Publ. Math. Debrecen **41 / 3–4** (1992), 311–316

Sufficient condition for π -closure of a finite group

By YAKOV BERKOVICH (Ramat-Gan)

Let π and π' be complementary sets of primes. A finite group G is called π -closed if it contains a normal π -Hall subgroup. By $\pi(n)$ we denote the set of all prime divisors of a positive integer n. Now $\pi(G) = \pi(|G|)$ where |G| is the order of G.

Let Irr(G) be the set of all irreducible complex characters of G (only finite groups are considered). By $Irr_1(G)$ denote the set of all non–linear characters in Irr(G). Then $Lin(G) = Irr(G) - Irr_1(G)$ is the set of all linear characters of G.

If $\chi \in Irr(G)$ then

$$Z(\chi) = \{ x \in G \mid |\chi(x)| = \chi(1) \},\$$

the quasi-kernel of χ , and

$$\ker \chi = \{ x \in G \mid \chi(x) = \chi(1) \}.$$

It is known that $Z(\chi)/\ker \chi = Z(G/\ker \chi)$ is the center of $G/\ker \chi$. A character $\chi \in \operatorname{Irr}(G)$ may or not satisfy the following conditions: $(*)\pi(G/Z(\chi)) \subset \pi(\chi(1)) \cup \pi,$ $(**)\pi(G/\ker \chi) \subset (\pi\chi(1)) \cup \pi$

for some fixed set π of primes.

Obviously, for given $\chi \in Irr(G)$, $(**) \Rightarrow (*)$. If (*) holds then

$$\pi(G/Z(\chi)) \cap \pi' = \pi(\chi(1)) \cap \pi',$$

and analogously for (**).

Theorem 1. Suppose that π is a fixed set of primes and for all $\chi \in Irr(G)$ the condition (*) holds. Then

- (a) G contains a normal π -Hall subgroup H, i.e. G is π -closed.
- (b) G/H is nilpotent.

Corollary 1. 1. If (**) holds for all $\chi \in Irr_1(G)$ then (a) G contains a normal π -Hall subgroup H. (b) G/H is an abelian or a prime-power group. (c) If H < G and |G:H| is the squarefree number, then G is solvable.

Corollary 2. A group G is a π -group \Leftrightarrow (**) holds for all $\chi \in Irr(G)$.

PROOF OF THEOREM 1. If G is nilpotent then $\pi(G/Z(\chi)) = \pi(\chi(1))$. Hence we may assume that G is non-nilpotent. If G is a π -group then (*) holds. Hence we may assume that G is not a π -group.

(i) G is not a π' -group.

PROOF. Suppose that G is a π' -group and prove that G is nilpotent. Assume that G is a counterexample of minimal order. Then G contains only one minimal normal subgroup R. By induction, G/R is nilpotent. Since G is non-nilpotent, $R \leq Z(G)$. If $\chi \in \operatorname{Irr}(G)$ and $R \leq \ker \chi$ then $\ker \chi = 1$. Since Z(G) = 1 we have $Z(\chi) = 1$ and $\pi(\chi(1)) = \pi(G)$ by (*).

Let R be a p-group, $p \in \pi'$. Since G is non-nilpotent, $R \not\leq \phi(G)$, the Frattini subgroup of G (Wielandt). Therefore there exists a maximal subgroup M of G with $R \not\leq M$. Then G = MR and since $M \cap R$ is normal in G then $M \cap R = 1$. Take $P \in \operatorname{Syl}_p(M)$. Since $N_{PR}(P) > P$ and $M \leq N_G(P)$, then $N_G(P) = G$. In virtue of the uniqueness of R, we have P = 1, i.e., M is a p'-subgroup. Then by Ito's Theorem [2, Th. 6.15] p does not divide $\chi(1)$ for all $\chi \in \operatorname{Irr}(G)$. Take $\chi \in \operatorname{Irr}(G)$ with $R \not\leq \ker \chi$; then $\ker \chi = 1$ and $\pi(\chi(1)) = \pi(G) \supseteq \{p\}$ by (*), a contradiction.

Hence R is not a prime-power subgroup. Then R is non-solvable so that R is not p'-closed for all $p \in \pi(R)$. Take $P \in \text{Syl}_p(G)$ for some $p \in \pi(R)$. By Tate's Theorem [2, Th. 6.31]

 $P \cap R \not\leq \phi(P)$

Since $P' \leq \phi(P)$ then $P \cap R \not\leq P'$. So there exists $\lambda \in \text{Lin}(P)$ such that $P \cap R \not\leq \ker \lambda$. Let $\text{Irr}(\lambda^G)$ be the set of all irreducible components of the induced character λ^G . By reciprocity $\ker \chi P \leq \ker \lambda$ for $\chi \in \text{Irr}(\lambda^G)$. Hence $P \cap R \not\leq \ker \chi \Rightarrow R \not\leq \ker \chi \Rightarrow \ker \chi = 1$. Since Z(G) = 1 then $Z(\chi) = 1$ and $\pi(G) = \pi(\chi(1))$ by (*). Hence p divides $\chi(1)$ for all $\chi \in \text{Irr}(\lambda^G) \Rightarrow p$ divides $\lambda^G(1) = |G:P| \not\equiv 0 \pmod{p}$, a contradiction. Therefore if G is a π' -group, then G is not a π' -group. \Box

(ii) G is π -closed.

PROOF. Assume that G is a counterexample of minimal order. Since all epimorphic images of G satisfy the condition of the Theorem, G contains only one minimal normal subgroup R. By induction G/R is π -closed. Hence $\pi(R) \not\subseteq \pi$, and there exists $p \in \pi(R) \cap \pi'$. Take $P \in \text{Syl}_p(G)$. Suppose that $P \cap R \leq \phi(P)$. Then by Tate's Theorem [2, Th. 6.31] R has a normal p-Hall subgroup L. Since R is a minimal normal subgroup of G then L = 1 and $R = P \cap R \leq \phi(P)$. Using the modulary law one obtains $R \leq \phi(G)$. By induction G/R contains a normal π -Hall subgroup T/R. Then T contains a π -Hall subgroup H, and all π -Hall subgroups are conjugate in T. Hence by Frattini's Lemma

$$G = TN_G(H) = RHN_G(H) = RN_G(H) = N_G(H),$$

and G is π -closed, a contradiction.

Therefore $P \cap R \not\leq \phi(P)$. Then, as in (i), there exists $\lambda \in \text{Lin}(P)$ such that $P \cap R \not\leq \ker \lambda$. If $\chi \in \text{Irr}(\lambda^G)$ then, as in (i), $\ker \chi = 1$. If Z(G) > 1 then $R \leq Z(G)$, and since G/R is π -closed G is π -closed, a contradiction. Therefore Z(G) = 1 so that $Z(\chi) = 1$. Then p divides $\chi(1)$ for all $\chi \in \text{Irr}(\lambda^G) \Rightarrow p$ divides $\lambda^G(1) = |G : P| \not\equiv 0 \pmod{p}$, a contradiction.

Hence G contains a normal π -Hall subgroup H. Since the π' -group G/H satisfies the condition of the Theorem, G/H is nilpotent by (i). The Theorem is proved. \Box

PROOF OF COROLLARY 1. Since $(**) \Rightarrow (*)$, G contains a normal π -Hall subgroup H and G/H is nilpotent by the Theorem. It is easy to see that a nilpotent π' -group satisfies the condition of the Theorem \Leftrightarrow it is abelian or of prime-power order. Hence it remains to prove (c).

Suppose that |G/H| is a squarefree number and H < G, but G is non-solvable. Then there exist the normal π -subgroups K > L such that K/L is a non-solvable minimal normal subgroup of G/L. Let D a maximal normal subgroup of G such that $K \cap D = L$. Without loss of generality we may assume that L = 1. Then K is a minimal normal subgroup of G.

Suppose that KD = G. Then $G = K \times D$, and K is non-abelian simple, D > 1 is cyclic. Take $1_K \neq \varphi \in \operatorname{Irr}(R)$ and faithful $\lambda \in \operatorname{Irr}(D)$. Then $\chi = \varphi \times \lambda \in \operatorname{Irr}(G)$ is faithful but $\pi(\chi(1)) \cup \pi = \pi \not\supseteq \pi(G)$, a contradiction to (**).

Suppose that KD < G. Then KD/D is a proper minimal normal subgroup of G/D. Without loss of generality we may assume that D = 1. Then by the choice of D, the subgroup K is the only minimal normal subgroup of G. Suppose that $\chi \in Irr(G)$ and $K \leq \ker \chi$. Then $\ker \chi = 1$ and $\chi \in Irr_1(G)$. Then by (**) we have

$$\pi(G) \subseteq \pi \cup \pi(\chi(1)).$$

This means that |G : H| divides $\chi(1)$ for all $\chi \in \operatorname{Irr}(G)$ with $H \not\leq \ker \chi$. Then G is a Frobenius group with the core H by Corollary 2.4 in [1]. Then H is nilpotent $\Rightarrow G$ is solvable, a contradiction. Corollary 1 is proved. \Box

Obviously, Corollary 2 is a trivial consequence of Corollary 1.

Now we prove one criterion of solvability of a finite group G. If $\chi \in Irr(G)$ then we set

$$\sigma(\chi) = \pi(|G:Z(\chi)|/\chi(1)).$$

A group G is called a K-group if $\sigma(\chi(1)) \leq 1$ for all $\chi \in Irr(G)$. We note that $\chi \in Irr(G)$ is linear iff $Z(\chi) = G$.

Theorem 2. Suppose that G is a K-group, $\chi, \tau \in Irr(G)$.

- (a) If $Z(\chi) = Z(\tau)$ then $\sigma(\chi) = \sigma(\tau)$.
- (b) Set $\overline{G} = G/\ker \chi$. Then $\chi = \lambda^{\overline{G}}$ where $\lambda \in Lin(\overline{P}_1 \times \overline{Z}_1)$ where \overline{P}_1 is a *p*-subgroup of $\overline{G}, \overline{Z}_1 \leq Z(\overline{G})$.
- (c) G is solvable.
- (d) $F(G/Z(\chi))$, the Fitting subgroup of $G/Z(\chi)$, is a *p*-group if $\sigma(\chi) = \{p\}$.

PROOF. (a) We may assume that χ, τ are non-linear. Suppose that $\sigma(\chi) = \{p\}, \sigma(\tau) = \{q\}$ and $p \neq q$ (if $\sigma(\chi)$ is empty, then χ is linear [2, Th. 2.30] which is impossible). Set $\overline{G} = G/Z(\chi), \ \overline{P} \in \operatorname{Syl}_p(\overline{G}), \ \overline{Q} \in \operatorname{Syl}_q(\overline{G})$. By the condition we have

$$|\overline{P}| \ge |\overline{G}|/\chi(1), \qquad |\overline{Q}| \ge |\overline{G}|\tau, (1).$$

Since $\chi(1)^2 \leq |G/Z(\chi)| = |\overline{G}|$ for all $\chi \in Irr(G)$ [2, Th. 2.30] we have

$$|\overline{P}|^2 \ge \left(|\overline{G}|/\chi(1)\right)^2 \ge |\overline{G}|,$$
$$|\overline{Q}|^2 \ge \left(|\overline{G}|/\tau(1)\right)^2 \ge |\overline{G}|.$$

Let $|\overline{P}| > |\overline{Q}|$. Then

$$|\overline{G}| \ge |\overline{P}| |\overline{Q}| > |\overline{Q}|^2 \ge |\overline{G}|,$$

a contradiction.

(b) Set $\overline{G} = G/\ker \chi$, $\overline{P} \in \operatorname{Syl}_p(\overline{G})$, $\overline{H} = \overline{P}Z(\overline{G}) = \overline{P} \times \overline{Z}$ where the subgroup $\overline{Z} \leq Z(\overline{G})$ is cyclic. Let

$$\operatorname{Irr}(\chi_{H}) = \{\vartheta_{1}, \dots, \vartheta_{s}\}, \qquad \vartheta_{1}(1) \leq \dots \leq \vartheta_{s}(1).$$

The numbers $\vartheta_1(1), \ldots, \vartheta_s(1)$ are powers of $p[\mathbf{2}, \text{Th. 3.12}]$.

Thus $\vartheta_1(1)$ divides $\chi(1)$. By the condition the number $|\overline{G}:\overline{H}|$ divides $\chi(1)$. Since $\vartheta_1(1)$ and $|\overline{G}:\overline{H}|$ are coprime, $|\overline{G}:\overline{H}|\vartheta_1(1) = \vartheta_1^{\overline{G}}(1)$ divides $\chi(1)$. Now $\chi \in \operatorname{Irr}(\vartheta_1^{\overline{G}})$ implies $\chi = \vartheta_1^{\overline{G}}$. Since \overline{H} as a nilpotent group is an M-group (b) follows by transitivity of induction.

314

(c) Suppose that G is a counterexample of minimal order. Since epimorphic images of a K-group are K-groups G contains only one minimal normal subgroup R, G/R is solvable, R is non-solvable and Z(G) = 1. Now if $\chi \in \operatorname{Irr}(G)$ with $R \not\leq \ker \chi$, then $Z(\chi) = 1$. Let X be the set of all faithful characters in $\operatorname{Irr}(G)$. If $\chi \in X$ then $|G|/\chi(1)$ is a power of a fixed prime p by (a). Since R is non-solvable there exists $q \in \pi(R) - \{p\}$. Take $Q \in \operatorname{Syl}_p(G)$. Then $Q \cap R \not\leq \phi(Q)$ [2, Th. 6.31]. Since $Q' \leq \phi(Q)$ then $Q \cap R \not\leq Q'$. Therefore there exists $\lambda \in \operatorname{Irr}(Q)$ such that $Q \cap R \not\leq \ker \lambda$. If $\chi \in \operatorname{Irr}(\lambda^G)$ then by reciprocity $R \not\leq \ker \chi$ so that $\operatorname{Irr}(\lambda^G) \subseteq X$ and q divides $\lambda^G(1) = |G:Q| \not\equiv 0 \pmod{q}$, a contradiction.

(d) Suppose the contrary. Then $\overline{G} = G/Z(\chi)$ contains a non-identity normal abelian q-subgroup \overline{Q}_1 with a prime $q \neq p$. Take $\overline{Q} \in \operatorname{Syl}(\overline{G})$. Obviously $\overline{Q}_1 \leq \overline{Q}$. Since \overline{G} is a K-group, $|\overline{Q}|$ divides $\chi(1)$ by the condition. Take in \overline{Q}_1 a subgroup \overline{Q}_0 of order q. Then \overline{Q}_0 is subnormal in \overline{G} . Let Q_0 be the inverse image of \overline{Q}_0 in G. Then $|Q_0/\ker\chi:Z(\chi)/\ker\chi| = |\overline{Q}_0| = q$. Since $Z(\chi)/\ker\chi = Z(G/\ker\chi)$ then $Q_0/\ker\chi$ is an abelian subnormal subgroup of $G/\ker\chi$. By Reynolds' result (see Remark after Corollary 11.29 in [2]) $\chi(1)$ divides $|G/\ker\chi:Q_0/\ker\chi| = |\overline{G}:\overline{Q}_0|$. Since the qpart of the number $|\overline{G}:\overline{Q}_0|$ is less than $|\overline{Q}|$ then $|\overline{Q}|$ does not divide $\chi(1)$, a contradiction. \Box

Remark. From assertion (b) of Theorem 2 follows that a K-group G is an M-group so that a K-group G is solvable by Taketa's Theorem [2, Corollary 5.13]. Our proof does not depend on Taketa's Theorem.

Note that the symmetric group S_4 is a K-group.

A group G is called a K_1 -group if for each $\chi \in \text{Irr}(G)$ and for each maximal abelian normal subgroup $B/\ker \chi$ of $G/\ker \chi$ we have $|\pi(|G:B|/\chi(1))| \leq 1$.

Theorem 3. K_1 -groups are solvable.

This result is proved in the same manner as Theorem 2(c). For related results see [3].

References

- YA. G. BERKOVICH, Existence of normal subgroups in a finite group, *Publ. Math.* (*Debrecen*) 37,1–2 (1990), 1–13, (Russian).
- [2] I.M. ISAACS, Character Theory of Finite Groups, Academic Press, New York, 1976.

316 Yakov Berkovich : Sufficient condition for π -closure of a finite group

[3] D. CHILLAG, M. HEZOG, On character degree quotients, Arch. Math. 55, 1 (1990), 25–29.

YAKOV BERKOVICH BAR–ILAN UNIVERSITY 52900 RAMAT–GAN, ISRAEL

(Received Oktober 7, 1991)