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Dynamical connections and
higher-order Lagrangian systems

By D. OPRIS and F.C. KLEPP∗ (Timişoara)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Abstract. We show that if ξ is a (2r)-order differential equation (semispray)
on the (2r − 1)-jet bundle J 2r−1Q whose paths are solutions of the non-autonomous
Lagrange equations, then there is a connection Γ on J 2r−1Q whose paths are also
solutions of the same equations. Moreover, Γ is a connection whose associated semispray
is precisely ξ. This is an extension to higher-order Lagrangian dynamics of a previous
result given by M. de Leon and P. Rodrigues [3].

1. Preliminaries

Throughout the text we shall keep in mind the results, definitions and
notations previously introduced in [1], [2]. All structures and functions are
assumed to be smooth. Let M be an m-dimensional manifold, called con-
figuration manifold and Γ an (r + 1)-order differential equation field on
M . We recall here that Γ generates on T rM two projectors: A : T (T rM)
→ Hor (T rM) and B : T (T rM) → Ver (T rM) such that T (T rM) =
Hor (T rM)⊕Ver(T rM) [1]. If ξ̄ is an arbitrary semispray, i.e. an (r + 1)-
order differential equation field, then ξ = A(ξ̄) is a semispray on T rM
which does not depend on the choice of ξ̄. We call ξ the associated semis-
pray of Γ. In the non-autonomous situation the relation between connec-
tions and semisprays becomes much more simple, as we will show below.

Let π : Q → X be a fibered manifold. In the following we assume
that X is a connected real 1-dimensional manifold (i.e. X = R or X = S1)
and Q is a real (n+1)-dimensional manifold. The r-order jet-prolongation
is denoted by πr : J rQ → X. We denote by V Q the vertical bundle
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of Q, i.e. the vector subbundle of TQ defined as V Q = Ker(π′) and by
V 0J rQ the vertical bundle of J rQ, defined as V 0J rQ = Ker(πr

0
′), where

πr
0 : J rQ → Q is the canonical projection.

Let πr+1
r : J r+1Q → J rQ be the canonical projection, and ηr :

V J rQ → J rQ, the usual projection of the vertical bundle of J rQ. Then
there exists T : J r+1Q → V J rQ satisfying ηr · π = πr+1

r [1]. We use the
map T to construct a differential operator dT , which maps each function
on J rQ to a function on J r+1Q, and is called the partial time derivative.
It follows that dT is represented in coordinates (t, qi

(k)), 1 ≤ i ≤ n, 0 ≤
k ≤ r + 1 by the operator:

dT =
r∑

h=0

qi
(h+1)

∂

∂qi
(h)

.

The operator dT is a derivation in the sense that

dT (f1 · f2) = (dT f1)(πr+1∗
r f2) + (πr+1∗

r f1)dT f2; f1, f2 ∈ F(J rQ).

The extended operator, which we also denote dT , bears the same relation to
the operator on functions as a Lie derivative operator does to the action
of a vector field on functions. Thus so far as its action on 1-forms is
concerned (and this will be sufficient for our purposes), dT satisfies the
following rules:
1) for any 1-form α on J rQ, dT α is an 1-form on J r+1Q
2) dT · d = d · dT

3) for any function f on J rQ,

dT (fα) = (dT f)(πr+1∗
r α) + (πr+1∗

r f)dT (α).

In particular, the coordinate 1-forms satisfy:

dT (dqi
(k)) = dqi

(k+1); 0 ≤ k ≤ r.

We shall now define the lifts of a function f in Q to J rQ. For k =
0, 1, . . . , r we define the k + 1 lift fk+1 of a function f to J rQ, by fk+1 =
d(fk), k = 0, 1, . . . , r where f0 = f is a function on Q.

Let ξ ∈ V Q0 be a vector field. The vector field ξv ∈ V0J rQ given by

ξv(fr) = πr∗
r−1ξ(fr−1)

for any f ∈ F(Q), is called the vertical lift of ξ.
Using the vertical lift and the map T : J rQ → V J r−1Q we construct

a canonical vector field on J rQ as follows: C = T v.
The coordinate representation of C is:

C =
r−1∑

h=0

(h + 1)qi
(h+1)

∂

∂qi
(h+1)
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where the vector field C is a generalization of the Liouville field or the
dilation field on TQ.

We may also use the vertical lift construction to define an (1,1)-type
tensor field S on J rQ, given by

S(ξ) =
[(

πr
r−1

)′
ξ
]v

, ∀ξ ∈ V J rQ.

The coordinate representation of S is

S =
r−1∑

h=0

(h + 1)
∂

∂qi
(h+1)

⊗ dqi
(h).

Therefore we transport the geometric structures defined on V J rQ to J rQ.
We may define a new tensor field S̃ of (1,1)-type V J rQ, by

S̃ = S − C ⊗ dt.

We define the adjoint S̃∗ of S̃, as the endomorphism of the exterior algebra
Λ(J rQ) of J rQ, locally given by

S̃∗(dt) = 0, S̃∗(dqi
(0)) = 0, S̃∗(dqi

(h)) = hθi
(h−1); h = 1, 2, . . . , r

where
θi
(h) = dqi

(h) − qi
(h+1)dt; h = 0, 1, . . . , (r − 1).

A vector field ξ on J rQ is a semispray iff Sξ = C and S̃ξ = 0.

Remark 1. It is not hard to see that a vector field ξ on J rQ is a
semispray iff θi

(h)(ξ) = 0; h = 0, 1, . . . , (r − 1); dt(ξ) = 1.
In such a case ξ is locally given by

(1.1) ξ =
∂

∂t
+

r−1∑

h=0

qi
(h+1)

∂

∂qi
(h)

+ ξi ∂

∂qi
(r)

.

Let now c be a global section of the affine bundle J r+1Q → J rQ.
One may construct a semispray ξc, given by

(1.2) ξc = C∗ ◦ dT .

Let c(t, qi
(h)) = (t, qi

(h), c
i); 0 ≤ h ≤ r be the local representation of c

in a natural fibred chart. The semispray ξc is given by

(1.3) ξc =
∂

∂t
+

r−1∑

h=0

qi
(h+1)

∂

∂qi
(h)

+ ci ∂

∂qi
(r)

.

It follows then:
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Proposition 1.1. Let c be a section of the affine bundle J r+1Q →
J rQ and ξc the spray given by (1.3), then we have:

Sξc = C; S̃ξc = 0; S̃ ◦ Lξc
S̃ = −S̃ ◦ C̃

(Lξc
S̃ − rI)(Lξc

S̃ + C̃) = 0.

Here Lξc
is the Lie derivative.

2. Semisprays and dynamical connections

The tensor fields S and S̃ on J rQ permit us to give a characterization
of a kind of connections for the fibration πr

0 : J rQ → Q.

Definition 2.1. By a dynamical connection on J rQ we mean a tensor
field Γ of (1,1)-type on J rQ satisfying

(2.1) SΓ = S̃Γ = S̃; ΓS̃ = −S̃; ΓS = −S.

By a straightforward computation we deduce from (2.1) that the local
expression of Γ are:

(2.2)





Γ
(

∂

∂t

)
= −

r−1∑

h=0

qi
(h+1)

∂

∂qi
(h)

+ Γi
(r)

∂

∂qi
(r)

Γ

(
∂

∂qi
(m)

)
=

∂

∂qi
(m)

+ Γj(m)
i(r)

∂

∂qi
(r)

0 ≤ m ≤ (r − 1)

Γ

(
∂

∂qi
(r)

)
= − ∂

∂qi
(r)

.

The functions Γi
(r) = Γi

(r)(t, q
i
(h)); Γj(m)

i(r) = Γj(m)
i(r) (t, qi

(h)) will be called the
components of the connection Γ. From (2.2) we easily deduce that

Γ3 − Γ = 0 and rank(Γ) = (r + 1)n.

This type of polynomial structure is called f(3,−1)-structure in the liter-
ature [4]. Now, we can associate to Γ two canonical operators ` and m
given by: ` = Γ2; m = −Γ2 + I.
Then we have:

(2.3) `2 = `; m2 = m; `m = m` = 0; ` + m = I
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where ` and m are complementary projectors. From (2.3) we deduce that
` and m are locally given by:
(2.4)

`

(
∂

∂t

)
= −

r−1∑

h=0

qi
(h+1)

∂

∂qi
(h)

−
(

Γi
(h) +

r−1∑

h=0

qi
(h+1)Γ

j(h)
i(r)

)
∂

∂qj
(r)

`

(
∂

∂qi
(k)

)
=

∂

∂qi
(k)

; m

(
∂

∂qi
(k)

)
=

∂

∂qi
(k)

; k = 0, 1, . . . , r

m

(
∂

∂t

)
=

∂

∂t
+

r−1∑

h=0

qi
(h+1)

∂

∂qi
(h)

+

(
Γj

(r) +
r−1∑

h=0

qi
(h+1)Γ

j(h)
i(r)

)
∂

∂qj
(r)

.

If we put L = Im`, M = Imm, then we have that L and M are
complementary distributions on J rQ, that is

T (J rQ) = M⊕L.

From (2.4) we deduce that L is (r + 1)n-dimensional and is locally

spanned by

{
∂

∂qi
(k)

}
, k = 0, 1, . . . , r; M is one-dimensional, and globally

spanned by the vector field ξ = m
(

∂
∂t

)
. Taking into account the local

expression of ξ we deduce that ξ is a semispray which will be called the
canonical semispray associated to the dynamical connection Γ. Further-
more, we have Γ2` = ` and Γm = 0. Thus Γ acts on L as an almost
product structure and trivially on M. Since M = Ker Γ, Γ is said to
be an f(3,−1)-structure on J rQ of rank (r + 1)n and with parallelizable
kernel. Moreover Γ/L has the eigenvalues +1 and −1. From (2.2) the
eigenspaces corresponding to the eigenvalue +1 are the vertical subspaces
V 0

z , z ∈ J rQ. Thus V is a distribution given by z → V 0
z . The eigenspace

at z ∈ J rQ corresponding to the eigenvalue +1 will be denoted by Hz and
called the strong-horizontal subspace at z. We have a canonical decompo-
sition

Tz(J rQ) = Mz ⊕Hz ⊕ V 0
z

and obviously
T (J rQ) = M⊕H ⊕ V 0

where H is the distribution z → Hz.
Let us put H ′

z = Mz⊕Hz; H ′
z will be called the weak horizontal subspace

at z. Then we have the following decompositions:

Tz(J rQ) = H ′
z ⊕ V 0

z , z ∈ J rQ

and

(2.5) T (J rQ) = H ′ ⊕ V 0
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where H ′ : z → H ′
z is the corresponding distribution.

We notice that L, M, H and H ′ may be considered as vector bundles
over J rQ; the bundles H and H ′ will be called strong and weak-horizontal
bundles, respectively.

A vector field X on J rQ which belongs to H (resp. H ′) will be called
a strong (resp. weak) horizontal vector field. From (2.5) we have that the
projection πr

r−1 : J rQ → J r−1Q induces an isomorphism

πr
0∗ : H ′

z → Tπr
r−1(z)(Q), z ∈ J rQ.

Then, if X is a vector field on J r−1Q, there exists an unique vec-
tor field XH′

on J rQ which is weak-horizontal and projects to X. The
projection of XH′

to H will be denoted by XH .
From (2.2), by a straightforward computation we obtain

(2.6)





(
∂

∂t

)H′

=
∂

∂t
+

(
Γj

(r) +
1
2

r−1∑

h=0

qi
(h+1)Γ

j(h)
i(r)

)
∂

∂qj
(r)

(
∂

∂qi
(k)

)H′

=
∂

∂qi
(k)

+
1
2
Γj(k)

i(r)

∂

∂qj
(r)

k = 0, 1, . . . , (r − 1).

Then, if we put H
(k)
i =

(
∂

∂qi
(k)

)H′

and V
(r)
i =

∂

∂qi
(r)

, one deduces that
{

ξ,H
(k)
i , V

(r)
i

}
is a local basis of vector fields on J rQ. In fact M = 〈ξ〉,

H = 〈H(k)
i 〉, V = 〈V (r)

i 〉 and
{

ξ, H
(k)
i , V

(r)
i

}
is called an adapted basis of

the f(3,−1)-structure Γ. In terms of
{

ξ, H
(k)
i , V

(r)
i

}
(2.6) becomes

(
∂

∂t

)H′

= ξ −
r−1∑

k=0

qi
(k+1)H

(k)
i ;

(
∂

∂qi
(k)

)H′

= H
(k)
i ;

k = 0, 1, . . . , (r − 1).

Therefore, we obtain

(
∂

∂t

)H

= −
r−1∑

k=0

qi
(k+1)H

(k)
i ;

(
∂

∂qi
(k)

)H

= H
(k)
i ;

k = 0, 1, . . . , (r − 1).
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If X = η
∂

∂t
+

r−1∑
h=0

Xi
(h)

∂

∂qi
(h)

is a vector field on J r−1Q we have

XH =
r−1∑

h=0

(Xi
(h) − ηqi

()H
(h)
i .

Finally, we notice that the dual local basis of 1-forms of the adapted basis
is given by (dt, θi

(h), ψ
i), where

θi
(h) = dqi

(h) − qi
(h+1)dt; h = 0, 1, . . . , (r − 1) and

ψi = −
(

Γi
(r) +

1
2

r−1∑

h=0

qi
(h+1)Γ

j(h)
i(r)

)
dt− 1

2

r−1∑

h=0

Γi(h)
j(r)dqj

(h) + dqi
(r).

Let ξ be a semispray of J rQ and we suppose that ξ is locally expressed
by (1.1). Then a simple computation in local coordinates shows that we
have:

(2.7)





[
ξ,

∂

∂t

]
= −∂ξi

∂t

∂

∂qi
(r)[

ξ,
∂

∂qi
(h)

]
= − ∂ξj

∂qi
(h)

∂

∂qj
(r)

− ∂

∂qi
(h−1)

h = 1, 2, . . . , r

[
ξ,

∂

∂qi
(0)

]
= − ∂ξj

∂qi
(0)

∂

∂qj
(r)

.

Proposition 2.1. Let Γ = −LξS̃. Then Γ is a dynamical connection
on J rQ, whose associated semispray is precisely ξ.

Proof. In fact from (2.7) we have:

(2.8)





Γ
(

∂

∂t

)
= −

r−1∑

h=0

qi
(h+1)

∂

∂qi
(h)

−
(

r−1∑

h=0

(h + 1)qi
(h+1)

∂ξj

∂qi
(h+1)

− rξi

)
∂

∂qi
(r)

Γ

(
∂

∂qi
(k)

)
=

∂

∂qi
(k)

+
∂ξj

∂qi
(k+1)

∂

∂qj
(r)

; k = 0, 1, 2, . . . , (r − 1)

Γ

(
∂

∂qi
(r)

)
= −r

∂

∂qi
(r)

.
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Now, from (2.8) we easily deduce that Γ is a dynamical connection on
J rQ. Furthermore, taking into account (2.4), we have that the associated
semispray to Γ is precisely ξ.

Let Γ be a dynamical connection on J rQ. A curve s : X → Q
is called a path of Γ if the canonical prolongation jrs of s to J rQ is a
weak-horizontal curve.

If s : X → Q is locally given by t → (t, qi(t)), then we have jrs(t) =
(t, qi

(h)(t)); 0 ≤ h ≤ r.
Hence

˙̂
jrs(t) =

∂

∂t
+

r+1∑

h=1

dhqi

dth
∂

∂qi
(h−1)

.

Therefore s is a path of Γ if and only if ψi

(
˙̂

jrs(t)
)

= 0; i =

1, 2, . . . , n, that is, s satisfies the following system of differential equations:

(2.9)
dr+1qi

dtr+1
= Γi

(r) +
r−1∑

h=0

Γi(h)
j(r)

dh+1qj

dth+1
.

Let ξ be the associated semispray of Γ. Then ξ is locally given by:

ξ =
∂

∂t
+

r−1∑

h=0

qi
(h+1)

∂

∂qi
(h)

+ ξi ∂

∂qi
(r)

where:

ξi = Γi
(r) +

r−1∑

h=0

qj
(h+1)Γ

i(h)
j(r); 1 ≤ i ≤ n.

From (2.9) it is clear that the paths of Γ and ξ satisfy the same system
of differential equations. Then we have:

Proposition 2.2. A dynamical connection and its associated semis-
pray on J rQ have the same paths.

3. The generalized Euler-Lagrange operator

Let c : J rQ → J r+1Q be a global section and ξc given by (1.2).
The generalized Euler Lagrange operator associated to ξc is the R-linear
operator on 1-forms Eξc defined by

(3.1) Eξc = −ξc ⊗ dt +
r∑

h=0

(−1)h 1
h!

Lh
ξc
· S̃h.
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Proposition 3.1. The Euler-Lagrange operator satisfies

S̃ ◦ Eξc = 0.

If ω ∈ Λ1(J rQ) is given by:

ω = αdt +
r∑

h=0

ω
(h)
i dqi(3.2)

then

EΓ(ω) =

(
r∑

h=0

(−1)rξh
c (ω(h)

i )

)
θi
(0).(3.3)

To each semispray ξc we now associate a set of 1-forms X∗
ξc

= KerEξ∗0 .
The set X∗

ξc
is in fact a vector space over R, by the R-linearity of Eξc . Its

elements satisfy the relation:

(3.4) ω
(0)
i − ξc(ω

(1)
i ) + ξ2

c (ω(2)
i )− . . . + (−1)rξr

c (ω(r)
i ) = 0.

Furthermore, we define an R-linear operator σξc of 1-forms on J rQ,
called the generalized Cartan operator, by:

(3.5) σξc =
r−1∑

h=0

(−1)h 1
(h + 1)!

Lh
ξc
◦ S̃(h+1).

It follows from this definition that:

(3.6) Eξcω = ω − iξcωdt− Lξc ◦ σξcω.

Let ξc be a semispray given by (1.2) and L ∈ F(J rQ). The Poincaré-
Cartan 1-form θL,ξc is given by:

(3.7) θL,ξc = Ldt + σξc(dL).

We say that a semispray ξc is Lagrangian if there exists L ∈ F(J rQ)
such that dL ∈ X∗

ξc
.

Proposition 3.2. ξc is Lagrangian iff there exists L ∈ F(J rQ) such
that:

(3.8) iξcωL = 0

where ωL = −dθL,ξc . We call ξc the Lagrange vector for L.

We now describe how the usual formulation of higher-order dynam-
ics fits into to framework described above. It will be recalled that the
Lagrangian function of J rQ leads to Euler-Lagrange equations which are
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2r-order differential equations. We must therefore consider the (2r − 1)-
order jet-prolongation J 2r−1Q and functions on it of the form π2r−1∗

r L,
where L is a function on J rQ.

It follows that, if ξc is a 2r-order differential equation field which is
Lagrangian, with Lagrangian function L on J rQ, then :

(3.9)
∂L

∂qi
(0)

− d

dt

(
∂L

∂qi
(0)

)
+

d2

dt2

(
∂L

∂qi
(0)

)
+ . . . + (−1)r dr

dtr

(
∂L

∂qi
(0)

)
= 0

along any integral curve of ξc.

Proposition 3.3. Let L be a non-autonomous regular Lagrangian on
J rQ, and let ξc be a Lagrange vector field for L. Then there exists a
dynamical connection Γ on J 2r−1Q whose paths are the solutions of the
equations. This connection is given by Γ = −Lξc S̃.
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