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Scarcity of finite polynomial orbits

By F. HALTER-KOCH (Graz) and W. NARKIEWICZ (Wroctaw)

To Professor Kdlmdn Gydry on his 60th birthday

Abstract. Let R be a finitely generated integral domain of zero characteristics.
If the index of the group of units of R in the group of units of the integral closure of R
is finite then R contains only finitely many inequivalent finite non-linear polynomial
orbits. This applies in particular to all integrally closed domains.

1. Let R be an integral domain and R* its group of units. For n > 1,
a finite sequence

(1) i‘:{l‘o,xl,...,l‘n}

of elements z; € R will be called a polynomial sequence (of length n) if
there exists some polynomial f € R[X] such that for i =0,1,2,...,n—1
one has

(2) f(@i) = zigr.

In this case we say that (1) is a sequence of the polynomial f. A
polynomial sequence (1) is called linear if it is a sequence of a linear
polynomial, otherwise it is called non-linear. It has been observed in
[HKN2] that a sequence (1) is a polynomial sequence if and only if the
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Lagrange interpolation polynomial (of degree at most n — 1) satisfying (2)
has its coefficients in R.

A polynomial sequence (1) is called a finite orbit if the elements
To,T1,...,Tn_1 are all distinct and z,, = x; holds for some i < n; if
moreover 7 = 0 then (1) is called a cycle. By definition every finite orbit
contains a unique cycle. A cycle of length 1 of a polynomial f is just a
fixpoint of f.

Observe that if (1) is a polynomial sequence or an orbit or a cycle,
a € R and € € R*, then the sequence

g={a+exg,a+ery,...,a+ex,}

is again a polynomial sequence, an orbit or a cycle, respectively. In such
case we shall call the sequences T and ¥ equivalent.

2. A cycle (1) is called normalized if n > 2, xg = 0 and 27 = 1. It
has been established in [HKN2] that if R is a finitely generated domain of
zero characteristic then there can be only finitely many normalized cycles
in R. The proof given there is essentially based on the existence of a
uniform bound, depending only on R and n, for the cardinality of the set
of non-trivial solutions of the unit equation

(3) ajuy + asus + -+ apur =0

(with arbitrary fixed non-zero ay, as, ..., a,,b € R) in such rings, a solution
being called non-trivial if none of subsums of the left hand-side vanishes.
In the case of finitely generated integral domains of zero characteristic this
is assured by results of K. GYORY, J. H. EVERTSE and H. P. SCHLICKEWEI
([EG], [S]) and if we assume that this condition is satisfied in a ring R of
positive characteristic then the argument given in [HKN2] works, provided
the characteristic is not equal to 2 or 3.

The purpose of this note is twofold. First we shall show that the
arguments given in [HKN2] can be modified so that they work for rings of
arbitrary characteristic, provided there is a uniform bound for the number
of solutions of (3) in R in the cases r = 2,3 and 5 (this is obviously satisfied
if R* is finite). Secondly we shall show that if R is a finitely generated
domain of zero characteristic and the index of the group of units of R in
the group of units of its integral closure is finite then there are only finitely
many inequivalent non-linear finite polynomial orbits in R.
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Theorem 1. Let R be an integral domain and assume that for every
non-zero b € R each of the equations

(4) SUl—f-bﬂL’Q:l
(5) b(l‘l —|—l‘2) +x3=1
(6) r1+xo a3 tastas=1

has only finitely many non-trivial solutions x; € R*. Then there are only
finitely many normalized cycles of a given length n in R.

We recall first certain simple properties of normalized cycles which will
be used in the sequel. For the proof of Lemma 1 (i)—(iv) see Lemma 12.8
and its corollaries in [N] and the assertion (v) is trivial (cf. [HKN2]).

Lemma 1. Let (1) be a normalized cycle in an integral domain R.
For any integer i put x; = x, if r is the smallest non-negative residue of i
modulo n.

(i) For all i we have x;y1 —x; € R*.

) If i|j then z; | z;.

(iii) If n does not divide r — s then (x, — xs)/x.—s € R*.
) If (k,n) =1 then ) € R*.

) If 7| n and r < n then

ZT2r I3r Tpn—r
<0, 1, , ey ,0

Ty Ty Ty

and

(O, p Tigor — 1 @143, — 1 . Tl4n—r — 170)
Li4r — 1

£L'1+7=—1’ $1+T—1 7'
are normalized cycles of length n/r in R.

Lemma 2 ([HKN2]). Let R be an integral domain in which the equa-
tion (5) has for b = 1 only finitely many non-trivial solutions in R*. If a
non-zero element a € R has at least two distinct representations as a sum
of two units, then the principal ideal aR lies in a finite set of principal
ideals of R.
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Lemma 3 ([HKN2]). Let R be an integral domain in which each equa-
tion (5) has only finitely many non-trivial solutions in R*. Then there are
only finitely many normalized cycles of length n > 3 in R in which one of
the elements s, 3, ..., x,_1 Is fixed.

Lemma 4 ([HKN2|). Let R be a domain in which each equation (4)
has only finitely many solutions in R*. For every non-zero principal ideal
aR of R there exists a finite set E C R with the following property: if (1)
is a normalized cycle of length n > 2 and xoR = aR then x5 € E.

3. Now we can prove the theorem. One argues by recurrence and
since the assertion is trivially true for n = 2 assume it to be true for all
integers smaller than n. If n is not twice an odd prime then one can simply
repeat the arguments from [HKN2] given there in cases (a) to (d), where
the characteristic of R is irrelevant.

So let (1) be a cycle of length n = 2p with prime p > 2 and assume
that the assertion holds for cycles of length p. Lemma 1 (i) shows that

a=xy—1,80=123 — T2,y =124 — T3

lie in R* and the inductional assumption and Lemma 1 (v) imply that the
ratio A = x4 /x5 lies in a fixed finite set. Observe now that \ is invertible.
Indeed if a is a solution of the congruence 4a = 2 mod 2p then by Lemma 1
(ii) we get x4 | 44 = T2 and o | 24.
We have to consider two cases. First assume that the element z3 is
invertible. Then
r3—a— =1

and if this equality is non-trivial then x3 lies in a fixed finite set and
it suffices to apply Lemma 3 to get the assertion. Otherwise one of the

summands must be equal to 1 and since x3 = 1 and o = —1 (which implies
x9 = 0) are both impossible, we must have x5 — x5 = § = —1 which leads
to

o = AN lzg 4+ )\_17 =ux3+ 1.

If these two representations of x5 as sums of two units are distinct then zo R
lies in a finite set by Lemma 2, thus x5 lies in a finite set by Lemma 4 and
the assertion follows by Lemma 3. Otherwise one has either A™'x3 = 3,
implying A = 1 and z2 = x4 which is not possible, or A~'z3 = 1, giving
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r3 = X and since A lies in a finite set it suffices to use Lemma 3. This
settles the case 3 € R*.

Now assume that z3 is not invertible. Then Lemma 1 (iv) implies
that n = 6 and x5 is invertible by Lemma 1 (iv). Lemma 1 (v) and the
inductional assumption show that the element p = (x5 — 1)/(x3 — 1) lies
in a fixed finite set and since

_ (@5 —1)/xs x4
(1‘3 —1)/33'2 I’Q’

Lemma 1 (ii),(iii) show that that u is invertible.
Since
r5 —ap—Pu=1

and x5 € R* by Lemma 1 (iv) our assumption on unit equations in R
implies that either x5 lies in a fixed finite set or x5 = 1 or —apu = 1 or
—pu = 1. In the first case we are done by Lemma 3. If ap = —1 then «
and xo lie in a finite set and again Lemma 3 is applicable. Since x5 = 1 is
impossible we have to deal with the remaining case

pp=-1, z5=oap
Now Lemma 1 (i) implies
d=x5 — T4 =25 — \xa € R,
and Lemma 1 (iii) yields (in view of A € R*)
e= (x5 —1)/xe = MNws —1)/24 € R*.
Thus we obtain three representations of x5 as sums of two units, namely
o =ANlzs— A 1o=¢las—el=1+4a.

If at least two of them are distinct then the assertion follows from
Lemmas 2, 4 and 3 as above. If A™!'25 = 1 then x5 lies in a finite set and
the assertion follows by Lemma 3. Hence it remains to consider the cases
ANlzs=a=—eland N las =a =¢"1us.

First case: A"'z5 = a = —e~!. Here we have also e 'z5 = 1 and thus
22 = ers = —\, hence z5 lies in a finite set and we are done by Lemma 3.
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Second case: A"'zs = o = € 'z5. Here we also have A716 = e = —1
and hence A = —§. Since x5 = au = —a = Aa we obtain A =y = —1 and
6 =1. Now x4 = Azog = —x9 # xo implies that the characteristic of R is

different from 2.
The obvious five-term unit equation

1= (1—z2)+ (w2 —x3) + (23 — 74) + (74 — 25) + 5
takes now the form
1=(—a)+(-1)+B+2a)+ (1) + (—a).

If it is non-trivial, then « lies in a finite set and so does x5, and the
assertion follows by Lemma 3. If it is trivial, then in view of char(R) # 2
we must have &« = —1 which leads to x5 = 0, contradiction. This completes
the proof of Theorem 1. O

4. An integral domain R is called a finite factorization domain, if
every non-zero element of R belongs to only finitely many principal ideals
of R. By [HK], Krull domains and orders in algebraic number fields are
examples of finite factorization domains. From Theorem 1 we derive the
following finiteness result for inequivalent non-linear cycles:

Theorem 2. Let R be a finite factorization domain satisfying the
assumptions of Theorem 1. Then there are only finitely many inequivalent
non-linear cycles of a given lengthn > 2 in R.

Note that the assumptions of Theorem 2 are satisfied by all finitely
generated integral domains of zero characteristic and in particular by all
rings of integers of algebraic number fields. Note also that the non-linearity
assumption is essential. Indeed, if R is the ring of integers of the n-th
cyclotomic field Q(¢,,) then every non-zero element of R lies in a cycle of
length n realized by the linear polynomial f(X) = (¢, X and therefore in
this case there are infinitely many inequivalent cycles of length n.

PROOF. It suffices to show that for every n > 2 there are only finitely
many cycles of the form

(7) (O,xl,fﬁg,...,l'n_l,()).
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Let (7) be a cycle of the polynomial f € R[X]|. We may assume that
f is the Lagrange interpolation polynomial corresponding to the data (2)
with x¢g = 0, and then we have

F(X) =au X"+ + Ao € RIX],
where 2 < M <n —1 and ap # 0. Since f(0) = z; it follows easily that
the polynomial

n—1
1 o
%m:;ﬂﬂm:1+§amFX

1 i—1

lies in R[X],

(0,1,$2,...,x”1,0)
I X1

is a cycle of g, and since M < n, g is uniquely determined by this cycle.
By Theorem 1 R contains only finitely many normalized cycles and thus
the coefficients of g lie in a finite set. In particular a M:z:{” ~! lies in a finite
set, say aijl\/I_l € {c1,...,¢cx} C R and in view of ap; # 0 and M > 2
we see that for some ¢ we have ¢; € x1 R for some 7 and therefore there are
only finitely many possibilities for the principal ideal z1 R. The polynomial
g together with x; uniquely determines f and thus the cycle (7). If we
replace 1 by x1€ for some e € R* then instead of (7) we get the equivalent

cycle (0,€xq,...,€ex,—1,0). This proves the theorem. O

The preceding theorem does not cover linear cycles. They are de-
scribed by the following statement which can be easily directly verified:

Theorem 3. Let R be an arbitrary integral domain and let f(X) =
AX 4+ B € R[X], A#0.

(i) If A is a primitive root of unity of order n > 1 and A — 1 does not
divide B then every element of R lies in a cycle of f having length n. If
A—1| B then xy = B/(1 — A) is a fixpoint and every element x # xq lies
in a cycle of length n.

(ii) If A= 1 and B # 0 and R has positive characteristic p then every
element of R lies in a cycle of f having length p. If R has zero characteristic
then f does not have any cycles in R.

(iii) If A is not a root of unity and 1—A | B then the element B/(1—A)

is a fixpoint of f. If 1 — A does not divide B then f does not have any
cycles in R.
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Corollary. Let R be any infinite integral domain and n > 2. If R
contains a root of unity of order n or if n is the characteristic of R, then R
contains infinitely many inequivalent linear cycles of length n. In all other
cases R contains only finitely many inequivalent linear cycles of length n.

5. Now we shall consider finite polynomial orbits which contain a
cycle of length exceeding 2 and prove the following result:

Theorem 4. Assume that R is a finite factorization domain satisfying
the following condition:
For any fixed non-zero a,b,c € R the equation

axr +by=c

has at most finitely many solutions x,y € R*.

(i) Let (xg,x1,x2) be a polynomial sequence in R where xg # x1 and
xog # 2. Then there are only finitely many y € R such that (y, xo, 1, T2)
is also a polynomial sequence.

(ii) Let T be a cycle of length n > 3 in R. Then there are only finitely
many finite orbits of a given length k > n in R which contain the cycle T.

PrOOF. (i) Let y € R be such that (y,zo,z1,22) is a polynomial
sequence of some polynomial f € R[X]. Then

zo —x1 = f(y) — f(zo) € (y — @0) R,

zo —x2 = f(y) — f(z1) € (y —21)R.
Since R is a finite factorization domain, there are only finitely many
possibilities for the principal ideals (y — 2¢)R and (y — x1)R. Hence we

obtain
y_.TiZAZ‘Gi (/L:Oal)?

where €y,e1 € R* and Ag, A1 belong to a finite set of non-zero elements
of R. By assumption, the equation

Apeg — A€ = 21 —

has only finitely many solutions €y, €1 € R*, and the assertion follows.

(ii) By induction on k, using (i). O
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Observe that in Theorem 4 the assumption n > 3 is necessary. In
fact, if n = 1 then a counterexample is given already in R = Z where the
cycle (0,0) of length 1 is for any k > 1 contained in orbits (k,0,0} of the
polynomial fi(X) = X (X — k) and all these orbits are inequivalent. In
case n = 2 let R be an integral domain such that R* is infinite. Then the
cycle (0,1,0) is for any e € R* \ {£1} contained in the orbit (¢,0,1,0) of
the polynomial f.(X) = e (X —€)(X — 1) € R[X] and again all these
orbits are inequivalent.

Theorem 5. Let R be a finitely generated domain of zero character-
istic, denote by R its integral closure and suppose that the unit index
[EX : RX] is finite. Then there are only finitely many inequivalent finite
non-linear orbits in R.

PRrROOF. By Theorem 7 of [HK] R is a finite factorization domain and
by [EF], [S] all assumptions concerning unit equations in Theorems 1, 2
are satisfied.

Note that a nonlinear cycle has length n > 3. Indeed, the cycle (zg, o)
of length 1 is realized by f(X) = X and the cycle (xg,x1,x0) of length 2
is a cycle of f(X) = —X + x9 + x1, hence they are linear. By Theorem 4
every non-linear cycle is contained in only finitely many finite orbits of a
given length. However it has been proved in [NP] that the lengths of finite
orbits in R is bounded by a constant depending only on R. Hence there
are only finitely many finite orbits containing a given non-linear cycle. By
Theorem 2 there are only finitely many inequivalent non-linear cycles of
a given length, and by [HKN1] the length of a cycle in R is bounded by
a constant depending only on R. This shows that there are only finitely
many inequivalent non-linear finite orbits in R at all. U

Corollary. Suppose that R is either an order in an algebraic number
field or a finitely generated and integrally closed domain of zero charac-
teristic. Then there are only finitely many inequivalent finite non-linear
orbits in R.
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