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An efficient algorithm for the explicit resolution
of norm form equations

By ISTVÁN GAÁL (Debrecen)

Dedicated to Professor Kálmán Győry on his 60th birthday

Abstract. We give an efficient method for the explicit resolution of norm form
equations under general assumptions. The main tool is the application of Wildanger’s
enumeration algorithm [14], more exactly an appropriate version of it described by
Ga�al and Pohst [8].

1. Introduction

Although there is an extensive literature of the explicite resolution of
Thue equations, see e.g. Pethő and Schulenberg [10], Tzanakis and
de Weger [13], Bilu and Hanrot [2], Smart [12], Gaál and Pohst [8],
and index form equations, cf. Gaál [6], [7] for a survey, the problem of
solving norm form equations was not yet investigated. Our purpose is
now to fill this gap and to give an efficient method for solving norm form
equations under general conditions.

Let α1 = 1, α2, . . . , αm be algebraic integers, linearly independent
over Q, let K = Q(α2, . . . , αm), L = Q(α1, . . . , αm−1), and assume that

(1) [K : L] ≥ 3.
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Let 0 6= b ∈ Z and consider the norm form equation

(2) NK/Q(x1 + α2x2 + . . . + αmxm) = d in x1, x2, . . . , xm ∈ Z, xm 6=0.

Using Baker’s method Győry gave effective upper bounds for the solutions
of norm form equations of the above type, cf. e.g. [9] (see [3] for improved
bounds), reducing the equation to unit equations in two variables. Some
of his ideas are used also in this paper. In order to apply Baker’s method
it was necessary to make assumptions on the coefficients: (1) was the most
general assumption of these.

Note that Smart [11] gave a method for solving triangularly con-
nected decomposable form equations, which involve also some special norm
form equations, but his purpose was not to consider norm form equations
utilizing their special properties, hence his general method is not feasible
for norm form equations of the above type.

The purpose of the present paper is to work out an efficient algorithm
for the explicite resolution of equation (2). In the course of our method
we need to use Baker’s method, hence we also have to assume (1). In fact
we reduce the problem to solving a special type of relative Thue equation
over L. One of our gools is to show that by solving equation (2) it is
sufficient to deal with linear forms in r(K) − r(L) variables, where r(K)
resp. r(L) denote the unit rank of K resp. L. The second gool is to
show, that the enumeration method of Gaál and Pohst [8] (which is
in fact an appropriate version of Wildanger’s enumeration [14]) can be
applied in its original form. This way we become an efficient method for
the enumeration of small exponents in the corresponding unit equation for
reasonable values (up to about 11) of r(k)− r(L).

2. Preliminaries

Let l = [L : Q], k = [K : L] and denote by γ(ij) (1 ≤ i ≤ l, 1 ≤ j ≤ k)
the conjugates of any γ ∈ K so that γ(i1), . . . , γ(ik) are just corresponding
relative conjugates of γ over the conjugate field L(i) of L. For elements µ

of L we write µ(i) for µ(i1) = . . . = µ(ik).
Assume that η1, . . . , ηs is a set of fundamental units in L. Let us

extend this system to a system of independent units η1, . . . , ηs, ε1, . . . , εr

of full rank in K. Denote by q the index of the unit group generated by
these units in the whole unit group of K.
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Calculate a full set of non-associated integers ν of K of norm ±d. The
algorithm must be performed for each element ν of this set.

Assume that x = (x1, . . . , xm) ∈ Zm is a solution of (2). Let l(x) =
x1 + α2x2 + . . . + αmxm. For 1 ≤ i ≤ l, 1 ≤ j ≤ k we have

l(ij)(x) = x1 + α
(i)
2 x2 + . . . + α

(i)
m−1xm−1 + α(ij)

m xm(3)

= ζijν
(ij)

(
η
(i)
1

) b1
q

. . .
(
η(i)

s

) bs
q

(
ε
(ij)
1

) a1
q

. . .
(
ε(ij)
r

) ar
q

with some integers b1, . . . , bs, a1, . . . , ar ∈ Z, where ζij is a root of unity
and we use throughout a fixed determination of the q-th root of the num-
bers involved. For any i (1 ≤ i ≤ l) and distinct j1, j2, j3
(1 ≤ j1, j2, j3 ≤ k) we have

(
α(ij1)

m − α(ij2)
m

)
l(ij3)(x) +

(
α(ij2)

m − α(ij3)
m

)
l(ij1)(x)

+
(
α(ij3)

m − α(ij1)
m

)
l(ij2)(x) = 0

whence

α
(ij2)
m − α

(ij3)
m

α
(ij1)
m − α

(ij3)
m

· l(ij1)(x)
l(ij2)(x)

+
α

(ij2)
m − α

(ij1)
m

α
(ij3)
m − α

(ij1)
m

· l(ij3)(x)
l(ij2)(x)

= 1

that is

(4)

(
α

(ij2)
m − α

(ij3)
m

)
ζij1ν

(ij1)

(
α

(ij1)
m − α

(ij3)
m

)
ζij2ν

(ij2)

(
ε
(ij1)
1

ε
(ij2)
1

) a1
q

· · ·
(

ε
(ij1)
r

ε
(ij2)
r

) ar
q

+

(
α

(ij2)
m − α

(ij1)
m

)
ζij3ν

(ij3)

(
α

(ij3)
m − α

(ij1)
m

)
ζij2ν

(ij2)

(
ε
(ij3)
1

ε
(ij2)
1

) a1
q

· · ·
(

ε
(ij3)
r

ε
(ij2)
r

) ar
q

= 1.

This is the unit equation we are going to solve using the method de-
scribed in [8]. The only difference between this equation and the equation
considered in [8] is that here in the exponents we have a denominator q.

Introduce

γ(ij1j2j3) =

(
α(ij2)−α(ij3)

)
ζij1ν

(ij1)

(
α(ij1)−α(ij3)

)
ζij2ν

(ij2)
, ρ

(ij1j2)
k =

(
ε
(ij1)
k

ε
(ij2)
k

) 1
q

(1 ≤ k ≤ r)
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and

τ (ij1j2) =
(
ρ
(ij1j2)
1

)a1

. . .
(
ρ(ij1j2)

r

)ar

,

then we have

β(ij1j2j3) =
α

(ij2)
m − α

(ij3)
m

α
(ij1)
m − α

(ij3)
m

· l(ij1)(x)
l(ij2)(x)

= γ(ij1j2j3)τ (ij1j2).

for any i (1 ≤ i ≤ l) and any distinct j1, j2, j3 (1 ≤ j1, j2, j3 ≤ k).
Equation (4) can be written in the form

(5) β(ij1j2j3) + β(ij3j2j1) = 1.

We use the algorithm of [8] to solve equation (5) in a1, . . . , ar. For the
sake of completeness we give here a brief sketch of the procedure.

3. Solving the unit equation

We only summarize the main steps.

1. Elementaries. By solving the system of linear equations

(6) a1 log
∣∣∣ρ(ij1j2)

1

∣∣∣ + . . . + ar log
∣∣∣ρ(ij1j2)

r

∣∣∣ = log
∣∣∣τ (ij1j2)

∣∣∣

in a1, . . . , ar (1 ≤ i ≤ l, 1 ≤ j1, j2 ≤ k, j1 6= j2), we obtain

(7) A = max(|a1|, . . . , |ar|) ≤ c1 ·
∣∣∣log

∣∣∣τ (ij1j2)
∣∣∣
∣∣∣

for a certain set i, j1, j2 of indices. Exchanging j1 and j2 if necessary, (7)
implies that there are indices i, j1, j2 with

(8)
∣∣∣τ (ij1j2)

∣∣∣ < exp
(
−A

c1

)
.

The following steps must be performed for all possible values of i, j1, j2.

2. Baker’s method. Let 1 ≤ j3 ≤ k be any index distinct from j1, j2.
Applying (8) from (5) we get

(9)
∣∣∣log

(
β(ij3j2j1)

)∣∣∣ ≤ 2·
∣∣∣β(ij3j2j1) − 1

∣∣∣ = 2·
∣∣∣β(ij1j2j3)

∣∣∣ ≤ c2 exp
(
−A

c1

)
.
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On the other hand,

(10)

∣∣∣log
(
β(ij3j2j1)

)∣∣∣ =
∣∣∣log

(
γ(ij3j2j1)

)
+ a1 · log

(
ρ
(ij3j2)
1

)
+

. . . + ar · log
(
ρ(ij3j2)

r

)
+ a0 · log(−1)

∣∣∣

where log denotes the principal value of the logarithm, and a0 ∈ Z with
|a0| ≤ |a1| + . . . + |ar| + 1. Set A′ = max(|a1|, . . . , |ar|, |a0|), then A ≤
A′ ≤ rA + 1. In case the terms in the above linear form are independent
(otherwise we can reduce the number of variables) using the estimates of
Baker and Wüstholz [1] and (9) we conclude

(11) exp(−C · log A′) ≤
∣∣∣log

(
β(ij3j2j1)

)∣∣∣ ≤ c2 exp
(
−A′ + 1

rc1

)

which implies an upper bound A′B for A′ of magnitude 1020 up to 10500

for r = 2 up to 8.
3. Reduction. Using (10) and (11) we have an estimate of type

(12) |ξ + a1ξ1 + . . . + arξr + a0ξ0| < c2 exp(−c3A
′ − c4)

where

ξ = log
(
γ(ij3j2j1)

)
, ξ1 = log

(
ρ
(ij3j2)
1

)
, . . . ,

ξr = log
(
ρ(ij3j2)

r

)
, ξ0 = log(−1).

Let H be a large constant to be specified later. Consider the lattice L
spanned be the columns of the matrix




1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 0 1
H<(ξ) H<(ξ1) . . . H<(ξr) H<(ξ0)
H=(ξ) H=(ξ1) . . . H=(ξr) H=(ξ0)




.

Assume, that the columns in the above matrix are linearly independent.
Denote by b1 the first vector of the LLL-reduced basis of this lattice. The
reduction procedure is based on Lemma 1 of [8]:
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Lemma 1. If A′ ≤ A′0 and |b1| ≥
√

(r + 3)2r+1 ·A′0 then

A′ ≤ log H + log c2 − c4 − log A′0
c3

.

If the field K is totally real, we can omit the variable corresponding to
a0 and the imaginary parts in the last component of the generating vectors
of the lattice L. We first take A′0 to be the Baker’s bound A′B , apply the
lemma to reduce it, and in the next step we use the new bound in the role
of A′0. An appropriate value of H corresponding to A′0 is of magnitude
(A′0)

r+2. We need about 4–5 reduction steps. The final reduced bound
A′R is usually between 100 and 1000.

4. Enumeration. Let I = (i, j1, j2, j3) be a tuple with 1 ≤ i ≤ l,
1 ≤ j1, j2, j3 ≤ k so that j1, j2, j3 are distinct. Introduce

β(I) = β(ij1j2j3), γ(I) = γ(ij1j2j3), ρ
(I)
h = ρ

(ij1j2)
h (1 ≤ h ≤ r).

Let I∗ = {I1, . . . , It} be a set of tuples I with the following properties:

1. if (ij1j2j3) ∈ I∗ then either (ij2j3j1) ∈ I∗ or (ij3j2j1) ∈ I∗

2. if (ij1j2j3) ∈ I∗ then either (ij1j3j2) ∈ I∗ or (ij3j1j2) ∈ I∗

3. the vectors eh =
(
log

∣∣∣ρ(I1)
h

∣∣∣ , . . . , log
∣∣∣ρ(It)

h

∣∣∣
)

(1 ≤ h ≤ r) are linearly
independent.

Set g =
(
log

∣∣γ(I1)
∣∣ , . . ., log

∣∣γ(It)
∣∣) and b=

(
log

∣∣β(I1)
∣∣ , . . ., log

∣∣β(It)
∣∣).

By our notation we have

(13) b = g + a1e1 + . . . + arer.

Using the reduced bound A′R we can calculate a constant S with

(14)
1
S
≤

∣∣∣β(I)
∣∣∣ ≤ S for all I ∈ I∗.

In order to replace S by a smaller constant s we use Lemma 2 of [8]:

Lemma 2. Let 2 < s < S be given constants and assume that (14)
holds. Then either

(15)
1
s
≤

∣∣∣β(I)
∣∣∣ ≤ s for all I ∈ I∗
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or there is an Ij0 ∈ I∗ with

(16)
∣∣∣β(Ij0 ) − 1

∣∣∣ ≤ 1
s− 1

.

Hence, the constant S can be replaced by the smaller constant s if for
each j0 (1 ≤ j0 ≤ t) we enumerate directly the set Hj0 of those exponents
a1, . . . , ar for which (14) and (16) hold. For 1 ≤ j ≤ t set λj = 1/ log S

for j 6= j0 and set λj0 = 1/ log s−1
s−2 . Further, let λt+1 = 1/ arccos s(s−2)

(s−1)2 .
Set

ϕj0(b) =
(
λ1 log

∣∣∣β(I1)
∣∣∣ , . . . , λt log

∣∣∣β(It)
∣∣∣ , λt+1 arg

(
β(Ij0 )

))
,

ϕj0(g) =
(
λ1 log

∣∣∣γ(I1)
∣∣∣ , . . . , λt log

∣∣∣γ(It)
∣∣∣ , λt+1 arg

(
γ(Ij0 )

))
,

ϕj0(eh) =
(
λ1 log

∣∣∣ρ(I1)
h

∣∣∣ , . . . , λt log
∣∣∣ρ(It)

h

∣∣∣ , λt+1 arg
(
ρ
(Ij0 )

h

))

(1 ≤ h ≤ r),

where for any z ∈ C the inequality −π ≤ arg z ≤ π is satisfied and let
e0 = (0, . . . , 0, π) ∈ Rt+1. By (13) we have

(17) ϕj0(b) = ϕj0(g) + a1ϕj0(e1) + . . . + arϕj0(er) + a0e0.

Moreover, for the norm of this vector we have

(18)

‖ϕj0(g) + a1ϕj0(e1) + . . . + arϕj0(er) + a0e0‖22 = ‖ϕj0(b)‖22

=
t∑

j=1

λ2
j log2

∣∣∣β(Ij)
∣∣∣ + λ2

t+1 arg2
(
β(Ij0 )

)
≤ t + 1.

This inequality defines an ellipsoid. The lattice points contained in this elli-
psoid can be enumerated by using the algorithm of Fincke and Pohst [5].
The enumeration is usually very fast, but it is essential, that the “im-
proved” version of the algorithm should be used, involving LLL reduction.
If K is totally real, the (t + 1)-st component of ϕj0 , the vector e0 and the
variable a0 can be omitted, and in (18) we only get t on the right side.
We usually apply the lemma about 5–10 times, until the final s is as small
as possible, so that the exponents with (15) can be enumerated easily.
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Observe, that this set is also contained in an ellipsoid, namely, by (13)
we have in Rt

(19) ‖g + a1e1 + . . . + arer‖22 = ‖b ‖22 ≤ t · s2.

4. Calculating the solutions of the norm form equation

The procedure of the preceeding section gives us all possible tuples
(a1, . . . , ar) of exponents in (3). For any i, j (1 ≤ i ≤ l, 1 ≤ j ≤ k) set

δ(i) =
(
η
(i)
1

) b1
q · · ·

(
η(i)

s

) bs
q

and

γ(ij) = ζij ν(ij)
(
ε
(ij)
1

) a1
q · · ·

(
ε(ij)
r

) ar
q

.

The δ(i) are not yet known, but the γ(ij) are determined by the exponents
(a1, . . . , ar). Then we have

(20) l(ij)(x) = x1 + α
(i)
2 x2 + . . . + α

(i)
m−1xm−1 + α(ij)

m xm = δ(i)γ(ij).

For any 1 < i ≤ l we have

δ(i)
(
γ(i1) − γ(i2)

)
= l(i1)(x)− l(i2)(x) =

(
α(i1)

m − α(i2)
m

)
xm,

hence

0 6= xm = δ(i) γ(i1) − γ(i2)

α
(i1)
m − α

(i2)
m

that is

(21) δ(i) = τiδ
(1)

with

τ1 = 1, τi =
α

(i1)
m − α

(i2)
m

γ(i1) − γ(i2)

γ(11) − γ(12)

α
(11)
m − α

(12)
m

for i = 2, . . . , l.
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Substituting our expressions into the original equation (2) it can be written
in the form

l∏

i=1

k∏

j=1

l(ij)(x) = d,

whence we obtain
l∏

i=1

k∏

j=1

(
τiδ

(1)γ(ij)
)

= d,

that is

(22)
(
δ(1)

)kl

= d

(
l∏

i=1

k∏
j=1

γ(ij)

)−1 (
l∏

i=1

τi

)−k

,

from which we can calculate the value of δ(1). This gives at once the
value of δ(i) by (21). Finally, solving the system of linear equations (20)
(1 ≤ i ≤ l, 1 ≤ j ≤ k) in x1, . . . , xm we get the solutions of equation (2).

5. Example 1

We illustrate our algorithm by a two detailed examples. The basic
number field data were calculated by using Kash [4]. The program was
developed in Maple and was executed on a Pentium II PC.

Consider first the field K generated by a root ξ of the polynomial

f(x) = x9 − x8 − 31x7 + 8x6 + 200x5 − 87x4 − 97x3 + 27x2 + 12x− 1.

This field is totally real and has an integral basis

{1, ξ, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ω9}

with

ω9 =
(
14800 + 24483ξ + 15778ξ2 + 15468ξ3

+ 19731ξ4 + 4153ξ5 + 1420ξ6 + 4197ξ7 + ξ8
)
/25349.

The discriminant of the field is DK = 107226034120512 = 26 ·33 ·373 ·1073.
The field K has a totally real cubic subfield L generated by α defined

by the polynomial g(x) = x3 − x2 − 3x + 1 with discriminant DL = 148 =
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22 · 37. (Note that K has also another cubic subfield generated by the
root of x3 − x2 − 4x + 1 with discriminant 321 = 3 · 107 but this is not
interesting in our arguments.) The field L has integral basis {1, α, α2} and
fundamental units

η1 = α η2 = 2α− 1.

These elements have the following coefficients in the integral basis of K:

η1 = [−430,−703,−454,−472,−568,−117,−42,−122, 736]

η2 = [−6383,−10561,−6838,−6694,−8428,−1791,−626,−1811, 10936].

These units together with

ε1 = [328, 539, 346, 360, 433, 89, 32, 93,−561]

ε2 = [758, 1242, 800, 832, 1001, 206, 74, 215,−1297]

ε3 = [3590, 5940, 3838, 3746, 4739, 1010, 352, 1018,−6148]

ε4 = [6055, 10022, 6492, 6334, 7995, 1702, 594, 1718,−10375]

ε5 = [103, 164, 108, 112, 135, 28, 10, 29,−175]

ε6 = [6225, 10295, 6682, 6551, 8218, 1745, 611, 1767,−10670].

form a system of fundamental units in K. (Hence s = 2, r = 6, q = 1.)
Consider the norm form equation

(23)
NK/Q(x1 + αx2 + α2x3 + ξx4) = ±1

in x1, x2, x3, x4 ∈ Z with x4 6= 0.

We had c1 = 0.763 and c2 = 4.291 for all possible i, j1, j2. Since our
example is a totally real one, we did not have to use a0. Baker’s method
gave

A = max(|a1|, . . . , |a6|) ≤ 1036 = AB .

In the reduction procedure we had dimension 7, c3 = 1/c1, c4 = 0. The
following table summarizes the steps of the reduction procedure. Note
that in each step we had to perform 9 reductions.

A < |b1| > H = precision new bound for A CPU time

Step I 1036 1039 10280 700 digits 429 20 min

Step II 429 9709 1030 100 digits 49 8 sec

Step III 49 1109 1022 60 digits 36 5 sec

Step IV 36 815 1021 60 digits 35 5 sec
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Hence our algorithm gave the reduced bound AR = 35.
In the enumeration process we used

I∗ = {(i123), (i231), (i312) | i = 1, 2, 3}
that is we had t = 9 ellipsoids to consider. The initial bound was S =
0.4116 ·10153 that we got using the reduced bound for A. Note that in this
example the vector g is linearly dependent on e1, . . . , e6. The following
table is a summary of the enumeration process.

S s precision CPU time tuples found

Step I 10153 1020 100 digits 10 sec 0

Step II 1020 1010 50 digits 5 sec 0

Step III 1010 108 50 digits 4 sec 0

Step IV 108 106 50 digits 4 sec 2

Step V 106 105 50 digits 3 sec 8

Step VI 105 104 50 digits 3 sec 16

Step VII 104 103 50 digits 3 sec 34

Step VIII 103 102 50 digits 3 sec 96

Step IX 102 10 50 digits 3 sec 133

Step X 10 5 50 digits 5 sec 15

Step XI 5 3 50 digits 5 sec 15

Step XII 3 50 digits 3 sec 34

The last line refers to the enumeration of the ellipsoid (19) with s = 3.
We tested all tuples we found in the enumeration process if they are

solutions of (4). We found 14 solutions of (4), the components were all
≤ 2 in absolute value. For these tuples we calculated the corresponding
solutions of the equation (23). We obtained the following solutions:

x1 x2 x3 x4

0 0 0 −1

0 0 1 −1

1 −1 −1 1

0 −1 1 1

1 −1 0 −1

−1 0 1 1

0 2 −1 1

−1 −2 0 1
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If (x1, x2, x3, x4) is a solution then so also is (−x1,−x2,−x3,−x4) but we
list only one of them.

6. Example 2

Our second example refers to a more complicated situation. Consider
the field K generated by a root ξ of the polynomial

f(x) = x12 − 80x10 − 85x9 + 568x8 + 184x7 − 1041x6 + 40x5

+ 432x4 − 19x3 − 52x2 − 2x + 1.

This field is totally real and has an integral basis

{1, ξ, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ω10, ω11, ω12}
with

ω10 = (1 + ξ3 + 2ξ4 + ξ6 + ξ7 + ξ8 + ξ9)/3

ω11 = (2 + ξ + 2ξ3 + 2ξ4 + 2ξ5 + 2ξ6ξ10)/3

ω12 = (107761264539 + 9245049222ξ + 31097752879ξ2 + 40137945519ξ3

+ 34157911107ξ4 + 93111405784ξ5 + 51616938926ξ6

+ 54389034027ξ7 + 110416671757ξ8 + 1812369088ξ9

+ 25415148001ξ10 + ξ11)/113333753409.

The field K has a totally real quartic subfield L generated by α defined
by the polynomial g(x) = x4 − 4x2 + x + 1. (Note that K has also a
cubic subfield generated by the root of x3 + 4x2 − 2x − 1 but this is not
interesting in our arguments.) The field L has integral basis {1, α, α2, α3}
and fundamental units

η1 = α, η2 = 1− α, η3 = −2α + α2 + α3.

The units η1, η2, η3, ε1, . . . , ε8 form a system of fundamental units in K,
where the coefficients of ε1, . . . , ε8 in the integral basis of K are the fol-
lowing:

ε1 = [−10895130684, 3196295645,−6147000968, 2471771060, 4012072493,

−8357582270, 202752252,−10392673880,−21467491622,

−1074736976,−15071211644, 22402348184]
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ε2 = [761572045,−223421774, 429676837,−172777352,−280445134,

584196946,−14172204, 726450169, 1500582390, 75124353,

1053481036,−1565929104]

ε3 = [97534039010,−28613481877, 55028420322,−22127482530,

−35916377883, 74817712333,−1815053823, 93036007507,

192178618710, 9621127196, 134918633553,−200547525759]

ε4 = [53135222443,−15588237092, 29978737346,−12054752441,

−19566755165, 40759675309,−988817143, 50684755933,

104696306673, 5241459687, 73501842816,−109255573732]

ε5 = [−137633535407, 40377438576,−77652439063, 31224828557,

50682797994,−105577768977, 2561283431,−131286213220,

−271189658479,−13576693470,−190388183616, 282999302268]

ε6 = [22062864796,−6472564754, 12447804013,−5005387339,

−8124529892, 16924276765,−410577392, 21045379385,

43472114179, 2176364587, 30519515049,−45365218051]

ε7 = [−62200893641, 18247825609,−35093562605, 14111475601,

22905139427,−47713891702, 1157523982,−59332340433,

−122559077246,−6135731847,−86042366935, 127896224154]

ε8 = [465526096893,−136571013123, 262648465963,−105613596395,

−171427445547, 357101971563,−8663180146, 444057171072,

917260919255, 45921258230, 643961282807,−957205380390]

Hence s = 3, r = 8, q = 1.
Consider the norm form equation

(24)
NK/Q(x1 + αx2 + α2x3 + α3x4 + ξx5) = ±1

in x1, x2, x3, x4, x5 ∈ Z with x5 6= 0.

We had c1 = 0.5187 and c2 = 3.9495 for all possible i, j1, j2. Since our
example is a totally real one, we did not have to use a0. Baker’s method
gave

A = max(|a1|, . . . , |a8|) ≤ 1046 = AB .
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In the reduction procedure we had dimension 9, c3 = 1/c1, c4 = 0. The
following table summarizes the steps of the reduction procedure. Note
that in each step we had to perform 12 reductions.

A < |b1| > H = precision bound for A CPU time

Step I 1046 1048 10440 1100 digits 472 98 min

Step II 472 23884 1040 100 digits 45 60 sec

Step III 45 2277 1035 80 digits 40 60 sec

Step IV 40 2024 1030 80 digits 34 60 sec

Hence our algorithm gave the reduced bound AR = 34.
In the enumeration process we used

I∗ = {(i123), (i231), (i312) | i = 1, 2, 3, 4}

that is we had t = 12 ellipsoids to consider. The initial bound was S =
0.128 · 10174 that we got using the reduced bound for A. Note that also in
this example the vector g is linearly dependent on e1, . . . , e8. The following
table is a summary of the enumeration process.

S s precision CPU time tuples found

Step I 10174 1020 100 digits 15 sec 0

Step II 1020 1010 50 digits 10 sec 2

Step III 1010 108 50 digits 10 sec 2

Step IV 108 106 50 digits 8 sec 24

Step V 106 105 50 digits 5 sec 26

Step VI 105 104 50 digits 15 sec 91

Step VII 104 103 50 digits 15 sec 178

Step VIII 1000 500 50 digits 15 sec 57

Step IX 500 250 50 digits 10 sec 45

Step X 250 120 50 digits 10 sec 37

Step XI 120 60 50 digits 12 sec 60

Step XII 60 30 50 digits 10 sec 24

Step XIII 30 15 50 digits 10 sec 17

Step XIV 15 7 50 digits 10 sec 18

Step XV 7 4 50 digits 10 sec 16

Step XVI 4 50 digits 3 sec 125
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The last line refers to the enumeration of the ellipsoid (19) with s = 4.
We tested all tuples we found in the enumeration process if they are

solutions of (4). We found 5 solutions of (4), the components were all
≤ 1 in absolute value. For these tuples we calculated the corresponding
solutions of the equation (23). We obtained the following solutions:

x1 x2 x3 x4 x5

−2 4 0 −1 −1

1 3 0 −1 1

0 1 −1 0 1

0 0 0 0 1

If (x1, x2, x3, x4, x5) is a solution then so also is (−x1,−x2,−x3,−x4,−x5)
but we list only one of them.
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