Superwords and context-free languages

By PÁL DÖMÖSI (Debrecen)

To the honour of Professor Kálmán Györy on his 60th birthday

Abstract

An improvement of a polynomial algorithm is given to solve the following problem: Given a context-free language L and a finite list of nonempty words w_{1}, \ldots, w_{n}, let us decide whether or not there are words $z_{0}, \ldots w_{n}$ having $z_{0} w_{1} z_{1} \ldots$ $\ldots w_{n} z_{n} \in L$.

1. Preliminaries

We will consider the following problem. Given a finite ordered list of nonempty words $w_{1}, \ldots, w_{n} \in X^{*}$, a context-free language $L \subseteq X^{*}$, let us decide whether or not there is a word $z \in L$ such that $z=z_{0} w_{1} z_{1} \ldots w_{n} z_{n}$ for some words $z_{0}, \ldots, z_{n} \in X^{*}$. In other words, given a regular language of the form $R=X^{*} w_{1} X^{*} w_{2} \ldots X^{*} w_{n} X^{*}, \lambda \notin\left\{w_{1}, \ldots, w_{n}\right\}$ and a contextfree language L, let us decide whether or not $R \cap L$ is empty or not. We note that R is defined as the shuffle ideal generated by $w_{1}, \ldots, w_{n} \in X^{*}$. It is also said that $z=z_{0} w_{1} z_{1} \ldots w_{n} z_{n}$ is a superword of the list of words w_{1}, \ldots, w_{n}. In this explanation, we want to decide whether or not w_{1}, \ldots, w_{n} has a superword in the context-free language L.

To the solution of the above problem a polynomial algorithm is described in [1]. In this paper we show results leading to an improvement of this algorithm.

[^0]For all notions and notations not defined here, see [4] and [5], [6]. Consider an alphabet X and the free monoid X^{*} generated by $X . \lambda$ denotes the identity of $X^{*}, X^{+}=X^{*} \backslash\{\lambda\}$, and $|p|$ is the length of $p \in X^{*}$. In addition, we will denote by $|H|$ the cardinality of a given set H. Finally, we shall consider a grammar in the form $G=(V, X, S, P)$, where, in order, V and X are the sets of variables and terminals, respectively, S denotes the start symbol, and P is the set of productions. Moreover, $L(G)$ denotes the language generated by G. We will assume $|V|>1$ taking out of consideration trivial cases.

Theorem 1.1 [3]. For any context-free grammar $G=(V, X, S, P)$ in Chomsky normal form and $z \in L(G)$, if $|z| \geq|V| 2^{|V|} e(e>0)$, and e positions of z are excluded, then z has the form uvwxy where $|v x|>0$, neither v nor x contains any excluded position, and $u v^{i} w x^{i} y$ is in $L(G)$ for all $i \geq 0$.

By this statement, the following result is shown in [1].
Theorem 1.2 [1]. Consider a context-free grammar $G=(V, X, S, P)$ in Chomsky normal form and a word $z_{0} w_{1} z_{1} \ldots w_{n} z_{n} \in L(G)$ with $\lambda \notin$ $\left\{w_{1}, \ldots, w_{n}\right\}$. There are words $z_{0}^{\prime}, \ldots, z_{n}^{\prime}$ such that $z_{0}^{\prime} w_{1} z_{1}^{\prime} \ldots w_{n} z_{n}^{\prime} \in L(G)$ and $\left|z_{0}^{\prime} w_{1} z_{1}^{\prime} \ldots w_{n} z_{n}^{\prime}\right|<|V| 2^{|V|}\left|w_{1} \ldots w_{n}\right|$.

2. Main results

For any word $z \in X^{*}$, and positive integer $k \leq|z|$, we will speak about $k^{\text {th }}$ position of z. That is, if $z=a_{1} \ldots a_{n}, a_{1}, \ldots a_{n} \in X$, then we say that a_{k} is in the $k^{\text {th }}$ position of z. In addition, sometimes we will distinguish excluded and non-excluded positions of z. Finally, if $a_{k}, \ldots, a_{k+\ell}$ are in excluded positions of z then we also say that $a_{k} \ldots a_{k+\ell}$ consists of excluded positions.

Given a context-free grammar G in Chomsky normal form, let T_{z} be a derivation tree for some $z \in L(G)$. We say that a subpath of T_{z} is external if its initial node is the root of the tree and its terminal node is either the first or the last position of z. In the same sense, we will speak about the external subpaths of a given subtree of T_{z}. An intermediate node of T_{z} is said to be a branch point if each of its children has an excluded descendant. On the other hand, define a node to be free if each of its children has no excluded descendant. (Recall that G is in Chomsky normal form. Thus
every node in T_{z} has not more than two children.) Of course, the leaves of T_{z} are neither branch points nor free nodes.

A subpath of T_{z} is called distinguished if
a) its initial node is either a branch point or the root of the tree, and its terminal node is a branch point;
b) none of its intermediate nodes is a branch point;
c) if it has no intermediate node then its initial node is the root of the tree, and simultaneously, it is not a branch point.
(Of course, it is also possible that the root of the tree is a branch point.) A subpath of T_{z} is said to be reducible if
a) each of its nodes is not a leaf of the tree;
b) apart from the terminal one, its nodes are not branch points;
c) its terminal node is a branch point;
d) there are distinct nodes having the same (nonterminal) label.

Given a context-free grammar G in Chomsky normal form, a word $z \in L(G)$, let T_{z} be a derivation tree with $z=z_{0} w_{1} z_{1} \ldots w_{n} z_{n}$, where w_{1}, \ldots, w_{n} denote (possibly empty) words consists of excluded positions, and z_{1}, \ldots, z_{n} denote (possibly empty) words having no excluded positions. T_{z} is reducible (with respect to $z_{0}, w_{1}, z_{1}, \ldots, w_{n}, z_{n}$) if it has a reducible subpath. Otherwise we say that T_{z} is minimal.

We start with the following
Lemma 2.1. If T_{z} is a reducible derivation tree with respect to $z_{0}, w_{1}, z_{1}, \ldots, w_{n}, z_{n}$ then there are words $z_{0}^{\prime}, \ldots, z_{n}^{\prime}$ with $\left|z_{0}^{\prime} \ldots z_{n}^{\prime}\right|<$ $\left|z_{0} \ldots z_{n}\right|$ and $z_{0}^{\prime} w_{1} z_{1}^{\prime} \ldots w_{n} z_{n}^{\prime} \in L(G)$.

Proof. Suppose that T_{z} is reducible and let denote p one of its reducible subpaths. Thus, there exist distinct nodes in p having the same (nonterminal) label, say A, moreover, two strings of terminals, v and x, and two nonterminals B and C such that the derivation $A \Rightarrow B C \Rightarrow * v A x$ is represented in $T_{z} . B$ and C cannot both dominate the lower A, therefore $|v x|>0$. On the other hand, since there exists no intermediate branch point of the distinguished paths, we have that neither v nor x contains an excluded position. (Of course, the free children of the nodes of this path do not have excluded descendants.) Therefore, there are positive integers i, j with $0 \leq i<j \leq n, z_{i}=v^{\prime} v v^{\prime \prime}, z_{j}=x^{\prime} x x^{\prime \prime}$ having $z_{0} w_{1} z_{1} \ldots w_{i} v^{\prime} v^{\prime \prime} w_{i+1} z_{i+1} \ldots w_{j} x^{\prime} x^{\prime \prime} w_{j+1} z_{j+1} \ldots w_{n} z_{n} \in L(G)$. This completes the proof.

Lemma 2.2. Let T_{z} be a minimal derivation tree and consider its arbitrary distinguished subpath p. The free children of the intermediate nodes in p have not more than $2^{|V|-1}-1$ non-excluded descendants.

Proof. Consider a subpath p^{\prime} containing all nodes of p apart from its initial node if the initial node of p is a branch point. Otherwise, (when the initial point of p is not a brainch point and then it is the root of the tree) let us assume $p^{\prime}=p$. Since T_{z} is minimal, p^{\prime} is not reducible. Consider the maximal derivation subtree $T_{z^{\prime}}$ of T_{z} having the root as the initial node of p^{\prime}. Omitting all of the descendants of the terminal node of p^{\prime} (and p) from $T_{z^{\prime}}$, we get a subtree $T_{z^{\prime \prime}}$ containing no path with distinct nodes having the same nonterminal label. Therefore, the subtree $T_{z^{\prime \prime}}$ has not more than $2^{|V|-1}$ leaves, where one of the leaves is the terminal node of p^{\prime} (and p). The proof is complete.

Lemma 2.3. Let k be the number of the words in w_{1}, \ldots, w_{n} consisting of two or more letters. Suppose that T_{z} is a minimal derivation tree. Then T_{z} has not more than $\left|w_{1} \ldots w_{n}\right|+n+k-1$ distinguished paths.

Proof. Denote by $w_{i_{1}}, \ldots, w_{i_{k}}, 1 \leq i_{1}<\cdots<i_{k} \leq n$ the words with $\left|w_{i_{j}}\right|>1, j=1, \ldots, k$.

First we assume that $\left|w_{1}\right|, \ldots,\left|w_{n}\right| \leq 2$. Clearly, then $\left|w_{1} \ldots w_{n}\right|=$ $n+k$. On the other side, the number of distinguished paths in T_{z} is either at most $2(n+k)-2$ if the root of T_{z} is a branch point or at most $2(n+k)-1$ if the root of T_{z} is not a branch point. Therefore, there exist not more than $\left|w_{1} \ldots w_{n}\right|+n+k-1$ distinguished paths.

Now we suppose that our statement holds for every w_{1}, \ldots, w_{n} with $k \leq \ell$, where ℓ is a fixed nonnegative integer. Denote by $s_{i}, i=1, \ldots, n$ the number of the distinguished paths which are subpaths of the external paths of the subtree $T_{w_{i}}$. Consider a decomposition $z=z_{0}^{\prime} w_{1}^{\prime} z_{1}^{\prime} \ldots z_{n-2}^{\prime} w_{n-1}^{\prime} z_{n-1}^{\prime}$ with $z_{0}^{\prime}=z_{0}, w_{1}^{\prime}=w_{1}, z_{1}^{\prime}=z_{1}, \ldots, w_{i-1}^{\prime}=w_{i-1}, z_{i-1}^{\prime}=z_{i-1}$, $w_{i}^{\prime}=w_{i} z_{i} w_{i+1}, z_{i}^{\prime}=z_{i+1}, w_{i+1}^{\prime}=w_{i+2}, z_{i+1}^{\prime}=z_{i+2}, \ldots, w_{n-1}^{\prime}=w_{n}$, $z_{n-1}^{\prime}=z_{n}$ for some $1 \leq i<n$. Of course, if T_{z} is minimal with respect to $z_{0}, w_{1}, z_{1}, \ldots, w_{n}, z_{n}$ then it is also minimal with respect to $z_{0}^{\prime}, w_{1}^{\prime}, z_{1}^{\prime}, \ldots, w_{n-1}^{\prime}, z_{n-1}^{\prime}$. Thus it is enough to prove that in this case the number of distinguished paths is not more than $\left|w_{1}^{\prime} \ldots w_{n-1}^{\prime}\right|+n+k-1$ $\left(=\left|w_{1}^{\prime} \ldots w_{n-1}^{\prime}\right|+(n-1)+(k+1)-1\right)$. Denote by t_{i} the number of all distinguished paths which are subpaths of the external paths of the derivation subtree $T_{w_{i}^{\prime}}$. It is clear that the new distinguished paths in T_{z} (with
respect to $\left.z_{0}^{\prime}, w_{1}^{\prime}, z_{1}^{\prime}, \ldots, w_{n-1}^{\prime}, z_{n-1}^{\prime}\right)$ are subpaths of the external paths of the derivation subtree $T_{w_{i}^{\prime}}$ and thus t_{i} is bounded by $s_{i}+s_{i+1}+\left|z_{i}\right|$. Therefore, using our inductive assumption, the number of distinguished paths is not more than $\left|w_{1}^{\prime} \ldots w_{n-1}^{\prime}\right|+n+k-1$. This ends the proof.

Now we show an improvement of Theorem 1.2 in [1] (assuming $|V|>1$).
Theorem 2.4. Given a context-free grammar $G=(V, X, S, P)$ in Chomsky normal form and a word $z_{0} w_{1} z_{1} \ldots w_{n} z_{n} \in L(G)$ with $\lambda \notin$ $\left\{w_{1}, \ldots, w_{n}\right\}$, let k be the number of the words in w_{1}, \ldots, w_{n} consisting of two or more letters. There are words $z_{0}^{\prime}, \ldots, z_{n}^{\prime}$ such that $z_{0}^{\prime} w_{1} z_{1}^{\prime} \ldots w_{n} z_{n}^{\prime} \in$ $L(G)$ and $\left|z_{0}^{\prime} w_{1} z_{1}^{\prime} \ldots w_{n} z_{n}^{\prime}\right| \leq 2^{|V|-1}\left(\left|w_{1} \ldots w_{n}\right|+n+k-1\right)-n-k+1$.

Proof. Consider a derivation tree T_{z} of the word $z=z_{0}^{\prime} w_{1} z_{1}^{\prime} \ldots w_{n} z_{n}^{\prime}$. Exclude positions in z such that w_{1}, \ldots, w_{n} are (possibly empty) words consisting of excluded positions, and $z_{0}^{\prime}, \ldots, z_{n}^{\prime}$ are (possibly empty) words having non-excluded positions. Using Lemma 2.1, we may assume that T_{z} is a minimal derivation tree. Then, by Lemma 2.3, T_{z} has not more than $\left|w_{1} \ldots w_{n}\right|+n+k-1$ distinguished paths. On the other hand, using Lemma 2.2, for every distinguished subpath p of T_{z}, the free children of the intermediate nodes in p have not more than $2^{|V|-1}-1$ excluded descendants. In addition, it is obvious that each of the excluded positions is a descendant of an unambigously determined free child of a node of a given distinguished path in T_{z}. (Note that the root of T_{z} may have free children unless it is a branch point. In the other cases, only the intermediate nodes of the distinguished paths may have free children.) Therefore, $\left|z_{0}^{\prime} \ldots z_{n}^{\prime}\right| \leq\left(2^{|V|-1}-1\right)\left(\left|w_{1} \ldots w_{n}\right|+n+k-1\right)$ which implies $|z| \leq\left|w_{1} \ldots w_{n}\right|+\left(2^{|V|-1}-1\right)\left(\left|w_{1} \ldots w_{n}\right|+n+k-1\right)=2^{|V|-1}\left(\left|w_{1} \ldots w_{n}\right|+\right.$ $n+k-1)-n-k+1$.

Given a context-free grammar $G=(V, X, S, P)$ in Chomsky normal form, let us construct the grammar $G^{\prime}=\left(V^{\prime}, X^{\prime}, S^{\prime}, P^{\prime}\right)$ in Chomsky normal form such that $V^{\prime}=V \cup\{\Omega\}, X^{\prime}=X \cup\{\omega\}, P^{\prime}=P \cup\{A \rightarrow A \Omega, A \rightarrow$ $\Omega A: A \in V\} \cup\{\Omega \rightarrow \Omega \Omega, \Omega \rightarrow \omega\}$ and $S^{\prime}=S$, where Ω and ω are new nonterminal and terminal symbols, respectively. The following statement is obvious.

Lemma 2.5 [1].

$$
L\left(G^{\prime}\right)=\left\{\omega^{*} x_{1} \omega^{*} x_{2} \ldots \omega^{*} x_{n} \omega^{*}: x_{1} \ldots x_{n} \in L(G), x_{1}, \ldots, x_{n} \in X\right\} .
$$

Next we prove a little bit modified version of a result in [1].
Theorem 2.6. Given a context-free grammar $G=(V, X, S, P)$ in Chomsky normal form, let $w_{1}, \ldots w_{n}$ be an arbitrary list of nonempty words. Moreover, let k be the number of the words in w_{1}, \ldots, w_{n} consisting of two or more letters. There are words z_{0}, \ldots, z_{n} with $z_{0} w_{1} z_{1} \ldots$ $w_{n} z_{n} \in L(G)$ if and only if $z_{0}^{\prime} w_{1} z_{1}^{\prime} \ldots w_{n} z_{n}^{\prime} \in L\left(G^{\prime}\right)$ holds for some words $z_{0}^{\prime}, \ldots, z_{n}^{\prime} \in X^{\prime *}\left(=(X \cup\{\omega\})^{*}\right)$ with $\left|z_{i}^{\prime}\right|=\left(2^{|V|-1}-1\right)\left(\left|w_{1} \ldots w_{n}\right|+n+\right.$ $k-1), i=0, \ldots, n$.

Proof. First we suppose $z_{0}^{\prime} w_{1} z_{1}^{\prime} \ldots w_{n} z_{n}^{\prime} \in L\left(G^{\prime}\right)$ for some words $z_{0}^{\prime}, \ldots, z_{n}^{\prime} \in X^{\prime *}\left(=(X \cup\{\omega\})^{*}\right)$ with $\left|z_{i}^{\prime}\right|=\left(2^{|V|-1}-1\right)\left(\left|w_{1} \ldots w_{n}\right|+\right.$ $n+k-1$). Consider the words $z_{i}, i=0, \ldots, n$ such that for every $i=0, \ldots, n$, we omit all occurrences of the letter ω in z_{i}^{\prime}. By Lemma 2.5, $z_{0} w_{1} z_{1} \ldots w_{n} z_{n} \in L(G)$.

Conversely, we now suppose $z_{0} w_{1} z_{1} \ldots w_{n} z_{n} \in L(G)$ for some z_{0}, \ldots \ldots, z_{n}. By Theorem 2.4, we may assume $\left|z_{0} w_{1} z_{1} \ldots w_{n} z_{n}\right| \leq 2^{|V|-1}\left(\mid w_{1} \ldots\right.$ $\left.\ldots w_{n} \mid+n+k-1\right)-n-k+1$. In other words, $\left|z_{0} z_{1} \ldots z_{n}\right| \leq\left(2^{|V|-1}-\right.$ 1) $\left(\left|w_{1} \ldots w_{n}\right|+n+k-1\right)$, which implies $\left|z_{i}\right| \leq\left(2^{|V|-1}-1\right)\left(\left|w_{1} \ldots w_{n}\right|+\right.$ $n+k-1), i=0, \ldots, n$. Hence, for every $i=0, \ldots, n$, we can define $z_{i}^{\prime}=$ $\left.z_{i} \omega^{\left(2^{|V|-1}-1\right)\left(\left|w_{1} \ldots w_{n}\right|+n+k-1\right)-\left|z_{i}\right|}\right)$ such that, by Lemma 2.5 , our conditions hold again. The proof is complete.

3. Generalized CYK algorithm

Using the well-known CYK-algorithm (Cocke-Younger-Kasami algorithm), on the basis of Theorem 2.6, a cubic time algorithm can be given to the discussed problem. Apart from the value of the constant p, this algorithm is the same as in [1] for which, to the completeness of the paper, we give a short description. (For a more detailed description, see [1].)

Let $G=(V, X, S, P)$ be a context-free grammar having Chomsky normal form and let $w_{1}, \ldots, w_{n} \in X^{+}$. Consider the grammar $G^{\prime}=$ $\left(V^{\prime}, X^{\prime}, S^{\prime}, P^{\prime}\right)$ such that $V^{\prime}=V \cup\{\Omega\}, X^{\prime}=X \cup\{\omega\}, P^{\prime}=P \cup\{A \rightarrow$ $A \Omega, A \rightarrow \Omega A: A \in V\} \cup\{\Omega \rightarrow \Omega \Omega, \Omega \rightarrow \omega\}$, where Ω and ω are new nonterminal and terminal symbols, respectively. Let k be the number of the words in w_{1}, \ldots, w_{n} consisting of two or more letters.

Now we give the formal description of our algorithm.

begin

$$
\begin{aligned}
p:= & \omega^{\left(\mid 2^{\left|V^{\prime}\right|-1}-1\right)\left(\left|w_{1} \ldots w_{n}\right|+n+k-1\right)} w_{1} \omega^{\left(\mid 2^{\left|V^{\prime}\right|-1}-1\right)\left(\left|w_{1} \ldots w_{n}\right|+n+k-1\right)} w_{2} \ldots \\
& \omega^{\left(\mid 2^{\left|V^{\prime}\right|-1}-1\right)\left(\left|w_{1} \ldots w_{n}\right|+n+k-1\right)} w_{n} \omega^{\left(\mid 2^{\left|V^{\prime}\right|-1}-1\right)\left(\left|w_{1} \ldots w_{n}\right|+n+k-1\right)} ;
\end{aligned}
$$

for $i:=1$ to $|p|$ do
if the $i^{\text {th }}$ symbol of p is ω then do
$V_{i, 1}:=V \cup\{\Omega\} ;$
else do
$V_{i, 1}:=\{A \mid \exists a \in X$ such that $A \rightarrow a$ is a production in G and the $i^{\text {th }}$ symbol in p equals to $\left.a\right\}$;
for $j:=2$ to $|p|$ do

$$
\text { for } i:=1 \text { to }|p|-j+1 \text { do }
$$

begin
$V_{i, j}:=\emptyset ;$

$$
\text { for } k:=1 \text { to } j-1 \text { do }
$$

$V_{i, j}:=V_{i, j} \cup\left\{A \mid A \rightarrow B C\right.$ is a production in G^{\prime}, B is in $V_{i, k}$ and C is in $\left.V_{i+k, j-k}\right\}$;
end
$z_{0} w_{1} z_{1} \ldots z_{n} w_{n} \in L(G)$ for some $z_{0}, \ldots, z_{n} \in X^{*}$ iff $S \in V_{1,|p|}$.
end

Finally, we consider the following example.
Example. Consider the grammar $G=\left(V, X, S, H^{\prime}\right)$ with $V=\{\mathcal{A}, \mathcal{B}, \mathcal{D}$, $\mathcal{H}, \mathcal{I}, \mathcal{O}, \mathcal{P}, \mathcal{R}, \mathcal{S}, \mathcal{T}, \mathcal{U}, \mathcal{Y}, \diamond\}, X=\{A, B, D, H, I, O, P, R, T, U, Y, \square\}, H^{\prime}=$ $\{\mathcal{A} \rightarrow \mathcal{A P}, \mathcal{A} \rightarrow \mathcal{A} \mathcal{Y}, \mathcal{B} \rightarrow \mathcal{B I}, \mathcal{D} \rightarrow \mathcal{D} \mathcal{A}, \mathcal{H} \rightarrow \mathcal{H} \mathcal{D}, \mathcal{I} \rightarrow \mathcal{I R}, \mathcal{O} \rightarrow \mathcal{O U}$, $\mathcal{O} \rightarrow \mathcal{O} \diamond, \mathcal{P} \rightarrow \mathcal{P} \mathcal{P}, \mathcal{P} \rightarrow \mathcal{P Y}, \mathcal{R} \rightarrow \mathcal{R} \mathcal{T}, \mathcal{S} \rightarrow \mathcal{H} \mathcal{A}, \mathcal{T} \rightarrow \mathcal{T \mathcal { H } , \mathcal { T } \rightarrow \mathcal { T } \mathcal { O } , ~}$ $\mathcal{Y} \rightarrow \mathcal{Y} \mathcal{O}, \mathcal{Y} \rightarrow \mathcal{Y} \diamond, \diamond \rightarrow \diamond \mathcal{B}, \diamond \rightarrow \diamond \mathcal{T}, \diamond \rightarrow \diamond \mathcal{Y}, \mathcal{A} \rightarrow A, \mathcal{B} \rightarrow B$, $\mathcal{D} \rightarrow D, \mathcal{H} \rightarrow H, \mathcal{I} \rightarrow I, \mathcal{O} \rightarrow O, \mathcal{P} \rightarrow P, \mathcal{R} \rightarrow R, \mathcal{T} \rightarrow T, \mathcal{U} \rightarrow U$, $\mathcal{Y} \rightarrow Y, \diamond \rightarrow \square\}$, words $H A, R, D, T O, Y$. Using our algorithm, (by a long computation) we get the existence of words $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta$ with $\alpha H A \beta R \gamma D \delta T O \varepsilon Y \zeta \in L(G)$. For example, let $\alpha=\lambda, \beta=P P Y \square B I$, $\gamma=T H, \delta=A Y \square, \varepsilon=\square, \zeta=O U$. Then the following superword of $H A, R, D, T O, Y$ is obtained.YOU

References

[1] P. DöмӧSı and M. Ito, Multiple keyword pattern in context-free languages, in: Words, sequences, grammars, languages: where biology, computer science, linguistics and mathematics meet I. (C. Martin-Vide and V. Mitrana, eds.), Kluwer, Dordrecht, 2000, (in print).
[2] Р. Dӧмӧsı and M. Іто, Characterization of languages by length of their subwords, Proc. Int. Conf. in Semigroups and it Applications, Semigroups (K. P. Shum, Y. Gao, M. Ito and Y. Fong, eds.), Springer-Verlag, 1998, 117-129.
[3] P. Dömösı, M. Ito, M. Katsura and C. Nehaniv, A new pumping property of context-free languages, Proc. DMTCS'96, Combinatorics, Complexity, \& Logic, Springer-Verlag, 1997, 187-193.
[4] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, Massachusetts, Menlo Park, California, London, Amsterdam, Don Mils, Ontario, Sidney, 1979.
[5] Gy. E. Révész, Introduction to Formal Languages, McGraw-Hill, New York, etc., 1983.
[6] A. Salomat, Formal Languages, Academic Press, New York, London, 1973.

PÁL DÖMÖSI
Institute of mathematics and informatics
LAJOS KOSSUTH UNIVERSITY
DEBRECEN, EGYETEM TÉR 1, H-4032
HUNGARY
E-mail: domosi@ math.klte.hu
(Received August 16, 1999; revised February 2, 2000)

[^0]: Mathematics Subject Classification: 68Q45.
 Key words and phrases: formal languages, combinatorics on words and languages.
 This work was supported by the Hungarian National Science Foundation (Grant No.'s T019392 and T030140).

