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Sufficient condition for r—closure of a finite group

By YAKOV BERKOVICH (Ramat-Gan)

Let m and 7’ be complementary sets of primes. A finite group G is
called m—closed if it contains a normal 7—Hall subgroup. By 7(n) we denote
the set of all prime divisors of a positive integer n. Now 7(G) = 7(|G|)
where |G| is the order of G.

Let Irr(G) be the set of all irreducible complex characters of G' (only
finite groups are considered). By Irrq(G) denote the set of all non-linear
characters in Irr(G). Then Lin(G) = Irr(G) —Irr; (G) is the set of all linear

characters of G.
If x € Irr(G) then

Z(x) ={z e G| [x(@)] = x(D)},

the quasi—kernel of y, and
kerx ={z € G | x(z) = x(1)}.

It is known that Z(x)/ker x = Z(G/ ker x) is the center of G/ ker x.
A character x € Irr(G) may or not satisfy the following conditions:
(+)7(G/Z(x)) € n(x(1)) U,
(xx)7(G/ ker x) C (mx(1))Un
for some fixed set 7 of primes.
Obviously, for given x € Irr(G), (x*) = (). If (*) holds then

m(G/Z(x)) N7’ =m(x(1)) N,
and analogously for ().

Theorem 1. Suppose that 7 is a fixed set of primes and for all x €
Irr(G) the condition (*) holds. Then

(a) G contains a normal m—Hall subgroup H, i.e. G is m—closed.
(b) G/H is nilpotent.
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Corollary 1. 1. If (xx) holds for all x € Irr1(G) then

(a) G contains a normal m—Hall subgroup H.

(b) G/H is an abelian or a prime-power group.

(¢) If H < G and |G : H| is the squarefree number, then G is solvable.

Corollary 2. A group G is a m-group < (*x) holds for all x € Irr(G).

PROOF OF THEOREM 1. If G is nilpotent then 7(G/Z(x)) = m(x(1)).
Hence we may assume that G is non-nilpotent. If G is a m—group then (%)
holds. Hence we may assume that G is not a m—group.

(i) G is not a w’—group.

PROOF. Suppose that G is a 7'—group and prove that G is nilpotent.
Assume that G is a counterexample of minimal order. Then G contains
only one minimal normal subgroup R. By induction, G/R is nilpotent.
Since G is non-nilpotent, R £ Z(G). If x € Irr(G) and R £ ker x then
ker x = 1. Since Z(G) = 1 we have Z(x) =1 and 7(x(1)) = 7(G) by ().

Let R be a p—group, p € 7’. Since G is non-nilpotent, R £ ¢(G),
the Frattini subgroup of G (Wielandt). Therefore there exists a maximal
subgroup M of G with R £ M. Then G = M R and since M N R is normal
in G then M N R = 1. Take P € Syl,(M). Since Npr(P) > P and
M < Ng(P), then Ng(P) = G. In virtue of the uniqueness of R, we have
P =1, ie, M is a p'—subgroup. Then by Ito’s Theorem [2, Th. 6.15] p
does not divide x(1) for all x € Irr(G). Take x € Irr(G) with R £ ker x;
then ker y = 1 and 7(x(1)) = 7(G) 2 {p} by (x), a contradiction.

Hence R is not a prime-power subgroup. Then R is non-solvable so
that R is not p'-closed for all p € n(R). Take P € Syl,(G) for some

p € m(R). By Tate’s Theorem [2, Th. 6.31]
POR % 6(P)

Since P’ < ¢(P) then PN R £ P’. So there exists A € Lin(P) such that
PN R £ ker\. Let Irr(A\%) be the set of all irreducible components of
the induced character A¢. By reciprocity ker yP < ker A for x € Irr(\%).
Hence PN R £ kery = R £ kery = kerxy = 1. Since Z(G) =1
then Z(x) = 1 and 7(G) = 7(x(1)) by (x). Hence p divides x(1) for all
x € Irr(A\%) = p divides A9(1) = |G : P| # 0 (mod p), a contradiction.
Therefore if G is a 7’—group, then G is nilpotent. But we assumed earlier
that G is non-nilpotent. Hence G is not a 7’—group. O

(ii) G is m—closed.

PROOF. Assume that G is a counterexample of minimal order. Since
all epimorphic images of G satisfy the condition of the Theorem, G contains
only one minimal normal subgroup R. By induction G/R is m—closed.
Hence 7(R) € 7, and there exists p € m(R) N7’. Take P € Syl,(G).
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Suppose that PN R < ¢(P). Then by Tate’s Theorem [2, Th. 6.31] R
has a normal p—Hall subgroup L. Since R is a minimal normal subgroup
of Gthen L =1 and R = PN R < ¢(P). Using the modulary law one
obtains R < ¢(G). By induction G/R contains a normal 7—Hall subgroup
T/R. Then T contains a m—Hall subgroup H, and all 7—Hall subgroups
are conjugate in T'. Hence by Frattini’s Lemma

G =TNg(H) = RHNGg(H) = RNg(H) = Ng(H),

and G is m—closed, a contradiction.

Therefore P N R £ ¢(P). Then, as in (i), there exists A € Lin(P)
such that PN R £ ker \. If x € Irr(\®) then, as in (i), kery = 1. If
Z(G) > 1 then R < Z(G), and since G/R is m—closed G is m—closed, a
contradiction. Therefore Z(G) = 1 so that Z(x) = 1. Then p divides
x(1) for all x € Irr(A¥) = p divides \9(1) = |G : P| # 0 (mod p), a
contradiction.

Hence G contains a normal 7—Hall subgroup H. Since the 7’'—group
G/ H satisfies the condition of the Theorem, G/H is nilpotent by (i). The
Theorem is proved. O

PROOF OF COROLLARY 1. Since (x*) = (%), G contains a normal
m—Hall subgroup H and G/H is nilpotent by the Theorem. It is easy to
see that a nilpotent 7’—group satisfies the condition of the Theorem < it
is abelian or of prime-power order. Hence it remains to prove (c).

Suppose that |G/H]| is a squarefree number and H < G, but G is
non-solvable. Then there exist the normal m—subgroups K > L such that
K/ L is a non-solvable minimal normal subgroup of G/L. Let D a maximal
normal subgroup of G such that K N D = L. Without loss of generality
we may assume that L = 1. Then K is a minimal normal subgroup of G.

Suppose that KD = G. Then G = K x D, and K is non-abelian
simple, D > 1 is cyclic. Take 1x # ¢ € Irr(R) and faithful A € Irr(D).
Then x = ¢ x A € Irr(G) is faithful but n(x(1)) Un = 7 2 n(G), a
contradiction to ().

Suppose that KD < G. Then KD/D is a proper minimal normal
subgroup of G/D. Without loss of generality we may assume that D = 1.
Then by the choice of D, the subgroup K is the only minimal normal
subgroup of G. Suppose that y € Irr(G) and K £ ker y. Then ker y =1
and x € Irr; (G). Then by (xx) we have

m(G) € mUm(x(1)).

This means that |G : H| divides x(1) for all x € Irr(G) with H £ ker x.
Then G is a Frobenius group with the core H by Corollary 2.4 in [1]. Then

H is nilpotent = G is solvable, a contradiction. Corollary 1 is proved.
[

Obviously, Corollary 2 is a trivial consequence of Corollary 1.
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Now we prove one criterion of solvability of a finite group G.
If x € Irr(G) then we set

o(x) = (G : Z0II/x(1)).
A group G is called a K-group if o(x(1)) <1 for all x € Irr(G).
We note that x € Irr(G) is linear iff Z(x) = G.

Theorem 2. Suppose that G is a K—group, x, T € Irr(G).
(a) If Z(x) = Z(7) then o(x) = o(T).
(b) Set G = G/kery. Then x = AC where A € Lin(Py x Z1) where
P is a p—subgroup of G, Z1 < Z(G).

(¢) G is solvable.

(d) F(G/Z(x)), the Fitting subgroup of G/Z(x), is a p—group if
o(x) = {p}-

PRrROOF. (a) We may assume that x, 7 are non-linear. Suppose that
o(x) ={p}, o(r) = {q} and p # q (if o(x) is empty, then x is linear [2, Th.
2.30] which is impossible). Set G = G/Z(x), P € Syl,(G), Q € Syl (G).
By the condition we have

[Pl > |Gl/x(1),  [QI =G~ (1).
Since x(1)? < |G/Z(x)| = |G] for all x € Irr(G) [2, Th. 2.30] we have

P12 > (IGl/x(1)* = (@,

QF = (1Gl/=(1)* = |&

Let |P| > |Q|. Then
G| > [P||Q] > |QI* > |G],

a contradiction.

(b) Set G = G/kerx, P € Syl,(G), H = PZ(G) = P x Z where the
subgroup Z < Z(G) is cyclic. Let

II‘I‘(XH):{ﬁl,...7193}, ﬁl(l)ggﬂs(l)

The numbers J;(1),...,9(1) are powers of p[2, Th. 3.12].

Thus 91 (1) divides x(1). By the condition the number |G g H| divides
x(1). Since ¥(1) an(i|§ : H| are coprime, |G H|[9,(1) = 9§ (1) divides

).

x(1). Now x € Irr(9§) implies x = 9¢. Since H as a nilpotent group is
an M—group (b) follows by transitivity of induction.
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(c) Suppose that G is a counterexample of minimal order. Since epi-
morphic images of a K—group are K—groups GG contains only one minimal
normal subgroup R, G/R is solvable, R is non-solvable and Z(G) = 1.
Now if y € Irr(G) with R £ ker y, then Z(x) = 1. Let X be the set of all
faithful characters in Irr(G). If x € X then |G|/x(1) is a power of a fixed
prime p by (a). Since R is non-solvable there exists ¢ € m(R) — {p}. Take
Q € Syl,(G). Then QN R £ ¢(Q) [2, Th. 6.31]. Since Q" < ¢(Q) then
QN R £ Q. Therefore there exists A € Irr(Q) such that @ N R £ ker A.
If x € Irr(\%) then by reciprocity R £ kery so that Irr(A¥) C X and ¢
divides A9(1) = |G : Q| # 0 (mod q), a contradiction.

(d) Suppose the contrary. Then G = G/Z() contains a non-identity
normal abelian g-subgroup @Q; with a prime ¢ # p. Take Q € Syl(G). Ob-
viously @, < Q. Since G is a K—group, |Q| divides x(1) by the condition.
Take in Q; a subgroup @, of order ¢q. Then @, is subnormal in G. Let Qg
be the inverse image of @, in G. Then |Qo/ ker x : Z(x)/ ker x| = |Qy| = ¢.
Since Z(x)/ker x = Z(G/ker x) then Qo/ker x is an abelian subnormal
subgroup of G/ kery. By Reynolds’ result (see Remark after Corollary
11.29 in [2]) x(1) divides |G/kerx : Qo/ker x| = |G : Q|- Since the g-
part of the number |G : Q]| is less than |Q| then |@Q| does not divide (1),
a contradiction. O

Remark. From assertion (b) of Theorem 2 follows that a K-group G
is an M—group so that a K—group G is solvable by Taketa’s Theorem [2,
Corollary 5.13]. Our proof does not depend on Taketa’s Theorem.

Note that the symmetric group Sy is a K—group.

A group G is called a K;—group if for each x € Irr(G) and for each
maximal abelian normal subgroup B/kerx of G/kerxy we have
7(1G : Bl/x(1)] < 1.

Theorem 3. Ki—groups are solvable.

This result is proved in the same manner as Theorem 2(c).
For related results see [3].
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