E, F )-trace,
(iv) has prescribed (E, F )-norm, a primitive element of F .

The keys to the method are the derivation of relevant formulae involving Gauss sums,
both over E and F , and a sieving technique that produces viable lower bounds and
leads to a theoretical solution. The sieve is novel insofar as it is applied to the additive,
as well as the multiplicative, structure. The method will be effective, in principle, also
when n = 4.

1. Introduction

A primitive element of a finite field E is a generator of its (cyclic)
multiplicative group. Given a prime power q and a positive integer n,
we shall suppose E is the degree n extension GF(qn) of the finite field
F = GF(q). Additively too, the extension E, viewed as an FG-module is
cyclic and a generator is called a free element of E over F . (Here G, a
cyclic group generated by σ, say, is the Galois group of E over F .) The
classical form of this statement – the normal basis theorem – is that E
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contains an element w whose conjugates {w,wq, . . . , wqn−1} constitute an
F -basis of E: w is then free over F .

The terms primitive and free are correspondingly applied to the min-
imal polynomials Mw over F of appropriate elements w of E. Thus, a
monic irreducible polynomial M of degree n over F is primitive if and
only if it has (multiplicative) order qn − 1: this means that m = qn − 1 is
minimal such that M(x) divides xm − 1. Further, M is free over F if and
only if its roots constitute an F -basis of E. An equivalent formulation is
that the (additive) F -order of M (necessarily a divisor of xn− 1) is xn− 1
itself. This means that, if g(x) is a monic divisor of xn − 1 over F such
that M divides gσ (the polynomial obtained from g by replacing xi by xqi

,
i ≥ 0), then g(x) = xn − 1.

The distribution of elements of E that are both primitive and free
over F can be expressed in terms of Gauss sums over E. Thus, Lenstra

and Schoof [LeSc] (completing work of Davenport [Da] and Carlitz

[Ca]) proved the existence of such elements for every pair (q, n). This
result has recently been strengthened by Cohen and Hachenberger

in two directions. In [CoHa1] it was shown that the primitive and free
element w may have an arbitrary specified non-zero (E, F )-trace a in
F , i.e., TrE,F (w) :=

∑n−1
i=0 wqi

= a. (This established a conjecture of
Morgan and Mullen [MoMu].) Further, in [CoHa2], it was shown
that, given an arbitrary primitive element b of F , there exists a primi-
tive element w of E, free over F , such that w has (E, F )-norm b, i.e.,

NE,F (w) :=
∏n−1

i=0 wqi

= w
qn−1
q−1 = b. Succinctly, these conclusions are

that every pair (q, n) is both a PFT-pair and a PFN-pair.
Also introduced in [CoHa2] was the PFNT-problem that combines the

requirements of the PFT- and PFN-problems featured above.

Problem PFNT. Given a finite extension E/F of Galois fields, a

primitive element b in F , and a non-zero element a in F , does there exist a

primitive element w in E, free over F , whose (E, F )-norm and trace equal

b and a, respectively?

If so for each pair (a, b), then the pair (q, n) corresponding to E/F is

called a PFNT-pair.

Note that, since for n ≤ 2, w is prescribed by its trace and norm,
we may suppose n ≥ 3 for the PFNT-problem to be meaningful. Not only
would a solution of the PFNT-problem be highly desirable in itself, it
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would also have significant implications for the construction of universal
generators of closures of Galois fields, see [Ha2].

In [CoHa2], drawing on more widely applicable estimates based on
Gauss sums from [Ha2] (whose proofs were therefore omitted in [CoHa2]),
it was shown that, for n ≥ 9, every pair (q, n) is a PFNT-pair: indeed,
whenever n ≥ 7, every pair, aside from at most 8 exceptions, is a PFNT-
pair. The purpose of this paper is to refine radically the Gauss sum formu-
lation of the PFNT-problem, employing Gauss sums both over E and over
F , so that it becomes applicable whenever n ≥ 4 (see Section 2), and to
use sieving techniques (described in Section 3) to provide a complete the-
oretical solution for n ≥ 5 (in Section 4). The innovative part of the sieve
is that its thrust here is in regard to sifting in respect of additive orders;
sieving with respect to multiplicative order has become already an estab-
lished technique, see [Co1], [Co2], for example. We prove the following
result.

Theorem 1.1. Let q be a prime power and n ≥ 5 an integer. Then

(q, n) is a PFNT-pair.

The PFNT-problem for n = 4 is soluble, in principle, by the same
method. Nevertheless the details would be delicate for smaller values of q

and direct verification in E is likely to be necessary in some cases. We
exclude this case in order to focus here on the theoretical principles of
the method. The estimates fail altogether when n = 3, and it may be
impractical to expect progress on the PFNT-problem in this instance.

Finally, we observe that an affirmative solution of the PFNT-problem
for (q, n) is equivalent to demonstrating the existence, for each a, b ∈ F (as
in its statement), of a primitive free polynomial M(x) = xn +Mn−1x

n−1 +
· · · + M0 with Mn−1 = −a, M0 = (−1)nb. In particular, Theorem 1.1
implies the solution of a case of a conjecture of Hansen and Mullen

[HaMu] as follows.

Corollary 1.2. Let q be a prime power and n ≥ 5 an integer. Then,

for any non-zero M1 in GF(q), there exists a primitive free polynomial

xn + Mn−1x
n−1 + · · ·+ M1x + M0 over GF(q).

To derive Corollary 1.2 from Theorem 1.1, simply consider the monic
form M0x

nM(1/x) of the reciprocal polynomial of a primitive (free) poly-
nomial postulated by the theorem. By a natural variation (simplification)
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of the method the same result holds with M1 = 0; the restriction to M1 6= 0
only arises through the constraint of free-ness in Theorem 1.1.

As a paper in a collection dedicated to the distinguished number-
theorist Kálmán Győry, it is intended to be relatively self-contained as
regards its main number-theoretical ideas. Nevertheless, we draw on some
results from previous items to avoid unnecessary duplication of detail.

I gladly acknowledge the assistance of Dirk Hachenberger (Augs-
burg) in the preparation of this article. Indeed, this paper was intended
to form part of a collaborative sequence that began with [CoHa1] and
[CoHa2], but Dirk has graciously declined the status of co-author on this
occasion. Nonetheless, the work has evidently benefited from discussions
we have held throughout our association.

2. Character sum formulation

From now on, suppose that F = GF(q), E = GF(qn), n ≥ 4, and a, b

in F with a 6= 0 and b a primitive element, are given. We reformulate this
specific case of the PFNT-problem in terms of characters and ultimately
Gauss sums. Many texts such as [LiNi], Chapter 5, could be consulted for
the general background, and [Ha1] for that on additive orders.

Let m = m(q, n) be the greatest divisor of qn − 1 that is relatively
prime to q−1. Then, indeed, m divides qn−1

(q−1)·gcd(n,q−1) , perhaps properly.
Were it already known that w ∈ E has (E,F )-norm b, then to guarantee
that w be a primitive element of E, it would suffice to show that w = vd

(where v ∈ E and d | m) implies d = 1; in other words, in a rather
inelegant phrase, w is not any kind of mth power in E.

The additive analogue of the above is as follows. Let M = M(q, n)
be the monic divisor of xn−1 (over F ) of maximal degree that is prime to
x− 1. Thus, defining p := charF and setting n = pln0, where p does not
divide n0, we have M = xn−1

xpl−1
, a factor of xn−1

x−1 . The (additive) F -order
of w ∈ E is the monic divisor g (over F ) of xn − 1 of minimal degree such
that gσ(w) = 0. For a comprehensive account of this notion, see [Ha1],
but, certainly, if w has F -order g, then w = hσ(v) for some v ∈ E, where
h = (xn − 1)/g. In particular, were it already known that w ∈ E has
(non-zero) (E,F )-trace a, then, to guarantee that w be free over F , it
would suffice to show that w = hσ(v) (where v ∈ E and h is an F -divisor
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of M) implies h = 1, i.e., in a loose imitation of a previous phrase, w is
not any kind of M th power in E.

Because of the above correspondence, it is convenient to present a
(partially) unified treatment of the multiplicative and additive parts. To
this end, define T = T (q, n) as the set of formal products {τ = tT : t | m,
T | M}. For τ = tT ∈ T , let π(τ) = π(q, n, a, b; τ) be the number (conve-
niently scaled (multiplied) by a factor q(q − 1)) of elements w of E such
that

(i) NE,F (w) = b;
(ii) TrE,F (w) = a;
(iii) w is not any kind of tth power in E;
(iv) w is not any kind of T th power in E.

(We remark that the use of the scaling factor q(q − 1) in π(τ) avoids
repetition of this factor in formulae. It arises because of the potential
q − 1 values of NE,F (w) and q values of TrE,F (w) for w ∈ E∗.)

We shall refer to the distinct prime or irreducible factors of τ ∈ T as
its atoms. Their significance is that π(τ) depends only on the atoms of τ ,
i.e., on its square-free part. Of course, to ensure a solution to the PFNT-
problem for given parameters q, n, a, b, we need to show that π(mM) is
positive. Nevertheless, it is useful to study more general values of π(τ). A
further incidental comment on the definition of π(q, n, a, b; mM) is that the
prescribed restrictions on a, b (for example, that b be primitive) are crucial
in limiting the order criteria (iii), (iv) above to m, M , respectively, when
applied to the PFNT-problem. From this point on, these restrictions do
not feature prominently and formulae for π(q, n, a, b; τ) could be derived
more generally, although for example, when a = 0, they would have a
somewhat different shape.

The next stage is to express the characteristic functions of the four
subsets of E (or E∗) defined by each of the conditions (i)–(iv) in terms of
characters (whether multiplicative or additive) on E or F .

(i) NE,F (w) = b, w ∈ E∗

Let F̂ ∗ denote the group of multiplicative characters of F ∗. Abbreviating
NE,F to N , we have that the characteristic function of the subset of E∗

comprising elements w satisfying (i) is

1
q − 1

∑

ν∈cF∗ ν
(
N(w)b−1

)
, w ∈ E∗.



298 Stephen D. Cohen

(ii) TrE,F (w) = a, w ∈ E

Let λ be the canonical additive character of F . Thus, for x ∈ F ,

λ(x) = exp
(
2πi TrF,GF(p)(x)/p

)
,

where p = charF . Then the characteristic function of the subset of E

prescribed by (ii) is

1
q

∑

c∈F

λ(c(T (w)− a)), w ∈ E,

where, here, T is an abbreviation for TrE,F .

(iii) w is not any kind of tth power in E, t | m, w ∈ E∗

For any d | m, we write ηd for a typical character in Ê∗ of order d. In
particular, η1 is the trivial character. Observe that, since d | qn−1

q−1 , then

the restriction of ηd to F ∗ is the trivial character ν1 of F̂ ∗. We shall use a
shorthand “integral” notation for certain weighted sums; namely, for t | m,
define ∫

d|t

ηd :=
∑

d|t

µ(d)
φ(d)

∑

(d)

ηd,

where φ and µ denote the functions of Euler and Möbius, respectively, and
the inner sum ranges over all φ(d) characters of order d. Then, according
to a formula developed from one of Vinogradov (see [Ju], Lemma 7.5.3,
and [Co1]), the characteristic function for the subset described by (iii) is

Θ(t)
∫

d|t

ηd(w), w ∈ E∗,

where Θ(t) := φ(t)/t =
∏

l|t(1 − l−1), the product running over all prime
divisors of t.

At this point we append the following related material for later use.
Any character ν ∈ F̂ ∗ can be lifted to a character ν̃ ∈ Ê∗ by defining
ν̃(w) = ν(N(w)), w ∈ E. We may then restrict ν̃ to F ∗ to obtain ν∗ in
F̂ ∗. It need not be that ν = ν∗: indeed, if ν has order e (a divisor of q−1),
then ν∗ has order e

gcd(e,n) . In particular, ν∗ = ν1 if and only if the order
of ν divides n.
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(iv) w is not any kind of T th power in E, T | M , w ∈ E

Let χ be the canonical additive character on E: it is just the lift of λ to
E, i.e., χ(w) = λ(T (w)), w ∈ E. For any (monic) F -divisor D of M , a
typical character χD of order D is one such that χD ◦ Dσ is the trivial
character in E, and D is minimal (in respect of degree) with this property.
Further, let ∆D be the subset of δ ∈ E such that χδ has F -order D

if and only if δ ∈ ∆D, where χδ(w) := χ(δw), w ∈ E. (Here we are
using the assumption that D | M , a divisor of xn − 1; if this did not
hold, some adjustments would be necessary.) Thus, we may also write
χδD

for χD, where δD is some element of ∆D; moreover {χδD
, δD ∈ ∆D}

is the set of all characters of order D. Note that ∆D is invariant under
multiplication by F ∗, and that, if D = 1, then δ1 = 0 and χD = χ0, the
trivial character. There are, in fact, Φ(D) characters χD, where Φ is the
Euler function on F [x]: the latter is multiplicative and is given by the
formula Φ(D) = |D|∏P |D(1− |P |−1), where the product is over all monic
irreducible F -divisors of D and |D| = qdeg(D).

In analogy to (iii), for T | M , define
∫

D|T

χδD :=
∑

D|T

µ(D)
Φ(D)

∑

(δD)

χδD ,

where µ is the Möbius function on F [x] and the inner sum runs over all
Φ(D) elements δD of ∆D. Then the characteristic function of the subset
of E described by (iv) is

Θ(T )
∫

D|T

χδD (w), w ∈ E,

where Θ(T ) := Φ(T )/|T |.
For later use, note that, because M and x− 1 are co-prime, then, for

any divisor D (6= 1) of T , ∆D has empty intersection with F .
Using the above characteristic functions, we derive an expression for

π(τ) in terms of Gauss sums on E and F .
For any η ∈ Ê∗, set

Gn(η) :=
∑

w∈E

χ(w)η(w)



300 Stephen D. Cohen

with the convention that η1(0) = 1, but η(0) = 0 for η 6= η1. Similarly, the
Gauss sum over F corresponding to ν ∈ F̂ ∗ is denoted by G1(ν). The key
fact is that |G1(ν)| = √

q for ν 6= ν1, and hence |Gn(η)| = q
n
2 for η 6= η1.

Of course, G1(η1) = Gn(η1) = 0.
In the theorem which follows we establish a new type of formula for

π(τ) that combines products of Gauss sums over E and over F . In its
statement we draw on notation introduced above, though some summa-
tions will be modified as indicated. For example,

∑
ν∈cF∗,ν∗ 6=ν1

means that
the sum will be restricted to characters ν for which ν∗ (defined in (iii)) is
non-trivial: there are q − 1 − e such characters, where e = gcd(n, q − 1).
We shall also use bars over symbols to denote complex conjugation.

Theorem 2.1. Let the prime power q, the integer n (≥ 4) and ele-

ments a ∈ F ∗ and b, a primitive element of F , be given. Then, for any

τ = tT ∈ T , where t | m and T | M , we have

(2.1) π(τ) = Θ(τ) · (qn + A + B − C) ,

where

A =
∫

d|t

∫

D|T

∑

ν∈cF∗
ν∗ 6=ν1

ν∗(a)ν(b)(ηdν̃)(δD + 1)G1(ν∗)Gn(ηdν̃),

B =
∫

d|t

∫

D|T
D 6=1

∑

ν∈cF∗
ν∗=ν1, ηdν̃ 6=η1

ν(b)
(
(ηdν̃)(δD)− (ηdν̃)(δD + 1)

)
Gn(ηdν̃),

C =
∫

d|t

∑

ν∈cF∗
ν∗=ν1, ηdν̃ 6=η1

ν(b)Gn(ηdν̃),

and where Θ is extended to T by multiplicativity.

Proof. From the characteristic functions (i)–(iv), taking into ac-
count the scaling factor q(q − 1), we have

(2.2) π(τ) = Θ(τ)
∫

d|t

∫

D|T

∑

ν∈cF∗
∑

c∈F

ν(b)λ(ac)
∑

w∈E

(ηdν̃)(w)χ((δD + c)w).
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To see this, recall that ν̃(w) = ν(N(w)) and χ(cw) = λ(cT (w)). Moreover,
because the characteristic function under (ii) scores 0 when w = 0, it is
safe to extend the definition of the characteristic functions under (i) and
(iii) to w = 0, using our conventions on the values of ν(0) and ηd(0).

Accordingly, the contribution to the right side of (2.2) of the terms
with d = 1 and ν = ν1, or D = 1 (δD = 0) and c = 0 (or both) is simply
Θ(τ)qn. (Note, in particular, that δD + c = 0 implies D = 1 and c = 0.)

Next, the contribution of the terms in (2.2) with c = 0 and D 6= 1
(δD 6= 0), on replacing w by w/δD, yields

Θ(τ)
∫

d|t

∑

ν∈cF∗
ηdν̃ 6=η1

ν(b)Gn(ηdν̃)
∫

D|T
D 6=1

(ηdν̃)(δD).

Now, F ∗∆D = ∆D and ηd is trivial on F ∗. Hence the inner sum
∫

D|T
D 6=1

(ηdν̃)(δD) =
1

q − 1

∫

D|T
D 6=1

∑

c∈F∗
(ηdν̃)(cδD)

=
1

q − 1

∫

D|T
D 6=1

(ηdν̃)(δD)
∑

c∈F∗
ν∗(c) = 0,

unless ν∗ = ν1. Consequently, the terms under consideration yield the first
part of the term B in (2.1), i.e., the part involving ηdν̃(δD). Again, since
∆D = c∆D for c ∈ F ∗, when c 6= 0, we may replace δD in (2.2) by cδD and
then w by w/(c(δD + 1)). As ηd(c) = 1, the contribution of the remaining
terms is therefore

Θ(τ)
∫

d|t

∫

D|T

∑

ν∈cF∗
ηdν̃ 6=η1

ν(b)(ηdν̃)(δD + 1)Gn(ηdν̃)
∑

c∈F∗
λ(ac)ν∗(ac).

The latter is equal to Θ(τ)(A− Y ), where A is as in (2.1) and

Y =
∫

d|t

∫

D|T

∑

ν∈cF∗
ν∗=ν1, ηdν̃ 6=η1

ν(b)(ηdν̃)(δD + 1)Gn(ηdν̃).
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The expression for Y yields (through those terms with D 6= 1) the balance
of the part B in (2.1) as well as the part C (through the terms with D = 1).

¤

From Theorem 2.1, we derive a lower bound for π(τ). We write
W (τ) = W (t)W (T ) = 2ω(τ) for the number of square-free divisors of τ ,
where ω counts the atoms in τ . Note that W (T ) ≤ 2n−1.

Corollary 2.2. Under the conditions of Theorem 2.1, we have

π(τ) ≥ Θ(τ)
(
qn − (q−1− e)W (τ)q

n+1
2 − (eW (t)−1)(2W (T )−1)q

n
2

)
,

where e = gcd(n, q − 1).

Corollary 2.3. Under the conditions of Theorem 2.1, π(τ) is positive

whenever

(2.3) q
n−3

2 >

(
1− e + 1

q

)
W (τ) +

1
q3/2

(eW (t)− 1)(2W (T )− 1),

and so certainly whenever

(2.4) q
n−3

2 >

(
1− 1

q

)
W (τ), q ≥ 4.

For the case in which τ = mM , Corollary 2.3 represents an improve-
ment by a factor of approximately

√
q over the criterion in [CoHa2].

3. Sieving inequalities

To establish Theorem 1.1 for arbitrary large values of q and n, it is
necessary first to employ Corollary 2.3 (or a weaker variant) with τ =
mM . With the aid of some supplementary facts (such as Lemma 3.3,
below), the theorem was thereby justified in [CoHa2] for n ≥ 7, save for
a few exceptional values of q when n = 7 or 8. But for smaller values
of n, it is hopeless to contemplate a complete proof solely by these means.
To overcome the considerable obstacles in these cases, we have devised a
sieving process. (Actually, use of this device would have reduced the effort
of [CoHa2].)



Gauss sums and a sieve for generators of Galois fields 303

Let τ = tT ∈ T . Given r ≥ 1, divisors τ1 = m1M1, . . . , τr = mrMr
1

of τ will be called complementary divisors of τ with common divisor τ0,
if the atoms (i.e., distinct primes and irreducibles) in lcm{τ1, . . . , τr} are
precisely those in τ and, for any distinct pair (i, j), the atoms of gcd(τi, τj)
are precisely those of τ0. (The point is that the value of π(τ) depends only
on the atoms of τ .) When r = 1, take τ1 = τ0 = τ and recover the situation
of Section 2.

The novel feature of the basic sieving inequality which follows is its
applicability with M1, . . . , Mr proper divisors of M , i.e., to the component
relating to F -order, cf. [Co2].

Theorem 3.1. Let τ1, . . . , τr be complementary divisors of τ ∈ T with
common divisor τ0. Then

π(τ) ≥
(

r∑

i=1

π(τi)

)
− (r − 1)π(τ0).

Proof. When r = 1, the result is trivial. For r = 2, denote the set
of elements of E∗ that satisfy (i)–(iv) of Section 2 by Aτ , where τ = tT ,
etc. Then

Aτ1 ∪ Aτ2 ⊆ Aτ0 , Aτ1 ∩ Aτ2 = Aτ ,

and the inequality holds by consideration of cardinalities. For r ≥ 2, use
induction on r. Write τ ′ = τ2 . . . τr, apply the result for r = 2 to τ , τ ′,
and then apply the induction hypothesis to τ ′. The result follows. ¤

To state an inequality extending Corollary 2.3, we require the defi-
nition of a crucial parameter: it is a generalization of the quantity Θ(τ).
Given complementary divisors τ1, . . . , τr of τ with common divisor τ0, set

Θ = Θ(τ1, . . . , τr) :=

(
r∑

i=1

Θ(τi)

)
− (r − 1)Θ(τ0).

To illustrate, suppose that q ≡ 1 (mod n) (so that p does not divide n).
Thus M = xn−1

x−1 = M1 . . . .Mn−1, a product of n − 1 distinct linear fac-
tors over F . Then, for the indicated set of complementary divisors with
common divisor m,

(3.1) Θ(mM1, . . . ,mMn−1) = Θ(m)
(

1− n− 1
q

)
,

1We use m1, M1, . . . rather than t1, T1, . . . because in all applications we will have
τ = mM , where m, M are as in Section 2.
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whereas, for another set with common divisor 1,

(3.2) Θ(M1, . . . , Mn−1,m) = Θ(m)− n− 1
q

.

To be useful in a given situation it is essential that Θ is positive. Indeed,
the ratio Θ/Θ(τ0), which we will denote by Θ0, should not be too small.

Theorem 3.2. Assume that q is a prime power and n (≥ 4) is an

integer, and that a in F ∗ and b, a primitive element of F , are given.

Suppose that τ1 = m1M1, . . . , τr = mrMr are complementary divisors

of τ = mM with common divisor τ0 = m0M0. Suppose also that Θ :=
Θ(τ1, . . . , τr) is positive. Then π(τ) is positive whenever

(3.3) q
n−3

2 ≥ R− S + Θ−1
r∑

i=1

Θ(τi)(Ui − Vi),

where, with e = gcd(n, q − 1),

R =
(

1− e + 1
q

+
2e

q3/2

)
W (τ0),

S =
1

q3/2
(eW (m0) + 2W (M0)− 1) ,

Ui =
(

1− e + 1
q

+
2e

q3/2

)
(W (τi)−W (τ0)),

Vi =
1

q3/2
(e(W (mi)−W (m0)) + 2(W (Mi)−W (M0))) .

In particular, it suffices that

(3.4) q
n−3

2 >

(
1− 1

q

)(
W (τ0)+ Θ−1

r∑

i=1

Θ(τi)(W (τi)−W (τ0))
)

, q≥ 4.

Proof. From Theorems 3.1 and 2.1,

π(τ) ≥ Θ0π(τ0) +
r∑

i=1

Θ(τi)Si,
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where Si is equal to
∫

d|mi

∫

D|Mi

dD-τ0

∑

ν∈cF∗
ν∗ 6=ν1

Ai +
∫

d|mi

∫

D|Mi

dD-τ0, D 6=1

∑

ν∈cF∗
ν∗=ν1, ηdν̃ 6=η1

Bi −
∫

d|mi

d-m0

∑

ν∈cF∗
ν∗=ν1,ηdν̃ 6=η1

Ci,

with Ai, Bi and Ci being as in the corresponding expressions in (2.1). The
bound (3.3) now follows by applying Corollary 2.3 to π(τ0) and similar
estimates used in its derivation for the remaining terms. As at (2.4), (3.4)
follows since e√

q ≤ 2e for q ≥ 4. ¤

In this paper, two types of complementary divisors suffice for the
most part. (But note that for the case of n = 4, greater ingenuity in
the selection of complementary divisors will be required and therefore the
flexibility offered by these detailed results will be useful.) Given that we
may assume n ≤ 8, the first use of Theorem 3.2 will be to sieve wholly on
the additive part (i.e., with τ0 = m) to deal with large values of q. For
smaller values of q, we generally take the atoms of τ as complementary
divisors. In the former of these applications, the inequality (3.4) takes the
form

(3.5) q
n−3

2 > QMW (m),

where QM = QM (q), a rational function of q, converges rapidly to
ω(M) + 1. The following illustration serves as a model.

Corollary 3.3. Under the assumption of Theorem 3.2, suppose that

q ≡ 1 (mod n), so that M = M1 . . . Mn−1, a product of linear factors

over F . Then π(mM) is positive whenever (3.5) holds, where

QM (q) =
(q − 1)(nq − 2(n− 1))

q(q − n + 1)
.

Proof. Take complementary divisors τ1, . . . , τn−1 as in (3.1). Thus
W (τi) −W (τ0) = W (τ0) = W (m). Hence, from (3.4) and (3.1) it suffices
that

q
n−3

2 >

(
1− 1

q

) 
1 +

(n− 1)
(
1− 1

q

)

1− n−1
q


W (m),

which is equivalent to the stated result. ¤
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Note that a stronger version of Corollary 3.3 would be obtained if we
used (3.3), with e = n, instead of (3.4). Indeed, if q − 1 divides n, so that
e = q−1, the main terms on the right side of (3.3) disappear, leaving only
the q−3/2-terms. This is consistent with Proposition 4.1 of [CoHa2] which
reduced the PFNT-problem in this case to the PFN-problem which was
solved completely in that paper.

Lemma 3.4. Let q be a prime power and n a positive integer. Assume

that q − 1 divides n. Then (q, n) is a PFNT-pair.

For example, Lemma 3.4 applies whenever q = 2 or when q = 3 and
n is even. One further simplification is the following.

Lemma 3.5. Suppose that, for a given pair (q, n), M is irreducible.

Then π(mM) is positive if and only if π(m) is positive.

Proof. If w (with the prescribed non-zero trace and norm) is not any
kind of mth power, then w /∈ F . In particular, it does not have F -order
x− 1 and so must be free. ¤

4. Proof Theorem 1.1

We deal mainly with the cases n = 5, 6. After that, it will be seen
that further cases (n = 7, 8, . . . ) are a formality. For a given pair (q, n) let
ω or ωq denote ω(m). We can suppose that q > 2: indeed q > 3 if n is
even.

As a preliminary to a case by case discussion when n = 5, note that
m | q5−1

q−1 and the latter is divisible by 5 if and only if q ≡ 1 (mod 5):
even then 5 - m. Hence, in every case, all primes that are candidates to
be factors of m lie in the set S5 = {11, 31, 41, 61, 71, 101, . . . } comprising
primes l ≡ 1 (mod 10). Denote by Pr (r = 1, 2, . . . ) the product of the
first r primes in S5.

(i) n = 5, q ≡ 1 (mod 5)

Since m ≤ q5−1
5(q−1) , then q > (5m)1/4 − 1 ≥ (5Pω)1/4 − 1 =: Rω, say. Now,

Corollary 3.3 (in this situation) offers the sufficient condition

(4.1) q > 2ωQM (q),
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where QM (q) = (q−1)(5q−8)
q(q−4) , a function which decreases to 5 (being less

than 5.1 for q ≥ 81, say). Thus, it suffices to show that

(4.2) Rω > 2ωQM (q), q ≥ Rω.

As ω increases it is evident that, because further primes taken into Rω

exceed 24 = 16, the function Rω/(2ωQM (Rω)) is increasing. Hence, if
(4.2) is established for ω = ω0, say, it will hold for ω ≥ ω0.

Now, R6 > 417 > 322 > 64QM (417) and hence (4.1) holds whenever
ω ≥ 6. Next, R5 > 130. On the other hand, 32QM (165) < 162, so that
(4.1) holds when ω = 5, unless 131 ≤ q < 165. There are, however,
no prime powers q in this range with ωq = 5. The story is similar for
ω = 4. For ω = 3, Rω > 15, so that q ≥ 16. (Indeed, m(16, 5) =
(P 5

3 − 1)/(5(P3 − 1)), the minimal theoretical value.) We have 8Q5(43) <

42, so that 16 ≤ q ≤ 43 but there are no further relevant prime powers in
this range.

For q = 16, m = 11 · 31 · 41, so that ω(mM) = 7 and we take
atomic complementary divisors, i.e., M1, . . . ,M4, 11, 31, 41. This gives
Θ0 := Θ/Θ(m) = 4(1 − 1

16 ) + 10
11 + 30

31 + 40
41 − 6 = 0.6024 . . . . Thus,

using the abbreviation RS(3.4) to denote the right side of (3.4), we have

RS(3.4) ≤
15
16
· (1 + Θ−1

0 (Θ0 + 6)
)

< 11.3 < q.

Hence, (3.4) is satisfied.
The only prime power that remains to be dealt with is q = 11, in which

case m is prime. We use complementary divisors with common divisor m

(as in Corollary 3.3) but in respect of the inequality (3.3) with e = 5. We
have Θ0 = 7

11 and

RS(3.3) =
10
11

+
9

113/2
+ Θ−1

0

(
4 · 10

11
·
(

10
11

+
18

113/2

))
< 9.2 < q.

Thus the result holds in this case.

(ii) n = 5, q ≡ −1 (mod 5)

Now M = M1M2, where M1, M2 are irreducible quadratic polynomials.
Hence, in Corollary 3.3 we have Θ0 = 1− 2

q2 and QM (q) = (q−1)(3q2−4)
q(q2−2) < 3.

Indeed, we may take QM = 3 in (3.5). Since m ≤ (q5 − 1)/(q − 1), we
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redefine Rω := P
1/4
ω −1 and then q > Rω. Now, R6 > 278 > 192 ≥ 64QM ,

and hence the result holds for ω ≥ 6. For ω = 3, 4, 5 there are no relevant
prime powers between Rω and 3 · 2ω. Further, since 4QM (11) < 11, only
the prime powers q = 4, 9 remain: these have ωq = 2 and we take atomic
complementary divisors. For q = 4, these are M1, M2, 11, 31 so that
Θ = 2 · 15

16 + 10
11 + 30

31 − 3 = 0.7518 . . . . Then, in (3.3), e = 1 and

RS(3.3) =
7
8

+ Θ−1

(
2 · 1

2
· 9
10

+
7
8

(
10
11

+
30
31

))
< 3.89 < q.

For q = 9, m = 11 · 671, Θ0 = 0.8829 . . . , and

RS(3.4) =
8
9

(
1 + Θ−1(3 + Θ0)

)
< 4.8 < q.

Thus a sufficient condition is satisfied in every case.

(iii) n = 5, q ≡ ±2 (mod 5) or q a power of 5

If q ≡ ±2 (mod 5), then M is an irreducible quartic, so that, by Lemma 3.5
it suffices to show that π(1) is positive. Since M = 1 when q is a power
of 5, the same conclusion can be drawn in that case, too. Hence, for q ≥ 4,
by (2.4) it suffices to show that

q >

(
1− 1

q

)
W (m).

This inequality easily holds by the method of (i), (ii) for ω ≥ 3 or q ≥ 13
(since R3 (defined as in (ii)) exceeds 9). It also holds for q = 5, 7, 8,
since ωq ≤ 2 for these. Finally, for q = 3, ω3 = 1, and with τ = m,
RS(2.3) = 2

3 + 1
33/2 < 0.86 < q.

We now suppose n = 6. Here, the extra
√

q that appears on the
left sides of (3.3) and (3.4) is offset by the fact that any odd prime is a
candidate for a factor of m. For example, 3 is always a factor if q ≡ 2
(mod 3). As m is a divisor of (q +1)(q2 + q +1)(q2− q +1) and the primes
l (> 3) dividing the quadratic factors have l ≡ 1 (mod 6), such primes
must predominate the factorisation of m. Nevertheless, we do not exploit
this fact here, but simply take S6 to be the set of odd primes, possibly
omitting 3 (depending on the case). By Lemma 3.4 we may assume q > 4.



Gauss sums and a sieve for generators of Galois fields 309

(iv) n = 6, q ≡ 1 (mod 6)

We follow case (i). Since 3 does not divide m, the prime 3 can be excluded
from S6 and we let Pr be the product of the first r odd primes (> 3).
Moreover, m ≤ q6−1

6(q−1) , and hence q > (6m)1/5 − 1 ≥ (6Pω)1/5 − 1 =: Rω.

Thus, by Corollary 2.5 with QM (q) = 2(q−1)(3q−5)
q(q−5) < 6, it suffices to show

specifically that

(4.3) q
3
2 > 6 · 2ω,

or, more generally, that

(4.4) R
3
2
ω > 6 · 2ω.

Now, R10 > 374 and R
3/2
10 > 7234 > 6144 = 6 · 210. Hence, (4.4) holds for

ω ≥ 10 or q > 374. In fact, for q < 374, ωq ≤ 6. For ω = 6, 5, 4, the values
of q for which R

3/2
ω < q3/2 < 6 · 2ω (so that (4.3) would fail) lie in the

intervals [25, 53], [13, 34], [7, 21], respectively. Yet, these intervals contain
no relevant prime powers. For ω ≤ 3, there remains q = 7 or 13. But
(7, 6) is a PFNT-pair by Lemma 3.4. For q = 13, use the complementary
divisors of Corollary 3.3 (so that Θ0 = 8/13) but employ (3.3) with e = 6.
Then

RS(3.3) = 8 ·
(

6
13

+
5

133/2

)
+ Θ−1

0

(
5 · 12

13
·
(

48
13

+
94

133/2

))
< 24.7,

which is less than q3/2 = 48.8 . . . and so the result holds in every case.

(v) n = 6, q ≡ −1 (mod 6)

Now, M = M1M2M3, where M1 = x + 1 and M2, M3 are irreducible
quadratics. Hence, in the analogue of Corollary 3.3, we have Θ0 = 1− 1

q + 2
q2

and (3.5) holds with QM (q) = (3q+2)(q−1)2

q(q−2)(q+2) < 3. This time 3 is always a

factor of m so that certainly 3 ∈ S6 and we define Rω := P
1/3
ω − 1. In like

fashion to case (ii) (say) above, we find that (3.5) holds whenever ω ≥ 11 or
q > 374. For lesser values of q, the maximum value of ωq is 7. For ω = 7, 6
or 5, there are no relevant prime powers in the range R

3/2
ω < q3/2 < 3 · 2ω

(cf. case (iv)). For ω ≤ 4, by (3.5), we can assume q < (48)2/3 < 14, which
implies q = 5 or 11. For q = 11, use the atomic complementary divisors
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M1, M2, M3, 3, 7, 19, 37. Then Θ = 10
11 +2 · 120

121 + 2
3 + 6

7 + 18
19 + 36

37 = 0.3367
and

RS(3.4) =
10
11

(
1 + Θ−1(Θ + 6)

)
< 18.1 < q3/2.

For q = 5, m = 32 · 7 · 31, more care is needed. Take complementary
divisors 3M1, 3M2, 3M3, 3 ·7 and 3 ·31 with common divisor τ0 = 3. Then
Θ0 = Θ/Θ(τ0) = 4

5 + 2 · 24
25 + 6

7 + 30
31 − 4 = 0.54488 . . . . Note that for

each complementary divisor τi, W (τi)−W (τ0) = W (τ0) = 2. Then, e = 1
in (3.3), and

RS(3.3) =
4
5

+
3

53/2
+ Θ−1

0

((
4
5

+
4

53/2

) (
3− 1

5
− 2

52
+

6
7

+
30
31

))
.

Thus, RS(3.3) < 10.6 < q3/2 = 11.18 . . . and the result holds in every case.

(vi) n = 6, q a power of 3, q ≥ 9

Now, M has a single irreducible factor x + 1, and, by Corollary 2.3, it
suffices to show that

(4.5) q3/2 >

(
1− 1

q

)
W (m).

In this case, 3 is not a member of S6 and m ≤ q6−1
2(q−1) , so that q > (2Pω)1/5−

1 =: Rω. The method used in previous cases quickly yields the result
whenever ωq ≥ 6 or q > R6 > 19. This leaves only q = 9, in which case
(4.5) holds because ωq = 4.

(vii) n = 6, q = 2s, s ≥ 3

Here M = (x2 + x + 1)2, so that M has a simple irreducible factor, if s is
odd, and a pair of distinct linear factors, if s is even. (From Lemma 3.4
comes the restriction to s ≥ 3.)

Suppose s is odd. Then, by Corollary 2.3, it suffices to satisfy (4.5).
Since 3 | m, then 3 ∈ S6 and q > Rω := P

1/5
ω − 1. As in case (vi), the

result holds whenever ωq ≥ 7 and q > R7 > 20 (which implies q ≥ 32) or
ωq ≤ 6 and q > R6 > 10. This leaves only q = 8. But ω8 = 3 and therefore
(4.5) holds in this case.

Suppose s is even. Then 3 does not divide m and q >Rω := (3Pω)1/5−1.
We have to satisfy (3.5) with QM = (q−1)(3q−4)

q(q−2) < 3. If ω ≥ 10, then
q > 261 and (3.5) holds. Thus ω256 ≤ 9 and therefore (3.5) is satisfied for
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q = 256. Finally, ω64 = 6 and ω16 = 4, so that (3.5) holds also for q = 64
or 16.

(viii) n = 7 or 8

For n = 7, only members of S7 = {29, 43, 71, . . . } comprising primes l ≡ 1
(mod 14) are candidates to be divisors of m. Thus, it is plain that the
method of the previous cases will quickly yield success and only very small
values of q could be in doubt. We check only the case q = 4 (unsettled
in Theorem 1.2 of [CoHa2]). For this, M is a product of two irreducible
cubics and m = 43 · 127. Thus, ω(mM) = 4 and, with τ = mM ,

RS(2.4) =
48
49
· 16 < q2 = 16;

therefore (4,7) is a PFNT-pair. Easily, so also is (64, 7), the other pair left
unsettled in [CoHa2].

Finally, when n = 8, although any odd prime may be a divisor of m,
the power q5/2 on the left side of (3.3) or (3.4) is decisive. Moreover,
q = 2, 3, 5 all yield to Lemma 3.4 and M = 1 for q = 4 or 8. We therefore
simply check the cases q = 7, 13, 17 (unsettled in [CoHa2]). From these,
the other cases q = 25, 41, 89, unsettled in [CoHa2], will also be clear.
For q = 7, 13, 17 we have ω(M) = 4, 5, 7 and ω(m) = 2, 4, 4, respectively.
For q = 7 or 13, we have q5/2 > W (mM) and so the result holds by (2.4).
For q = 17, by Corollary 3.3, we have to satisfy

1191.5 . . . = q5/2 > 16 · 2(q − 1)(4q − 7)
q(q − 7)

= 183.7 . . . .

From the above and [CoHa2], the proof of Theorem 1.1 is complete. ¤
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