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Combinatorial diophantine equations

By L. HAJDU (Debrecen) and Á. PINTÉR (Debrecen)

To Professor K. Győry on his 60th birthday

Abstract. In this paper some diophantine equations concerning binomial coef-
ficients, power sums and product of consecutive integers are resolved. The equations
are reduced to elliptic equations and then the program package SIMATH is used to
determine the solutions.

1. Introduction

Many diophantine equations possess combinatorial background. Some
special cases have been intensively investigated by several authors (see
Table 1). These problems lead to equations of the type

f(x) = g(y) in integers x, y,

where f and g are polynomials with rational coefficients of degree three
and two, respectively. The purpose of this note is to solve the unsolved
equations from Table 1 by using the program package SIMATH [S]. The al-
gorithm is based upon a theorem obtained by Gebel, Pethő and Zimmer

[GPZ] and Stroeker and Tzanakis [ST], independently. Our results are
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summarized in Table 2 through Table 14. We remark that the function
faintp of SIMATH gives all the integer points on the corresponding ellip-
tic curves within a reasonable amount of CPU-time, however, as we will
see, not necessarily all of them provide an integral solution to the original
equation (see “other points” below the Tables).

For a positive integer k write

Pk(X) = X(X + 1) . . . (X + k − 1)
and

Sk(X) = 1k + 2k + . . . + Xk.

For general results on the equality of these combinatorial numbers we refer
to [BP1] and [BP2], respectively.

We consider the equations of Table 1.
The solutions to equations (1) through (9) are known; they can be

found in [M], [BK], [TW], [PW], [MB], [A1], [dW2], [A2] and [U], and [BK],
respectively. To solve equations (10) through (24), we use the program
package SIMATH, but as an example, in the case of equation (17) we
follow the arguments of [GPZ] directly. In fact, equations (10) and (24)
of Table 1 can be treated in an elementary way, and we will deal with
these equations separately. We mention that equations (17) and (18) are
independently resolved in [SdW].

Our notation (x, y) = (a1, . . . , an; b1, . . . , bm) will mean that (x, y) can
be any of the pairs (ai, bj), i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.

Theorem 1. a) All the solutions of equation (10) are (x, y) =
(−7, 2;−10, 7) and (−5,−4,−3,−2,−1, 0;−3,−2,−1, 0).
b) The only solution of equation (24) with x ≥ 1, y ≥ 0 is (x, y) = (1, 4).

Theorem 2. All the solutions of the unsolved equations of Table 1
are just those which are summarized in the following Table 2 through
Table 14.

2. Proofs and Tables

Proof of Theorem 1. a) Let f(x) = (x−2)(x−1)x(x+1)(x+2)(x+3).
Now the equation f(x) = P4(y) is equivalent to 256x6 + 768x5− 1280x4−
3840x3 + 1024x2 + 3072x + 256 = a2, where a = 16y2 + 48y. Suppose now
that x > 0 and put g(x) = 256x6 + 768x5 − 1280x4 − 3840x3 + 1024x2 +
3072x + 256, h(x) = 16x3 + 24x2 − 58x − 33. It is easy to verify that for
x ≥ 24 we have (h(x)− 1)2 < g(x) < h(x)2, which is impossible. Checking
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No. Equation Transformed equation

1 P3(x) = P2(y) s3 − 4s + 2 = 2t2

2 P3(x) = P4(y) s3 − s + 1 = t2

3 P3(x) =
�y
2

�
s3 − 4s + 1 = t2

4 P3(x) =
�y
4

�
s3 − 36s + 9 = t2

5 P6(x) = P2(y) s3 − 10s2 − 4s + 42 = 2t2

6
�x
3

�
=
�y
2

�
s3 − 4s + 6 = 6t2

7
�x
3

�
=
�y
4

�
s3 − 4s + 2 = 2t2

8 S2(x) =
�y
2

�
s3 − s + 3 = 3t2

9 S2(x) =
�y
4

�
s3 − s + 1 = t2

10 P6(x) = P4(y) s3 − 5s2 − s + 6 = t2

11 P6(x) =
�y
2

�
s3 − 10s2 − 4s + 41 = t2

12 P6(x) =
�y
4

�
s3 − 30s2 − 36s + 1089 = t2

13
�x
3

�
= P2(y) s3 − 4s + 12 = 3t2

14
�x
3

�
= P4(y) s3 − s + 6 = 6t2

15
�x
6

�
= P2(y) s3 − 5s2 − s + 185 = 5t2

16
�x
6

�
= P4(y) s3 − 5s2 − s + 725 = 5t2

17
�x
6

�
=
�y
2

�
s3 − 5s2 − s + 95 = 10t2

18
�x
6

�
=
�y
4

�
s3 − 5s2 − s + 35 = 35t2

19 S2(x) = P2(y) s3 − s + 6 = 6t2

20 S2(x) = P4(y) s3 − s + 24 = 6t2

21 S5(x) = P2(y) s3 − s2 + 12 = 3t2

22 S5(x) = P4(y) s3 − s2 + 48 = 3t2

23 S5(x) =
�y
2

�
s3 − s2 + 6 = 6t2

24 S5(x) =
�y
4

�
s3 − s2 + 2 = 2t2

Table 1.

the remaining cases, we obtain just the solutions stated in the first part of
Theorem 1.

The proof of part b) is similar. Since S5(x) = (2x6+6x5+5x4−x2)/12,
the equation S5(x) =

(
y
4

)
is equivalent to 64x6+192x5+160x4−32x2+16 =

a2, where a = 4y2 − 12y + 4. We assume again that x > 0 and put
g(x) = 64x6 +192x5 +160x4− 32x2 +16, h(x) = 8x3 +12x2 +x− 1. Now
one can verify easily that if x ≥ 2, then (h(x)− 1)2 < g(x) < h(x)2, which
is impossible. Hence the second part of Theorem 2 follows. ¤
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In the following Tables 2 through 14 we summarize the solutions of
the remaining equations. We note that equations (12) and (19) lead to the
same elliptic equation.

(11) P6(x) =
(
y
2

)

Transformation: u = 18x2 + 90x + 60
v = 54y − 27

Elliptic curve: E11: u3 − 3024u− 33831 = v2

Integer points on E11: (u,±v) = Corresponding solutions:(x, y) =

(−12, 27) (−4,−1; 0, 1)

(2328, 112293) (−14, 9;−2079, 2080)

(−48, 27) (−3,−2; 0, 1)

(60, 27) (−5, 0; 0, 1)

Table 2.

Other points on E11: (u,±v) = (5280, 383643), (20616, 2960091).

(12) P6(x) =
(
y
4

)

Transformation: u = 6x2 + 30x + 20
v = 3y2 − 9y + 3

Elliptic curve: E12: u3 − 336u− 1271 = v2

Integer points on E12: (u,±v) = Corresponding solutions: (x, y) =

(−4, 3) (−4,−1; 0, 1, 2, 3)

(−16, 3) (−3,−2; 0, 1, 2, 3)

(20, 3) (−5, 0; 0, 1, 2, 3)

Table 3.

Other points on E12: (u,±v) = (442124, 293978883), (62, 465), (50, 327),

(2312, 111165), (−10, 33), (39, 212), (4244, 276477), (−9, 32), (51, 338),

(5216, 376707), (20696, 2977347), (150, 1823), (464, 9987), (−13, 30),

(26, 87), (24, 67), (110, 1137), (−6, 23), (179, 2382), (212, 3075),

(5879, 450768).
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(13)
(
x
3

)
= P2(y)

Transformation: u = 6x− 6
v = 36y + 18

Elliptic curve: E13: u3 − 36u + 324 = v2

Integer points on E13: (u,±v) = Corresponding solutions: (x, y) =

(6, 18) (2;−1, 0)

(210, 3042) (36;−85, 84)

(−6, 18) (0;−1, 0)

(0, 18) (1;−1, 0)

(30, 162) (6;−5, 4)

(42, 270) (8;−8, 7)

(1224, 42822) (205;−1190, 1189)

Table 4.

Other points on E13: (u,±v) = (−8, 10), (9, 27), (16, 62), (1, 17).

(14)
(
x
3

)
= P4(y)

Transformation:
u = 6x− 6
v = 36y2 + 108y + 36

Elliptic curve: E14: u3 − 36u + 1296 = v2

Integer points on E14 : (u,±v) = Corresponding solutions: (x, y) =

(54, 396) (10;−5, 2)

(−6, 36) (0;−3,−2,−1, 0)

(0, 36) (1;−3,−2,−1, 0)

(6, 36) (2;−3,−2,−1, 0)

(384, 7524) (65;−16, 13)

Table 5.

Other points on E14: (u,±v) = (−12, 0), (13, 55), (150, 1836), (21, 99),

(10, 44), (36, 216), (1066, 34804), (138, 1620), (−11, 19), (82656, 23763564).
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(15)
(
x
6

)
= P2(y)

Transformation: u = 45x2 − 225x + 150
v = 8100y + 4050

Elliptic curve: E15 : u3 − 18900u + 15862500 = v2

Integer points on E15 : (u,±v) = Corresponding solutions: (x, y) =

(150, 4050) (0, 5;−1, 0)

(−120, 4050) (2, 3;−1, 0)

(−30, 4050) (1, 4;−1, 0)

(2400, 117450) (−5, 10;−15, 14)

(3120, 174150) (−5, 10;−22), (−6, 11; 21)

Table 6.

Other points on E15: (u,±v) = (870, 25650), (−264, 1566),

(1905, 83025), (249, 5157), (8250, 749250), (64, 3862), (366, 7614),

(330, 6750), (−255, 2025), (130, 3950), (159720, 63832050), (25, 3925),

(−174, 3726), (600, 14850), (1014, 32238), (21030, 3049650),

(158505, 63105075), (5470, 404450), (10914707400, 1140297432700050).

(16)
(
x
6

)
= P4(y)

Transformation: u = 45x2 − 225x + 150
v = 8100y2 + 24300y + 8100

Elliptic curve: E16 : u3 − 18900u + 65070000 = v2

Integer points on E16 : (u,±v) = Corresponding solutions: (x, y) =

(150, 8100) (0, 5;−3,−2,−1, 0)

(−120, 8100) (2, 3;−3,−2,−1, 0)

(−30, 8100) (1, 4;−3,−2,−1, 0)

Table 7.

Other points on E16: (u,±v) = (−291, 6777), (3570, 213300),

(7980, 712800), (32550, 5872500), (61, 8009).
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(17)
(
x
6

)
=

(
y
2

)

Transformation: u = 90x2 − 450x + 300
v = 16200y − 8100

Elliptic curve: E17 : u3 − 75600u + 61290000 = v2

Integer points on E17 : (u,±v) = Corresponding solutions: (x, y) =
(300, 8100) (0, 5; 0, 1)

(−240, 8100) (2, 3; 0, 1)
(−60,−8100) (1, 4; 0, 1)
(840,−24300) (−1, 6;−1, 2)
(2460, 121500) (−3, 8;−7, 8)

(4800,−332100) (−5, 10;−20, 21)
(11640, 1255500) (−9, 14;−77, 78)

Table 8.

Other points on E17: (u,±v) = (−456, 972), (80436,−22812516),

(516,−12636), (370585, 225596125), (1785,−74925), (8400, 769500),

(136, 7316), (−375, 6075), (84,−7452), (160, 7300).

(18)
(
x
6

)
=

(
y
4

)

Transformation: u = 30x2 − 150x + 100
v = 900y2 − 2700y + 900

Elliptic curve: E18 : u3 − 8400u + 650000 = v2

Integer points on E18 : (u,±v) = Corresponding solutions: (x, y) =
(100, 900) (0, 5; 0, 1, 2, 3)
(−80, 900) (2, 3; 0, 1, 2, 3)
(−20, 900) (1, 4; 0, 1, 2, 3)
(280, 4500) (−1, 6;−1, 4)

(1600, 63900) (−5, 10;−7, 10)

Table 9.

Other points on E18: (u,±v) = (80, 700), (6220, 490500), (−56, 972),

(145, 1575), (2780, 146500), (196, 2556), (1000, 31500), (56, 596),

(1220, 42500), (−116, 252), (25, 675), (316, 5436), (520, 11700), (20, 700),
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(1, 801), (−100, 700), (64, 612), (6580, 533700), (8081225, 22972898725),

(2261, 3415779), (75580, 20778300).

(19) S2(x) = P2(y)

Transformation: u = 12x + 6
v = 72y + 36

Elliptic curve: E19 : u3 − 36u + 1296 = v2

Integer points on E19 : (u,±v) = Corresponding solutions: (x, y) =

(54, 396) (4;−6, 5)

(−6, 36) (−1;−1, 0)

(150, 1836) (12;−26, 25)

(6, 36) (0;−1, 0)

(138, 1620) (11;−23, 22)

Table 10.

Other points on E19: (u,±v) = (−12, 0), (13, 55), (21, 99), (0, 36), (10, 44),

(36, 216), (−11, 19), (384, 7524), (1066, 34804), (82656, 23763564).

(20) S2(x) = P4(y)

Transformation:
u = 12x + 6
v = 72y2 + 216y + 72

Elliptic curve: E20 : u3 − 36u + 5184 = v2

Integer points on E20 : (u,±v) = Corresponding solutions: (x, y) =

(6, 72) (0;−3,−2,−1, 0)

(−6, 72) (−1;−3,−2,−1, 0)

Table 11.

Other points on E20: (u,±v) = (−18, 0), (21, 117), (144, 1728), (60, 468),

(0, 72), (34, 208), (570, 13608), (582, 14040).
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(21) S5(x) = P2(y)

Transformation: u = 6x2 + 6x− 1
v = 36y + 18

Elliptic curve: E21 : u3 − 3u + 322 = v2

Integer points on E21 : (u,±v) = Corresponding solutions: (x, y) =

(−1, 18) (−1, 0;−1, 0)

Table 12.

Other points on E21: (u,±v)=(17, 72), (2, 18), (9, 32), (−7, 0), (143, 1710).

(22) S5(x) = P4(y)

Transformation: u = 6x2 + 6x− 1
v = 36y2 + 108y + 36

Elliptic curve: E22: u3 − 3u + 1294 = v2

Integer points on E22: (u,±v) = Corresponding solutions: (x, y) =

(−1, 36) (−1, 0;−3,−2,−1, 0)

Table 13.

Other points on E22: (u,±v) = (2, 36), (47, 324), (−10, 18), (15, 68).

(23) S5(x) =
(
y
2

)

Transformation: u = 12x2 + 12x− 2
v = 72y − 36

Elliptic curve: E23: u3 − 12u + 1280 = v2

Integer points on E23: (u,±v) = Corresponding solutions: (x, y) =

(−2, 36) (−1, 0; 0, 1)

(22, 108) (−2, 1;−1, 2)

(862, 25308) (−9, 8;−351, 352)

(142, 1692) (−4, 3;−23, 24)

Table 14.

Other points on E23: (u,±v) = (61, 477), (4, 36), (−10, 20), (16, 72),

(−11, 9), (38, 236).
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3. Description of the algorithm

As an example, we illustrate the algorithm for finding the integer
solutions in case of equation (17) of Table 1, and follow the discussion and
terminology of [GPZ]. However, instead of the Theorem in [GPZ], which
contains some errors, we use the corrected version of it, given in [PZGH].

Let, as above,

E17 = {(u, v) ∈ Q2 | u3 − 75600u + 61290000 = v2} ∪ {O},

where O denotes the point at infinity. In the sequel, we determine some
parameters of E17 using SIMATH.

The modular invariant of E17 is

j =
j1
j2

=
−1404928

46899
,

and the height of E17 is

µ∞ = 5.97704241 . . . .

To use the algorithm of [GPZ], one has to know a basis as well as the
torsion group of E17. Using SIMATH, it turns out that the only torsion
point of E17 is O, and the rank of E17 is r = 2. At this point we have
to mention that to determine the rank of elliptic curves, SIMATH uses
an algorithm which depends upon the validity of the famous conjecture
of Birch and Swinnetorn–Dyer. However, using the program mwrank of
Cremona, one can calculate the rank of E17, as well as the ranks of the
other elliptic curves occuring in Tables 11 through 23, independently of any
conjecture. The ranks obtained by SIMATH and mwrank were identical in
every case. For the algorithm used by mwrank , we refer to [C].

Using SIMATH again, we obtain that a basis of the Mordell–Weil group
of E17 is {P1 = (300, 8100), P2 = (−240, 8100)} with

ĥ(P1) = 0.42722736 . . . , ĥ(P2) = 0.44856058 . . . ,

where ĥ( . ) is the Néron–Tate height. It is well known that ĥ( . ) is a positive
semidefinite quadratic form. For the smallest eigenvalue λ1 of ĥ( . ) we
obtain λ1 = 0.24519249 . . . .



Combinatorial diophantine equations 401

The real and complex periods of E17 are

ω1 = 1.33636708 . . .

and
ω2 = 0.66818354 · · ·+ i · 0.34901212 . . . ,

respectively. Put τ = ω2/ω1; thus

Im(τ) = 0.26116486 . . . .

Set c1 = max{(log(213/6/ω1))/λ1, 1}; we have c1 < 4.94254024 . Moreover,
with the notation h = log(11497758840000) we have

max
{

h,
3π

Im(τ)

}
≤ 36.09

and

max

{
ĥ(Pi), h,

3π|ui|2
ω2

1 Im(τ)

}
= h for i = 1, 2.

Let

V0 = exp(36.09)
and

Vi = eh = 11497758840000 for i = 1, 2.

We define

c2 := max
{

C

λ1
, 109

}(
h

2

)4 2∏

i=0

log Vi

with the constant C = 2.9 · 106(r+2) · 42(r+1)2 · (r + 2)2r2+13r+23.3
< 6.28 ·

1069. Substituting the values of the parameters into the above formula,
we obtain

c2 < 4.28 · 1079.

Let now P = n1P1 + n2P2 be an integer point on E17 with n1, n2 ∈ Z
and put N = max{|n1|, |n2|}. Using the above parameters, we have the
estimate

N ≤ 2r+3√c1c2

(
log

(
c2(r + 3)r+3

))(r+3)/2

(see [PZGH]). That is, we obtain the initial bound

N < 2.36 · 1047.
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Now we will use B. M. M. de Weger’s method (see [dW1]) to reduce
this bound. We will outline de Weger’s method in our special case only.

Consider the 3× 3 matrix



1 0 0
0 1 0

[C0u1] [C0u2] C0




where u1 and u2 are the elliptic logarithms of P1 and P2, respectively. C0

will be chosen a bit later. Using SIMATH again, we obtain

u1 = 0.24604231 . . . and u2 = 0.40147506 . . . .

Let b1, b2, b3 be the LLL-reduced basis of the lattice spanned by the
coloumns of the above matrix. We set

N ′ =
1

2
√

18
‖b1‖.

Now if N ′ ≥ N , then we have the new estimate

N ≤
√

1
λ1

log
2

7
6 C0

ω1N ′ .

We start with C0 = 10150, and we get N ′ ≥ 1.08 ·1048, whence N ≤ 30.98.
Now we repeat the whole process with C0 = 1010 to obtain N ′ ≥ 72.87 and
N ≤ 8.87. In the third iteration we set C0 = 108 which yields N ′ ≥ 38.47
and N ≤ 7.89. A fourth application of de Weger’s method yields the same
bound for N . We now only have to test the integrality of the points

n1P1 + n2P2 with |n1|, |n2| ≤ 7.

We have to check the pairs

(u, v) ∈ Z2 with log |u| ≤ µ∞ = 5.97704241 . . .

as well as the case u < 0 (cf. [GPZ]). After all, we obtain that the only
integral points on E17 are those given in Table 8. ¤
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