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Scarcity of finite polynomial orbits

By F. HALTER-KOCH (Graz) and W. NARKIEWICZ (WrocÃlaw)

To Professor Kálmán Győry on his 60th birthday

Abstract. Let R be a finitely generated integral domain of zero characteristics.
If the index of the group of units of R in the group of units of the integral closure of R
is finite then R contains only finitely many inequivalent finite non-linear polynomial
orbits. This applies in particular to all integrally closed domains.

1. Let R be an integral domain and R× its group of units. For n ≥ 1,
a finite sequence

(1) x̄ = {x0, x1, . . . , xn}

of elements xi ∈ R will be called a polynomial sequence (of length n) if
there exists some polynomial f ∈ R[X] such that for i = 0, 1, 2, . . . , n− 1
one has

(2) f(xi) = xi+1.

In this case we say that (1) is a sequence of the polynomial f . A
polynomial sequence (1) is called linear if it is a sequence of a linear
polynomial, otherwise it is called non-linear . It has been observed in
[HKN2] that a sequence (1) is a polynomial sequence if and only if the
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Lagrange interpolation polynomial (of degree at most n− 1) satisfying (2)
has its coefficients in R.

A polynomial sequence (1) is called a finite orbit if the elements
x0, x1, . . . , xn−1 are all distinct and xn = xi holds for some i < n; if
moreover i = 0 then (1) is called a cycle. By definition every finite orbit
contains a unique cycle. A cycle of length 1 of a polynomial f is just a
fixpoint of f .

Observe that if (1) is a polynomial sequence or an orbit or a cycle,
a ∈ R and ε ∈ R×, then the sequence

ȳ = {a + εx0, a + εx1, . . . , a + εxn}

is again a polynomial sequence, an orbit or a cycle, respectively. In such
case we shall call the sequences x̄ and ȳ equivalent .

2. A cycle (1) is called normalized if n ≥ 2, x0 = 0 and x1 = 1. It
has been established in [HKN2] that if R is a finitely generated domain of
zero characteristic then there can be only finitely many normalized cycles
in R. The proof given there is essentially based on the existence of a
uniform bound, depending only on R and n, for the cardinality of the set
of non-trivial solutions of the unit equation

(3) a1u1 + a2u2 + · · ·+ arur = b

(with arbitrary fixed non-zero a1, a2, . . . , ar, b ∈ R) in such rings, a solution
being called non-trivial if none of subsums of the left hand-side vanishes.
In the case of finitely generated integral domains of zero characteristic this
is assured by results of K. Győry, J. H. Evertse and H. P. Schlickewei

([EG], [S]) and if we assume that this condition is satisfied in a ring R of
positive characteristic then the argument given in [HKN2] works, provided
the characteristic is not equal to 2 or 3.

The purpose of this note is twofold. First we shall show that the
arguments given in [HKN2] can be modified so that they work for rings of
arbitrary characteristic, provided there is a uniform bound for the number
of solutions of (3) in R in the cases r = 2, 3 and 5 (this is obviously satisfied
if R× is finite). Secondly we shall show that if R is a finitely generated
domain of zero characteristic and the index of the group of units of R in
the group of units of its integral closure is finite then there are only finitely
many inequivalent non-linear finite polynomial orbits in R.
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Theorem 1. Let R be an integral domain and assume that for every

non-zero b ∈ R each of the equations

x1 + bx2 = 1(4)

b(x1 + x2) + x3 = 1(5)

x1 + x2 + x3 + x4 + x5 = 1(6)

has only finitely many non-trivial solutions xi ∈ R×. Then there are only

finitely many normalized cycles of a given length n in R.

We recall first certain simple properties of normalized cycles which will
be used in the sequel. For the proof of Lemma 1 (i)–(iv) see Lemma 12.8
and its corollaries in [N] and the assertion (v) is trivial (cf. [HKN2]).

Lemma 1. Let (1) be a normalized cycle in an integral domain R.

For any integer i put xi = xr if r is the smallest non-negative residue of i

modulo n.

(i) For all i we have xi+1 − xi ∈ R×.

(ii) If i | j then xi | xj .

(iii) If n does not divide r − s then (xr − xs)/xr−s ∈ R×.

(iv) If (k, n) = 1 then xk ∈ R×.

(v) If r | n and r < n then

(
0, 1,

x2r

xr
,
x3r

xr
, . . . ,

xn−r

xr
, 0

)

and (
0, 1,

x1+2r − 1
x1+r − 1

,
x1+3r − 1
x1+r − 1

, . . . ,
x1+n−r − 1
x1+r − 1

, 0
)

are normalized cycles of length n/r in R.

Lemma 2 ([HKN2]). Let R be an integral domain in which the equa-

tion (5) has for b = 1 only finitely many non-trivial solutions in R×. If a

non-zero element a ∈ R has at least two distinct representations as a sum

of two units, then the principal ideal aR lies in a finite set of principal

ideals of R.
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Lemma 3 ([HKN2]). Let R be an integral domain in which each equa-

tion (5) has only finitely many non-trivial solutions in R×. Then there are

only finitely many normalized cycles of length n ≥ 3 in R in which one of

the elements x2, x3, . . . , xn−1 is fixed.

Lemma 4 ([HKN2]). Let R be a domain in which each equation (4)
has only finitely many solutions in R×. For every non-zero principal ideal

aR of R there exists a finite set E ⊂ R with the following property: if (1)
is a normalized cycle of length n ≥ 2 and x2R = aR then x2 ∈ E.

3. Now we can prove the theorem. One argues by recurrence and
since the assertion is trivially true for n = 2 assume it to be true for all
integers smaller than n. If n is not twice an odd prime then one can simply
repeat the arguments from [HKN2] given there in cases (a) to (d), where
the characteristic of R is irrelevant.

So let (1) be a cycle of length n = 2p with prime p > 2 and assume
that the assertion holds for cycles of length p. Lemma 1 (i) shows that

α = x2 − 1, β = x3 − x2, γ = x4 − x3

lie in R× and the inductional assumption and Lemma 1 (v) imply that the
ratio λ = x4/x2 lies in a fixed finite set. Observe now that λ is invertible.
Indeed if a is a solution of the congruence 4a ≡ 2 mod 2p then by Lemma 1
(ii) we get x4 | x4a = x2 and x2 | x4.

We have to consider two cases. First assume that the element x3 is
invertible. Then

x3 − α− β = 1

and if this equality is non-trivial then x3 lies in a fixed finite set and
it suffices to apply Lemma 3 to get the assertion. Otherwise one of the
summands must be equal to 1 and since x3 = 1 and α = −1 (which implies
x2 = 0) are both impossible, we must have x3 − x2 = β = −1 which leads
to

x2 = λ−1x3 + λ−1γ = x3 + 1.

If these two representations of x2 as sums of two units are distinct then x2R

lies in a finite set by Lemma 2, thus x2 lies in a finite set by Lemma 4 and
the assertion follows by Lemma 3. Otherwise one has either λ−1x3 = x3,
implying λ = 1 and x2 = x4 which is not possible, or λ−1x3 = 1, giving
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x3 = λ and since λ lies in a finite set it suffices to use Lemma 3. This
settles the case x3 ∈ R×.

Now assume that x3 is not invertible. Then Lemma 1 (iv) implies
that n = 6 and x5 is invertible by Lemma 1 (iv). Lemma 1 (v) and the
inductional assumption show that the element µ = (x5 − 1)/(x3 − 1) lies
in a fixed finite set and since

µ =
(x5 − 1)/x4

(x3 − 1)/x2
· x4

x2
,

Lemma 1 (ii),(iii) show that that µ is invertible.
Since

x5 − αµ− βµ = 1

and x5 ∈ R× by Lemma 1 (iv) our assumption on unit equations in R

implies that either x5 lies in a fixed finite set or x5 = 1 or −αµ = 1 or
−βµ = 1. In the first case we are done by Lemma 3. If αµ = −1 then α

and x2 lie in a finite set and again Lemma 3 is applicable. Since x5 = 1 is
impossible we have to deal with the remaining case

βµ = −1, x5 = αµ.

Now Lemma 1 (i) implies

δ = x5 − x4 = x5 − λx2 ∈ R×,

and Lemma 1 (iii) yields (in view of λ ∈ R×)

ε = (x5 − 1)/x2 = λ(x5 − 1)/x4 ∈ R×.

Thus we obtain three representations of x2 as sums of two units, namely

x2 = λ−1x5 − λ−1δ = ε−1x5 − ε−1 = 1 + α.

If at least two of them are distinct then the assertion follows from
Lemmas 2, 4 and 3 as above. If λ−1x5 = 1 then x5 lies in a finite set and
the assertion follows by Lemma 3. Hence it remains to consider the cases
λ−1x5 = α = −ε−1 and λ−1x5 = α = ε−1x5.

First case: λ−1x5 = α = −ε−1. Here we have also ε−1x5 = 1 and thus
x2

5 = εx5 = −λ, hence x5 lies in a finite set and we are done by Lemma 3.
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Second case: λ−1x5 = α = ε−1x5. Here we also have λ−1δ = ε = −1
and hence λ = −δ. Since x5 = αµ = −α = λα we obtain λ = µ = −1 and
β = 1. Now x4 = λx2 = −x2 6= x2 implies that the characteristic of R is
different from 2.

The obvious five-term unit equation

1 = (1− x2) + (x2 − x3) + (x3 − x4) + (x4 − x5) + x5

takes now the form

1 = (−α) + (−1) + (3 + 2α) + (−1) + (−α).

If it is non-trivial, then α lies in a finite set and so does x2, and the
assertion follows by Lemma 3. If it is trivial, then in view of char(R) 6= 2
we must have α = −1 which leads to x2 = 0, contradiction. This completes
the proof of Theorem 1. ¤

4. An integral domain R is called a finite factorization domain, if
every non-zero element of R belongs to only finitely many principal ideals
of R. By [HK], Krull domains and orders in algebraic number fields are
examples of finite factorization domains. From Theorem 1 we derive the
following finiteness result for inequivalent non-linear cycles:

Theorem 2. Let R be a finite factorization domain satisfying the

assumptions of Theorem 1. Then there are only finitely many inequivalent

non-linear cycles of a given length n ≥ 2 in R.

Note that the assumptions of Theorem 2 are satisfied by all finitely
generated integral domains of zero characteristic and in particular by all
rings of integers of algebraic number fields. Note also that the non-linearity
assumption is essential. Indeed, if R is the ring of integers of the n-th
cyclotomic field Q(ζn) then every non-zero element of R lies in a cycle of
length n realized by the linear polynomial f(X) = ζnX and therefore in
this case there are infinitely many inequivalent cycles of length n.

Proof. It suffices to show that for every n ≥ 2 there are only finitely
many cycles of the form

(7) (0, x1, x2, . . . , xn−1, 0).
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Let (7) be a cycle of the polynomial f ∈ R[X]. We may assume that
f is the Lagrange interpolation polynomial corresponding to the data (2)
with x0 = 0, and then we have

f(X) = aMXM + · · ·+ A0 ∈ R[X],

where 2 ≤ M ≤ n− 1 and aM 6= 0. Since f(0) = x1 it follows easily that
the polynomial

g(X) =
1
x1

f(x1X) = 1 +
n−1∑

i=1

aix
i−1
1 Xi

lies in R[X], (
0, 1,

x2

x1
, . . . ,

xn−1

x1
, 0

)

is a cycle of g, and since M < n, g is uniquely determined by this cycle.
By Theorem 1 R contains only finitely many normalized cycles and thus
the coefficients of g lie in a finite set. In particular aMxM−1

1 lies in a finite
set, say aMxM−1

1 ∈ {c1, . . . , ck} ⊂ R and in view of aM 6= 0 and M ≥ 2
we see that for some i we have ci ∈ x1R for some i and therefore there are
only finitely many possibilities for the principal ideal x1R. The polynomial
g together with x1 uniquely determines f and thus the cycle (7). If we
replace x1 by x1ε for some ε ∈ R× then instead of (7) we get the equivalent
cycle (0, εx1, . . . , εxn−1, 0). This proves the theorem. ¤

The preceding theorem does not cover linear cycles. They are de-
scribed by the following statement which can be easily directly verified:

Theorem 3. Let R be an arbitrary integral domain and let f(X) =
AX + B ∈ R[X], A 6= 0.

(i) If A is a primitive root of unity of order n > 1 and A− 1 does not
divide B then every element of R lies in a cycle of f having length n. If
A− 1 | B then x0 = B/(1−A) is a fixpoint and every element x 6= x0 lies
in a cycle of length n.

(ii) If A = 1 and B 6= 0 and R has positive characteristic p then every
element of R lies in a cycle of f having length p. If R has zero characteristic
then f does not have any cycles in R.

(iii) If A is not a root of unity and 1−A | B then the element B/(1−A)
is a fixpoint of f . If 1 − A does not divide B then f does not have any
cycles in R.
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Corollary. Let R be any infinite integral domain and n ≥ 2. If R

contains a root of unity of order n or if n is the characteristic of R, then R

contains infinitely many inequivalent linear cycles of length n. In all other

cases R contains only finitely many inequivalent linear cycles of length n.

5. Now we shall consider finite polynomial orbits which contain a
cycle of length exceeding 2 and prove the following result:

Theorem 4. Assume that R is a finite factorization domain satisfying

the following condition:

For any fixed non-zero a, b, c ∈ R the equation

ax + by = c

has at most finitely many solutions x, y ∈ R×.

(i) Let (x0, x1, x2) be a polynomial sequence in R where x0 6= x1 and

x0 6= x2. Then there are only finitely many y ∈ R such that (y, x0, x1, x2)
is also a polynomial sequence.

(ii) Let x be a cycle of length n ≥ 3 in R. Then there are only finitely

many finite orbits of a given length k ≥ n in R which contain the cycle x.

Proof. (i) Let y ∈ R be such that (y, x0, x1, x2) is a polynomial
sequence of some polynomial f ∈ R[X]. Then

x0 − x1 = f(y)− f(x0) ∈ (y − x0)R,

x0 − x2 = f(y)− f(x1) ∈ (y − x1)R.

Since R is a finite factorization domain, there are only finitely many
possibilities for the principal ideals (y − x0)R and (y − x1)R. Hence we
obtain

y − xi = Aiεi (i = 0, 1),

where ε0, ε1 ∈ R× and A0, A1 belong to a finite set of non-zero elements
of R. By assumption, the equation

A0ε0 −A1ε1 = x1 − x0

has only finitely many solutions ε0, ε1 ∈ R×, and the assertion follows.

(ii) By induction on k, using (i). ¤



Scarcity of finite polynomial orbits 413

Observe that in Theorem 4 the assumption n ≥ 3 is necessary. In
fact, if n = 1 then a counterexample is given already in R = Z where the
cycle (0, 0) of length 1 is for any k ≥ 1 contained in orbits (k, 0, 0} of the
polynomial fk(X) = X(X − k) and all these orbits are inequivalent. In
case n = 2 let R be an integral domain such that R× is infinite. Then the
cycle (0, 1, 0) is for any ε ∈ R× \ {±1} contained in the orbit (ε, 0, 1, 0) of
the polynomial fε(X) = ε−1(X − ε)(X − 1) ∈ R[X] and again all these
orbits are inequivalent.

Theorem 5. Let R be a finitely generated domain of zero character-

istic, denote by R its integral closure and suppose that the unit index[
R
×

: R×
]

is finite. Then there are only finitely many inequivalent finite

non-linear orbits in R.

Proof. By Theorem 7 of [HK] R is a finite factorization domain and
by [EF], [S] all assumptions concerning unit equations in Theorems 1, 2
are satisfied.

Note that a nonlinear cycle has length n ≥ 3. Indeed, the cycle (x0, x0)
of length 1 is realized by f(X) = X and the cycle (x0, x1, x0) of length 2
is a cycle of f(X) = −X + x0 + x1, hence they are linear. By Theorem 4
every non-linear cycle is contained in only finitely many finite orbits of a
given length. However it has been proved in [NP] that the lengths of finite
orbits in R is bounded by a constant depending only on R. Hence there
are only finitely many finite orbits containing a given non-linear cycle. By
Theorem 2 there are only finitely many inequivalent non-linear cycles of
a given length, and by [HKN1] the length of a cycle in R is bounded by
a constant depending only on R. This shows that there are only finitely
many inequivalent non-linear finite orbits in R at all. ¤

Corollary. Suppose that R is either an order in an algebraic number

field or a finitely generated and integrally closed domain of zero charac-

teristic. Then there are only finitely many inequivalent finite non-linear

orbits in R.
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