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Superwords and context-free languages

By PÁL DÖMÖSI (Debrecen)

To the honour of Professor Kálmán Győry on his 60th birthday

Abstract. An improvement of a polynomial algorithm is given to solve the fol-
lowing problem: Given a context-free language L and a finite list of nonempty words
w1, . . . , wn, let us decide whether or not there are words z0, . . . wn having z0w1z1 . . .
. . . wnzn ∈ L.

1. Preliminaries

We will consider the following problem. Given a finite ordered list of
nonempty words w1, . . . , wn ∈ X∗, a context-free language L ⊆ X∗, let us
decide whether or not there is a word z ∈ L such that z = z0w1z1 . . . wnzn

for some words z0, . . . , zn ∈ X∗. In other words, given a regular language
of the form R = X∗w1X

∗w2 . . . X∗wnX∗, λ /∈ {w1, . . . , wn} and a context-
free language L, let us decide whether or not R ∩ L is empty or not. We
note that R is defined as the shuffle ideal generated by w1, . . . , wn ∈X∗.
It is also said that z = z0w1z1 . . . wnzn is a superword of the list of
words w1, . . . , wn. In this explanation, we want to decide whether or not
w1, . . . , wn has a superword in the context-free language L.

To the solution of the above problem a polynomial algorithm is de-
scribed in [1]. In this paper we show results leading to an improvement of
this algorithm.
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For all notions and notations not defined here, see [4] and [5], [6].
Consider an alphabet X and the free monoid X∗ generated by X. λ de-
notes the identity of X∗, X+ = X∗ \ {λ}, and |p| is the length of p ∈ X∗.
In addition, we will denote by |H| the cardinality of a given set H. Fi-
nally, we shall consider a grammar in the form G = (V, X, S, P ), where,
in order, V and X are the sets of variables and terminals, respectively, S

denotes the start symbol , and P is the set of productions. Moreover, L(G)
denotes the language generated by G. We will assume |V | > 1 taking out
of consideration trivial cases.

Theorem 1.1 [3]. For any context-free grammar G = (V,X, S, P ) in

Chomsky normal form and z ∈ L(G), if |z| ≥ |V |2|V | e (e > 0), and e

positions of z are excluded, then z has the form uvwxy where |vx| > 0,

neither v nor x contains any excluded position, and uviwxiy is in L(G)
for all i ≥ 0.

By this statement, the following result is shown in [1].

Theorem 1.2 [1]. Consider a context-free grammar G = (V,X, S, P )
in Chomsky normal form and a word z0w1z1 . . . wnzn ∈ L(G) with λ /∈
{w1, . . . , wn}. There are words z′0, . . . , z

′
n such that z′0w1z

′
1 . . . wnz′n∈L(G)

and |z′0w1z
′
1 . . . wnz′n| < |V |2|V ||w1 . . . wn|.

2. Main results

For any word z ∈ X∗, and positive integer k ≤ |z|, we will speak about
kth position of z. That is, if z = a1 . . . an, a1, . . . an ∈ X, then we say that
ak is in the kth position of z. In addition, sometimes we will distinguish
excluded and non-excluded positions of z. Finally, if ak, . . . , ak+` are in
excluded positions of z then we also say that ak . . . ak+` consists of excluded
positions.

Given a context-free grammar G in Chomsky normal form, let Tz be a
derivation tree for some z ∈ L(G). We say that a subpath of Tz is external
if its initial node is the root of the tree and its terminal node is either the
first or the last position of z. In the same sense, we will speak about the
external subpaths of a given subtree of Tz. An intermediate node of Tz is
said to be a branch point if each of its children has an excluded descendant.
On the other hand, define a node to be free if each of its children has no
excluded descendant. (Recall that G is in Chomsky normal form. Thus
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every node in Tz has not more than two children.) Of course, the leaves
of Tz are neither branch points nor free nodes.

A subpath of Tz is called distinguished if
a) its initial node is either a branch point or the root of the tree, and its

terminal node is a branch point;
b) none of its intermediate nodes is a branch point;
c) if it has no intermediate node then its initial node is the root of the

tree, and simultaneously, it is not a branch point.
(Of course, it is also possible that the root of the tree is a branch point.)
A subpath of Tz is said to be reducible if
a) each of its nodes is not a leaf of the tree;
b) apart from the terminal one, its nodes are not branch points;
c) its terminal node is a branch point;
d) there are distinct nodes having the same (nonterminal) label.

Given a context-free grammar G in Chomsky normal form, a word
z ∈ L(G), let Tz be a derivation tree with z = z0w1z1 . . . wnzn, where
w1, . . . , wn denote (possibly empty) words consists of excluded positions,
and z1, . . . , zn denote (possibly empty) words having no excluded positions.
Tz is reducible (with respect to z0, w1, z1, . . . , wn, zn) if it has a reducible
subpath. Otherwise we say that Tz is minimal.

We start with the following

Lemma 2.1. If Tz is a reducible derivation tree with respect to
z0, w1, z1, . . . , wn, zn then there are words z′0, . . . , z

′
n with |z′0 . . . z′n| <

|z0 . . . zn| and z′0w1z
′
1 . . . wnz′n ∈ L(G).

Proof. Suppose that Tz is reducible and let denote p one of its re-
ducible subpaths. Thus, there exist distinct nodes in p having the same
(nonterminal) label, say A, moreover, two strings of terminals, v and x,
and two nonterminals B and C such that the derivation A ⇒ BC ⇒ ∗vAx
is represented in Tz. B and C cannot both dominate the lower A, there-
fore |vx| > 0. On the other hand, since there exists no intermediate
branch point of the distinguished paths, we have that neither v nor x con-
tains an excluded position. (Of course, the free children of the nodes of
this path do not have excluded descendants.) Therefore, there are pos-
itive integers i, j with 0 ≤ i < j ≤ n, zi = v′vv′′, zj = x′xx′′ having
z0w1z1 . . . wiv

′v′′wi+1zi+1 . . . wjx
′x′′wj+1zj+1 . . . wnzn ∈ L(G). This com-

pletes the proof. ¤
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Lemma 2.2. Let Tz be a minimal derivation tree and consider its

arbitrary distinguished subpath p. The free children of the intermediate

nodes in p have not more than 2|V |−1 − 1 non-excluded descendants.

Proof. Consider a subpath p′ containing all nodes of p apart from
its initial node if the initial node of p is a branch point. Otherwise, (when
the initial point of p is not a brainch point and then it is the root of
the tree) let us assume p′ = p. Since Tz is minimal, p′ is not reducible.
Consider the maximal derivation subtree Tz′ of Tz having the root as the
initial node of p′. Omitting all of the descendants of the terminal node of
p′ (and p) from Tz′ , we get a subtree Tz′′ containing no path with distinct
nodes having the same nonterminal label. Therefore, the subtree Tz′′ has
not more than 2|V |−1 leaves, where one of the leaves is the terminal node
of p′ (and p). The proof is complete. ¤

Lemma 2.3. Let k be the number of the words in w1, . . . , wn consist-

ing of two or more letters. Suppose that Tz is a minimal derivation tree.

Then Tz has not more than |w1 . . . wn|+ n + k − 1 distinguished paths.

Proof. Denote by wi1 , . . . , wik
, 1 ≤ i1 < · · · < ik ≤ n the words

with |wij | > 1, j = 1, . . . , k.
First we assume that |w1|, . . . , |wn| ≤ 2. Clearly, then |w1 . . . wn| =

n+k. On the other side, the number of distinguished paths in Tz is either
at most 2(n+k)−2 if the root of Tz is a branch point or at most 2(n+k)−1
if the root of Tz is not a branch point. Therefore, there exist not more
than |w1 . . . wn|+ n + k − 1 distinguished paths.

Now we suppose that our statement holds for every w1, . . . , wn with
k ≤ `, where ` is a fixed nonnegative integer. Denote by si, i = 1, . . . , n the
number of the distinguished paths which are subpaths of the external paths
of the subtree Twi . Consider a decomposition z = z′0w

′
1z
′
1 . . . z′n−2w

′
n−1z

′
n−1

with z′0 = z0, w′1 = w1, z′1 = z1, . . . , w′i−1 = wi−1, z′i−1 = zi−1,
w′i = wiziwi+1, z′i = zi+1, w′i+1 = wi+2, z′i+1 = zi+2, . . . , w′n−1 = wn,
z′n−1 = zn for some 1 ≤ i < n. Of course, if Tz is minimal with
respect to z0, w1, z1, . . . , wn, zn then it is also minimal with respect to
z′0, w

′
1, z

′
1, . . . , w′n−1, z′n−1. Thus it is enough to prove that in this case the

number of distinguished paths is not more than |w′1 . . . w′n−1|+ n + k − 1
(= |w′1 . . . w′n−1| + (n − 1) + (k + 1) − 1). Denote by ti the number of all
distinguished paths which are subpaths of the external paths of the deriva-
tion subtree Tw′i . It is clear that the new distinguished paths in Tz (with
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respect to z′0, w
′
1, z

′
1, . . . , w

′
n−1, z

′
n−1) are subpaths of the external paths

of the derivation subtree Tw′i and thus ti is bounded by si + si+1 + |zi|.
Therefore, using our inductive assumption, the number of distinguished
paths is not more than |w′1 . . . w′n−1|+n+k−1. This ends the proof. ¤

Now we show an improvement of Theorem 1.2 in [1] (assuming |V |>1).

Theorem 2.4. Given a context-free grammar G = (V, X, S, P ) in

Chomsky normal form and a word z0w1z1 . . . wnzn ∈ L(G) with λ /∈
{w1, . . . , wn}, let k be the number of the words in w1, . . . , wn consisting of

two or more letters. There are words z′0, . . . , z
′
n such that z′0w1z

′
1 . . . wnz′n ∈

L(G) and |z′0w1z
′
1 . . . wnz′n| ≤ 2|V |−1(|w1 . . . wn|+ n + k − 1)− n− k + 1.

Proof. Consider a derivation tree Tz of the word z=z′0w1z
′
1 . . . wnz′n.

Exclude positions in z such that w1, . . . , wn are (possibly empty) words
consisting of excluded positions, and z′0, . . . , z

′
n are (possibly empty) words

having non-excluded positions. Using Lemma 2.1, we may assume that Tz

is a minimal derivation tree. Then, by Lemma 2.3, Tz has not more than
|w1 . . . wn| + n + k − 1 distinguished paths. On the other hand, using
Lemma 2.2, for every distinguished subpath p of Tz, the free children
of the intermediate nodes in p have not more than 2|V |−1 − 1 excluded
descendants. In addition, it is obvious that each of the excluded positions
is a descendant of an unambigously determined free child of a node of
a given distinguished path in Tz. (Note that the root of Tz may have
free children unless it is a branch point. In the other cases, only the
intermediate nodes of the distinguished paths may have free children.)
Therefore, |z′0 . . . z′n| ≤ (2|V |−1 − 1)(|w1 . . . wn|+ n + k − 1) which implies
|z| ≤ |w1 . . . wn|+(2|V |−1−1)(|w1 . . . wn|+n+k−1) = 2|V |−1(|w1 . . . wn|+
n + k − 1)− n− k + 1. ¤

Given a context-free grammar G = (V,X, S, P ) in Chomsky normal
form, let us construct the grammar G′ = (V ′, X ′, S′, P ′) in Chomsky nor-
mal form such that V ′ = V ∪{Ω}, X ′ = X∪{ω}, P ′ = P ∪{A → AΩ, A →
ΩA : A ∈ V } ∪ {Ω → ΩΩ, Ω → ω} and S′ = S, where Ω and ω are new
nonterminal and terminal symbols, respectively. The following statement
is obvious.

Lemma 2.5 [1].

L(G′) = {ω∗x1ω
∗x2 . . . ω∗xnω∗ : x1 . . . xn ∈ L(G), x1, . . . , xn ∈ X}.
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Next we prove a little bit modified version of a result in [1].

Theorem 2.6. Given a context-free grammar G = (V, X, S, P ) in

Chomsky normal form, let w1, . . . wn be an arbitrary list of nonempty

words. Moreover, let k be the number of the words in w1, . . . , wn con-

sisting of two or more letters. There are words z0, . . . , zn with z0w1z1 . . .

wnzn ∈ L(G) if and only if z′0w1z
′
1 . . . wnz′n ∈ L(G′) holds for some words

z′0, . . . , z
′
n ∈ X ′∗ (= (X ∪ {ω})∗) with |z′i| = (2|V |−1 − 1)(|w1 . . . wn|+ n +

k − 1), i = 0, . . . , n.

Proof. First we suppose z′0w1z
′
1 . . . wnz′n ∈ L(G′) for some words

z′0, . . . , z
′
n ∈ X ′∗ (= (X ∪ {ω})∗) with |z′i| = (2|V |−1 − 1)(|w1 . . . wn| +

n + k − 1). Consider the words zi, i = 0, . . . , n such that for every
i = 0, . . . , n, we omit all occurrences of the letter ω in z′i. By Lemma 2.5,
z0w1z1 . . . wnzn ∈ L(G).

Conversely, we now suppose z0w1z1 . . . wnzn ∈ L(G) for some z0, . . .

. . . , zn. By Theorem 2.4, we may assume |z0w1z1 . . . wnzn| ≤ 2|V |−1(|w1 . . .

. . . wn|+ n + k − 1)− n− k + 1. In other words, |z0z1 . . . zn| ≤ (2|V |−1 −
1)(|w1 . . . wn|+ n + k − 1), which implies |zi| ≤ (2|V |−1 − 1)(|w1 . . . wn|+
n + k − 1), i = 0, . . . , n. Hence, for every i = 0, . . . , n, we can define z′i =
ziω

(2|V |−1−1)(|w1...wn|+n+k−1)−|zi|) such that, by Lemma 2.5, our conditions
hold again. The proof is complete. ¤

3. Generalized CYK algorithm

Using the well-known CYK-algorithm (Cocke–Younger–Kasami algo-
rithm), on the basis of Theorem 2.6, a cubic time algorithm can be given
to the discussed problem. Apart from the value of the constant p, this
algorithm is the same as in [1] for which, to the completeness of the paper,
we give a short description. (For a more detailed description, see [1].)

Let G = (V,X, S, P ) be a context-free grammar having Chomsky
normal form and let w1, . . . , wn ∈ X+. Consider the grammar G′ =
(V ′, X ′, S′, P ′) such that V ′ = V ∪ {Ω}, X ′ = X ∪ {ω}, P ′ = P ∪ {A →
AΩ, A → ΩA : A ∈ V } ∪ {Ω → ΩΩ, Ω → ω}, where Ω and ω are new
nonterminal and terminal symbols, respectively. Let k be the number of
the words in w1, . . . , wn consisting of two or more letters.

Now we give the formal description of our algorithm.
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begin

p :=ω(|2|V ′|−1−1)(|w1...wn|+n+k−1)w1ω
(|2|V ′|−1− 1)(|w1...wn|+n+k−1)w2. . .

ω(|2|V ′|−1−1)(|w1...wn|+n+k−1)wn ω(|2|V ′|−1−1)(|w1...wn|+n+k−1);
for i := 1 to |p| do

if the ith symbol of p is ω then do

Vi,1 := V ∪ {Ω};
else do

Vi,1 := {A | ∃a ∈ X such that A → a is a production in G

and the ith symbol in p equals to a};
for j := 2 to |p| do

for i := 1 to |p| − j + 1 do

begin

Vi,j := ∅;
for k := 1 to j − 1 do

Vi,j := Vi,j ∪ {A | A → BC is a production in G′, B is in Vi,k

and C is in Vi+k,j−k};
end

z0w1z1 . . . znwn ∈ L(G) for some z0, . . . , zn ∈ X∗ iff S ∈ V1,|p|.

end

Finally, we consider the following example.

Example. Consider the grammar G =(V,X, S, H ′) with V = {A,B,D,
H, I, O,P,R,S, T ,U ,Y,♦}, X = {A,B, D,H, I, O, P, R, T, U, Y, ¤}, H ′ =
{A → AP, A → AY, B → BI, D → DA, H → HD, I → IR, O → OU ,
O → O♦, P → PP, P → PY, R → RT , S → HA, T → T H, T → T O,
Y → YO, Y → Y♦, ♦ → ♦B, ♦ → ♦T , ♦ → ♦Y, A → A, B → B,
D → D, H → H, I → I, O → O, P → P , R → R, T → T , U → U ,
Y → Y , ♦ → ¤}, words HA, R, D, TO, Y . Using our algorithm, (by
a long computation) we get the existence of words α, β, γ, δ, ε, ζ with
αHAβRγDδTOεY ζ ∈ L(G). For example, let α = λ, β = PPY ¤BI,
γ = TH, δ = AY ¤, ε = ¤, ζ = OU . Then the following superword of
HA, R, D, TO, Y is obtained.

HAPPY ¤ BIRTHDAY ¤ TO ¤ YOU
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