Dynamical connections and higher-order Lagrangian systems

By D. OPRIS and F.C. KLEPP* (Timişoara)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Abstract

We show that if ξ is a $(2 r)$-order differential equation (semispray) on the $(2 r-1)$-jet bundle $\mathcal{J}^{2 r-1} Q$ whose paths are solutions of the non-autonomous Lagrange equations, then there is a connection Γ on $\mathcal{J}^{2 r-1} Q$ whose paths are also solutions of the same equations. Moreover, Γ is a connection whose associated semispray is precisely ξ. This is an extension to higher-order Lagrangian dynamics of a previous result given by M. De Leon and P. Rodrigues [3].

1. Preliminaries

Throughout the text we shall keep in mind the results, definitions and notations previously introduced in [1], [2]. All structures and functions are assumed to be smooth. Let M be an m-dimensional manifold, called configuration manifold and Γ an $(r+1)$-order differential equation field on M. We recall here that Γ generates on $T^{r} M$ two projectors: $A: T\left(T^{r} M\right)$ \rightarrow Hor $\left(T^{r} M\right)$ and $B: T\left(T^{r} M\right) \rightarrow \operatorname{Ver}\left(T^{r} M\right)$ such that $T\left(T^{r} M\right)=$ Hor $\left(T^{r} M\right) \oplus \operatorname{Ver}\left(T^{r} M\right)$ [1]. If $\bar{\xi}$ is an arbitrary semispray, i.e. an $(r+1)-$ order differential equation field, then $\xi_{\bar{\prime}}=A(\bar{\xi})$ is a semispray on $T^{r} M$ which does not depend on the choice of $\bar{\xi}$. We call ξ the associated semispray of Γ. In the non-autonomous situation the relation between connections and semisprays becomes much more simple, as we will show below.

Let $\pi: Q \rightarrow X$ be a fibered manifold. In the following we assume that X is a connected real 1-dimensional manifold (i.e. $X=R$ or $X=S^{1}$) and Q is a real $(n+1)$-dimensional manifold. The r-order jet-prolongation is denoted by $\pi^{r}: \mathcal{J}^{r} Q \rightarrow X$. We denote by $V Q$ the vertical bundle

[^0]of Q, i.e. the vector subbundle of $T Q$ defined as $V Q=\operatorname{Ker}\left(\pi^{\prime}\right)$ and by $V^{0} \mathcal{J}^{r} Q$ the vertical bundle of $\mathcal{J}^{r} Q$, defined as $V^{0} \mathcal{J}^{r} Q=\operatorname{Ker}\left(\pi_{0}^{r^{\prime}}\right)$, where $\pi_{0}^{r}: \mathcal{J}^{r} Q \rightarrow Q$ is the canonical projection.

Let $\pi_{r}^{r+1}: \mathcal{J}^{r+1} Q \rightarrow \mathcal{J}^{r} Q$ be the canonical projection, and η_{r} : $V \mathcal{J}^{r} Q \rightarrow \mathcal{J}^{r} Q$, the usual projection of the vertical bundle of $\mathcal{J}^{r} Q$. Then there exists $T: \mathcal{J}^{r+1} Q \rightarrow V \mathcal{J}^{r} Q$ satisfying $\eta_{r} \cdot \pi=\pi_{r}^{r+1}$ [1]. We use the map T to construct a differential operator d_{T}, which maps each function on $\mathcal{J}^{r} Q$ to a function on $\mathcal{J}^{r+1} Q$, and is called the partial time derivative. It follows that d_{T} is represented in coordinates $\left(t, q_{(k)}^{i}\right), 1 \leq i \leq n, 0 \leq$ $k \leq r+1$ by the operator:

$$
d_{T}=\sum_{h=0}^{r} q_{(h+1)}^{i} \frac{\partial}{\partial q_{(h)}^{i}} .
$$

The operator d_{T} is a derivation in the sense that

$$
d_{T}\left(f_{1} \cdot f_{2}\right)=\left(d_{T} f_{1}\right)\left(\pi_{r}^{r+1 *} f_{2}\right)+\left(\pi_{r}^{r+1 *} f_{1}\right) d_{T} f_{2} ; \quad f_{1}, f_{2} \in \mathcal{F}\left(\mathcal{J}^{r} Q\right)
$$

The extended operator, which we also denote d_{T}, bears the same relation to the operator on functions as a Lie derivative operator does to the action of a vector field on functions. Thus so far as its action on 1 -forms is concerned (and this will be sufficient for our purposes), d_{T} satisfies the following rules:

1) for any 1-form α on $\mathcal{J}^{r} Q, d_{T} \alpha$ is an 1-form on $\mathcal{J}^{r+1} Q$
2) $d_{T} \cdot d=d \cdot d_{T}$
3) for any function f on $\mathcal{J}^{r} Q$,

$$
d_{T}(f \alpha)=\left(d_{T} f\right)\left(\pi_{r}^{r+1 *} \alpha\right)+\left(\pi_{r}^{r+1 *} f\right) d_{T}(\alpha)
$$

In particular, the coordinate 1-forms satisfy:

$$
d_{T}\left(d q_{(k)}^{i}\right)=d q_{(k+1)}^{i} ; \quad 0 \leq k \leq r .
$$

We shall now define the lifts of a function f in Q to $\mathcal{J}^{r} Q$. For $k=$ $0,1, \ldots, r$ we define the $k+1$ lift f_{k+1} of a function f to $\mathcal{J}^{r} Q$, by $f_{k+1}=$ $d\left(f_{k}\right), k=0,1, \ldots, r$ where $f_{0}=f$ is a function on Q.

Let $\xi \in V Q_{0}$ be a vector field. The vector field $\xi^{v} \in V_{0} \mathcal{J}^{r} Q$ given by

$$
\xi^{v}\left(f_{r}\right)=\pi_{r-1}^{r *} \xi\left(f_{r-1}\right)
$$

for any $f \in \mathcal{F}(Q)$, is called the vertical lift of ξ.
Using the vertical lift and the map $T: \mathcal{J}^{r} Q \rightarrow V \mathcal{J}^{r-1} Q$ we construct a canonical vector field on $\mathcal{J}^{r} Q$ as follows: $C=T^{v}$.

The coordinate representation of C is:

$$
C=\sum_{h=0}^{r-1}(h+1) q_{(h+1)}^{i} \frac{\partial}{\partial q_{(h+1)}^{i}}
$$

where the vector field C is a generalization of the Liouville field or the dilation field on $T Q$.

We may also use the vertical lift construction to define an (1,1)-type tensor field S on $\mathcal{J}^{r} Q$, given by

$$
S(\xi)=\left[\left(\pi_{r-1}^{r}\right)^{\prime} \xi\right]^{v}, \quad \forall \xi \in V \mathcal{J}^{r} Q
$$

The coordinate representation of S is

$$
S=\sum_{h=0}^{r-1}(h+1) \frac{\partial}{\partial q_{(h+1)}^{i}} \otimes d q_{(h)}^{i} .
$$

Therefore we transport the geometric structures defined on $V \mathcal{J}^{r} Q$ to $\mathcal{J}^{r} Q$. We may define a new tensor field \tilde{S} of (1,1)-type $V \mathcal{J}^{r} Q$, by

$$
\tilde{S}=S-C \otimes d t
$$

We define the adjoint \tilde{S}^{*} of \tilde{S}, as the endomorphism of the exterior algebra $\Lambda\left(\mathcal{J}^{r} Q\right)$ of $\mathcal{J}^{r} Q$, locally given by

$$
\tilde{S}^{*}(d t)=0, \quad \tilde{S}^{*}\left(d q_{(0)}^{i}\right)=0, \quad \tilde{S}^{*}\left(d q_{(h)}^{i}\right)=h \theta_{(h-1)}^{i} ; \quad h=1,2, \ldots, r
$$

where

$$
\theta_{(h)}^{i}=d q_{(h)}^{i}-q_{(h+1)}^{i} d t ; \quad h=0,1, \ldots,(r-1) .
$$

A vector field ξ on $\mathcal{J}^{r} Q$ is a semispray iff $S \xi=C$ and $\tilde{S} \xi=0$.
Remark 1. It is not hard to see that a vector field ξ on $\mathcal{J}^{r} Q$ is a semispray iff $\theta_{(h)}^{i}(\xi)=0 ; h=0,1, \ldots,(r-1) ; d t(\xi)=1$.

In such a case ξ is locally given by

$$
\begin{equation*}
\xi=\frac{\partial}{\partial t}+\sum_{h=0}^{r-1} q_{(h+1)}^{i} \frac{\partial}{\partial q_{(h)}^{i}}+\xi^{i} \frac{\partial}{\partial q_{(r)}^{i}} . \tag{1.1}
\end{equation*}
$$

Let now c be a global section of the affine bundle $\mathcal{J}^{r+1} Q \rightarrow \mathcal{J}^{r} Q$. One may construct a semispray ξ_{c}, given by

$$
\begin{equation*}
\xi_{c}=C^{*} \circ d_{T} \tag{1.2}
\end{equation*}
$$

Let $c\left(t, q_{(h)}^{i}\right)=\left(t, q_{(h)}^{i}, c^{i}\right) ; 0 \leq h \leq r$ be the local representation of c in a natural fibred chart. The semispray ξ_{c} is given by

$$
\begin{equation*}
\xi_{c}=\frac{\partial}{\partial t}+\sum_{h=0}^{r-1} q_{(h+1)}^{i} \frac{\partial}{\partial q_{(h)}^{i}}+c^{i} \frac{\partial}{\partial q_{(r)}^{i}} \tag{1.3}
\end{equation*}
$$

It follows then:

Proposition 1.1. Let c be a section of the affine bundle $\mathcal{J}^{r+1} Q \rightarrow$ $\mathcal{J}^{r} Q$ and ξ_{c} the spray given by (1.3), then we have:

$$
\begin{aligned}
S \xi_{c}= & C ; \quad \tilde{S} \xi_{c}=0 ; \quad \tilde{S} \circ L_{\xi_{c}} \tilde{S}=-\tilde{S} \circ \tilde{C} \\
& \left(L_{\xi_{c}} \tilde{S}-r I\right)\left(L_{\xi_{c}} \tilde{S}+\tilde{C}\right)=0 .
\end{aligned}
$$

Here $L_{\xi_{c}}$ is the Lie derivative.

2. Semisprays and dynamical connections

The tensor fields S and \tilde{S} on $\mathcal{J}^{r} Q$ permit us to give a characterization of a kind of connections for the fibration $\pi_{0}^{r}: \mathcal{J}^{r} Q \rightarrow Q$.

Definition 2.1. By a dynamical connection on $\mathcal{J}^{r} Q$ we mean a tensor field Γ of $(1,1)$-type on $\mathcal{J}^{r} Q$ satisfying

$$
\begin{equation*}
S \Gamma=\tilde{S} \Gamma=\tilde{S} ; \quad \Gamma \tilde{S}=-\tilde{S} ; \quad \Gamma S=-S \tag{2.1}
\end{equation*}
$$

By a straightforward computation we deduce from (2.1) that the local expression of Γ are:

$$
\left\{\begin{array}{l}
\Gamma\left(\frac{\partial}{\partial t}\right)=-\sum_{h=0}^{r-1} q_{(h+1)}^{i} \frac{\partial}{\partial q_{(h)}^{i}}+\Gamma_{(r)}^{i} \frac{\partial}{\partial q_{(r)}^{i}} \tag{2.2}\\
\Gamma\left(\frac{\partial}{\partial q_{(m)}^{i}}\right)=\frac{\partial}{\partial q_{(m)}^{i}}+\Gamma_{i(r)}^{j(m)} \frac{\partial}{\partial q_{(r)}^{i}} \quad 0 \leq m \leq(r-1) \\
\Gamma\left(\frac{\partial}{\partial q_{(r)}^{i}}\right)=-\frac{\partial}{\partial q_{(r)}^{i}} .
\end{array}\right.
$$

The functions $\Gamma_{(r)}^{i}=\Gamma_{(r)}^{i}\left(t, q_{(h)}^{i}\right) ; \Gamma_{i(r)}^{j(m)}=\Gamma_{i(r)}^{j(m)}\left(t, q_{(h)}^{i}\right)$ will be called the components of the connection Γ. From (2.2) we easily deduce that

$$
\Gamma^{3}-\Gamma=0 \text { and } \operatorname{rank}(\Gamma)=(r+1) n
$$

This type of polynomial structure is called $f(3,-1)$-structure in the literature [4]. Now, we can associate to Γ two canonical operators ℓ and m given by: $\ell=\Gamma^{2} ; m=-\Gamma^{2}+I$.
Then we have:

$$
\begin{equation*}
\ell^{2}=\ell ; \quad m^{2}=m ; \quad \ell m=m \ell=0 ; \quad \ell+m=I \tag{2.3}
\end{equation*}
$$

where ℓ and m are complementary projectors. From (2.3) we deduce that ℓ and m are locally given by:

$$
\begin{align*}
& \ell\left(\frac{\partial}{\partial t}\right)=-\sum_{h=0}^{r-1} q_{(h+1)}^{i} \frac{\partial}{\partial q_{(h)}^{i}}-\left(\Gamma_{(h)}^{i}+\sum_{h=0}^{r-1} q_{(h+1)}^{i} \Gamma_{i(r)}^{j(h)}\right) \frac{\partial}{\partial q_{(r)}^{j}} \tag{2.4}\\
& \ell\left(\frac{\partial}{\partial q_{(k)}^{i}}\right)=\frac{\partial}{\partial q_{(k)}^{i}} ; \quad m\left(\frac{\partial}{\partial q_{(k)}^{i}}\right)=\frac{\partial}{\partial q_{(k)}^{i}} ; \quad k=0,1, \ldots, r \\
& m\left(\frac{\partial}{\partial t}\right)=\frac{\partial}{\partial t}+\sum_{h=0}^{r-1} q_{(h+1)}^{i} \frac{\partial}{\partial q_{(h)}^{i}}+\left(\Gamma_{(r)}^{j}+\sum_{h=0}^{r-1} q_{(h+1)}^{i} \Gamma_{i(r)}^{j(h)}\right) \frac{\partial}{\partial q_{(r)}^{j}} .
\end{align*}
$$

If we put $\mathcal{L}=\operatorname{Im} \ell, \mathcal{M}=\operatorname{Im} m$, then we have that \mathcal{L} and \mathcal{M} are complementary distributions on $\mathcal{J}^{r} Q$, that is

$$
T\left(\mathcal{J}^{r} Q\right)=\mathcal{M} \oplus \mathcal{L}
$$

From (2.4) we deduce that \mathcal{L} is $(r+1) n$-dimensional and is locally spanned by $\left\{\frac{\partial}{\partial q_{(k)}^{i}}\right\}, k=0,1, \ldots, r ; \mathcal{M}$ is one-dimensional, and globally spanned by the vector field $\xi=m\left(\frac{\partial}{\partial t}\right)$. Taking into account the local expression of ξ we deduce that ξ is a semispray which will be called the canonical semispray associated to the dynamical connection Γ. Furthermore, we have $\Gamma^{2} \ell=\ell$ and $\Gamma m=0$. Thus Γ acts on \mathcal{L} as an almost product structure and trivially on \mathcal{M}. Since $\mathcal{M}=\operatorname{Ker} \Gamma$, Γ is said to be an $f(3,-1)$-structure on $\mathcal{J}^{r} Q$ of rank $(r+1) n$ and with parallelizable kernel. Moreover Γ / \mathcal{L} has the eigenvalues +1 and -1 . From (2.2) the eigenspaces corresponding to the eigenvalue +1 are the vertical subspaces $V_{z}^{0}, z \in \mathcal{J}^{r} Q$. Thus V is a distribution given by $z \rightarrow V_{z}^{0}$. The eigenspace at $z \in \mathcal{J}^{r} Q$ corresponding to the eigenvalue +1 will be denoted by H_{z} and called the strong-horizontal subspace at z. We have a canonical decomposition

$$
T_{z}\left(\mathcal{J}^{r} Q\right)=\mathcal{M}_{z} \oplus H_{z} \oplus V_{z}^{0}
$$

and obviously

$$
T\left(\mathcal{J}^{r} Q\right)=\mathcal{M} \oplus H \oplus V^{0}
$$

where H is the distribution $z \rightarrow H_{z}$.
Let us put $H_{z}^{\prime}=\mathcal{M}_{z} \oplus H_{z} ; H_{z}^{\prime}$ will be called the weak horizontal subspace at z. Then we have the following decompositions:

$$
T_{z}\left(\mathcal{J}^{r} Q\right)=H_{z}^{\prime} \oplus V_{z}^{0}, \quad z \in \mathcal{J}^{r} Q
$$

and

$$
\begin{equation*}
T\left(\mathcal{J}^{r} Q\right)=H^{\prime} \oplus V^{0} \tag{2.5}
\end{equation*}
$$

where $H^{\prime}: z \rightarrow H_{z}^{\prime}$ is the corresponding distribution.
We notice that $\mathcal{L}, \mathcal{M}, H$ and H^{\prime} may be considered as vector bundles over $\mathcal{J}^{r} Q$; the bundles H and H^{\prime} will be called strong and weak-horizontal bundles, respectively.

A vector field X on $\mathcal{J}^{r} Q$ which belongs to H (resp. H^{\prime}) will be called a strong (resp. weak) horizontal vector field. From (2.5) we have that the projection $\pi_{r-1}^{r}: \mathcal{J}^{r} Q \rightarrow \mathcal{J}^{r-1} Q$ induces an isomorphism

$$
\pi_{0^{*}}^{r}: H_{z}^{\prime} \rightarrow T_{\pi_{r-1}^{r}(z)}(Q), \quad z \in \mathcal{J}^{r} Q
$$

Then, if X is a vector field on $\mathcal{J}^{r-1} Q$, there exists an unique vector field $X^{H^{\prime}}$ on $\mathcal{J}^{r} Q$ which is weak-horizontal and projects to X. The projection of $X^{H^{\prime}}$ to H will be denoted by X^{H}.

From (2.2), by a straightforward computation we obtain

$$
\left\{\begin{array}{l}
\left(\frac{\partial}{\partial t}\right)^{H^{\prime}}=\frac{\partial}{\partial t}+\left(\Gamma_{(r)}^{j}+\frac{1}{2} \sum_{h=0}^{r-1} q_{(h+1)}^{i} \Gamma_{i(r)}^{j(h)}\right) \frac{\partial}{\partial q_{(r)}^{j}} \tag{2.6}\\
\left(\frac{\partial}{\partial q_{(k)}^{i}}\right)^{H^{\prime}}=\frac{\partial}{\partial q_{(k)}^{i}}+\frac{1}{2} \Gamma_{i(r)}^{j(k)} \frac{\partial}{\partial q_{(r)}^{j}} \quad k=0,1, \ldots,(r-1)
\end{array}\right.
$$

Then, if we put $H_{i}^{(k)}=\left(\frac{\partial}{\partial q_{(k)}^{i}}\right)^{H^{\prime}}$ and $V_{i}^{(r)}=\frac{\partial}{\partial q_{(r)}^{i}}$, one deduces that $\left\{\xi, H_{i}^{(k)}, V_{i}^{(r)}\right\}$ is a local basis of vector fields on $\mathcal{J}^{r} Q$. In fact $\mathcal{M}=\langle\xi\rangle$, $H=\left\langle H_{i}^{(k)}\right\rangle, V=\left\langle V_{i}^{(r)}\right\rangle$ and $\left\{\xi, H_{i}^{(k)}, V_{i}^{(r)}\right\}$ is called an adapted basis of the $f(3,-1)$-structure Γ. In terms of $\left\{\xi, H_{i}^{(k)}, V_{i}^{(r)}\right\}(2.6)$ becomes

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}\right)^{H^{\prime}}=\xi-\sum_{k=0}^{r-1} q_{(k+1)}^{i} H_{i}^{(k)} ; \quad\left(\frac{\partial}{\partial q_{(k)}^{i}}\right)^{H^{\prime}}= & H_{i}^{(k)} \\
& ; \\
& k=0,1, \ldots,(r-1) .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}\right)^{H}=-\sum_{k=0}^{r-1} q_{(k+1)}^{i} H_{i}^{(k)} ; \quad\left(\frac{\partial}{\partial q_{(k)}^{i}}\right)^{H}=H_{i}^{(k)} & ; \\
& k=0,1, \ldots,(r-1)
\end{aligned}
$$

If $X=\eta \frac{\partial}{\partial t}+\sum_{h=0}^{r-1} X_{(h)}^{i} \frac{\partial}{\partial q_{(h)}^{i}}$ is a vector field on $\mathcal{J}^{r-1} Q$ we have

$$
X^{H}=\sum_{h=0}^{r-1}\left(X_{(h)}^{i}-\eta q_{(}^{i}\right) H_{i}^{(h)}
$$

Finally, we notice that the dual local basis of 1-forms of the adapted basis is given by $\left(d t, \theta_{(h)}^{i}, \psi^{i}\right)$, where

$$
\begin{gathered}
\theta_{(h)}^{i}=d q_{(h)}^{i}-q_{(h+1)}^{i} d t ; \quad h=0,1, \ldots,(r-1) \text { and } \\
\psi^{i}=-\left(\Gamma_{(r)}^{i}+\frac{1}{2} \sum_{h=0}^{r-1} q_{(h+1)}^{i} \Gamma_{i(r)}^{j(h)}\right) d t-\frac{1}{2} \sum_{h=0}^{r-1} \Gamma_{j(r)}^{i(h)} d q_{(h)}^{j}+d q_{(r)}^{i} .
\end{gathered}
$$

Let ξ be a semispray of $\mathcal{J}^{r} Q$ and we suppose that ξ is locally expressed by (1.1). Then a simple computation in local coordinates shows that we have:

Proposition 2.1. Let $\Gamma=-L_{\xi} \tilde{S}$. Then Γ is a dynamical connection on $\mathcal{J}^{r} Q$, whose associated semispray is precisely ξ.

Proof. In fact from (2.7) we have:

$$
\left\{\begin{array}{l}
\Gamma\left(\frac{\partial}{\partial t}\right)=-\sum_{h=0}^{r-1} q_{(h+1)}^{i} \frac{\partial}{\partial q_{(h)}^{i}} \tag{2.8}\\
\quad-\left(\sum_{h=0}^{r-1}(h+1) q_{(h+1)}^{i} \frac{\partial \xi^{j}}{\partial q_{(h+1)}^{i}}-r \xi^{i}\right) \frac{\partial}{\partial q_{(r)}^{i}} \\
\Gamma\left(\frac{\partial}{\partial q_{(k)}^{i}}\right)=\frac{\partial}{\partial q_{(k)}^{i}}+\frac{\partial \xi^{j}}{\partial q_{(k+1)}^{i}} \frac{\partial}{\partial q_{(r)}^{j}} ; \quad k=0,1,2, \ldots,(r-1) \\
\Gamma\left(\frac{\partial}{\partial q_{(r)}^{i}}\right)=-r \frac{\partial}{\partial q_{(r)}^{i}} .
\end{array}\right.
$$

Now, from (2.8) we easily deduce that Γ is a dynamical connection on $\mathcal{J}^{r} Q$. Furthermore, taking into account (2.4), we have that the associated semispray to Γ is precisely ξ.

Let Γ be a dynamical connection on $\mathcal{J}^{r} Q$. A curve $s: X \rightarrow Q$ is called a path of Γ if the canonical prolongation $j^{r} s$ of s to $\mathcal{J}^{r} Q$ is a weak-horizontal curve.

If $s: X \rightarrow Q$ is locally given by $t \rightarrow\left(t, q^{i}(t)\right)$, then we have $j^{r} s(t)=$ $\left(t, q_{(h)}^{i}(t)\right) ; 0 \leq h \leq r$.

Hence

$$
\stackrel{\dot{j^{r} s(t)}}{ }=\frac{\partial}{\partial t}+\sum_{h=1}^{r+1} \frac{d^{h} q^{i}}{d t^{h}} \frac{\partial}{\partial q_{(h-1)}^{i}}
$$

Therefore s is a path of Γ if and only if $\psi^{i}\left(\widehat{j^{r} s(t)}\right)=0 ; i=$ $1,2, \ldots, n$, that is, s satisfies the following system of differential equations:

$$
\begin{equation*}
\frac{d^{r+1} q^{i}}{d t^{r+1}}=\Gamma_{(r)}^{i}+\sum_{h=0}^{r-1} \Gamma_{j(r)}^{i(h)} \frac{d^{h+1} q^{j}}{d t^{h+1}} \tag{2.9}
\end{equation*}
$$

Let ξ be the associated semispray of Γ. Then ξ is locally given by:

$$
\xi=\frac{\partial}{\partial t}+\sum_{h=0}^{r-1} q_{(h+1)}^{i} \frac{\partial}{\partial q_{(h)}^{i}}+\xi^{i} \frac{\partial}{\partial q_{(r)}^{i}}
$$

where:

$$
\xi^{i}=\Gamma_{(r)}^{i}+\sum_{h=0}^{r-1} q_{(h+1)}^{j} \Gamma_{j(r)}^{i(h)} ; \quad 1 \leq i \leq n
$$

From (2.9) it is clear that the paths of Γ and ξ satisfy the same system of differential equations. Then we have:

Proposition 2.2. A dynamical connection and its associated semispray on $\mathcal{J}^{r} Q$ have the same paths.

3. The generalized Euler-Lagrange operator

Let $c: \mathcal{J}^{r} Q \rightarrow \mathcal{J}^{r+1} Q$ be a global section and ξ_{c} given by (1.2). The generalized Euler Lagrange operator associated to ξ_{c} is the R -linear operator on 1 -forms $\mathcal{E}_{\xi_{c}}$ defined by

$$
\begin{equation*}
\mathcal{E}_{\xi_{c}}=-\xi_{c} \otimes d t+\sum_{h=0}^{r}(-1)^{h} \frac{1}{h!} L_{\xi_{c}}^{h} \cdot \tilde{S}^{h} \tag{3.1}
\end{equation*}
$$

Proposition 3.1. The Euler-Lagrange operator satisfies

$$
\tilde{S} \circ \mathcal{E}_{\xi_{c}}=0
$$

If $\omega \in \Lambda^{1}\left(\mathcal{J}^{r} Q\right)$ is given by:

$$
\begin{equation*}
\omega=\alpha d t+\sum_{h=0}^{r} \omega_{i}^{(h)} d q^{i} \tag{3.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{E}_{\Gamma}(\omega)=\left(\sum_{h=0}^{r}(-1)^{r} \xi_{c}^{h}\left(\omega_{i}^{(h)}\right)\right) \theta_{(0)}^{i} \tag{3.3}
\end{equation*}
$$

To each semispray ξ_{c} we now associate a set of 1-forms $X_{\xi_{c}}^{*}=\operatorname{Ker} \mathcal{E}_{\xi_{0}^{*}}$. The set $X_{\xi_{c}}^{*}$ is in fact a vector space over R, by the R-linearity of $\mathcal{E}_{\xi_{c}}$. Its elements satisfy the relation:

$$
\begin{equation*}
\omega_{i}^{(0)}-\xi_{c}\left(\omega_{i}^{(1)}\right)+\xi_{c}^{2}\left(\omega_{i}^{(2)}\right)-\ldots+(-1)^{r} \xi_{c}^{r}\left(\omega_{i}^{(r)}\right)=0 . \tag{3.4}
\end{equation*}
$$

Furthermore, we define an R-linear operator $\sigma_{\xi_{c}}$ of 1-forms on $\mathcal{J}^{r} Q$, called the generalized Cartan operator, by:

$$
\begin{equation*}
\sigma_{\xi_{c}}=\sum_{h=0}^{r-1}(-1)^{h} \frac{1}{(h+1)!} L_{\xi_{c}}^{h} \circ \tilde{S}^{(h+1)} . \tag{3.5}
\end{equation*}
$$

It follows from this definition that:

$$
\begin{equation*}
\mathcal{E}_{\xi_{c}} \omega=\omega-i_{\xi_{c}} \omega d t-L_{\xi_{c}} \circ \sigma_{\xi_{c}} \omega \tag{3.6}
\end{equation*}
$$

Let ξ_{c} be a semispray given by (1.2) and $L \in \mathcal{F}\left(\mathcal{J}^{r} Q\right)$. The PoincaréCartan 1-form $\theta_{L, \xi_{c}}$ is given by:

$$
\begin{equation*}
\theta_{L, \xi_{c}}=L d t+\sigma_{\xi_{c}}(d L) \tag{3.7}
\end{equation*}
$$

We say that a semispray ξ_{c} is Lagrangian if there exists $L \in \mathcal{F}\left(\mathcal{J}^{r} Q\right)$ such that $d L \in X_{\xi_{c}}^{*}$.

Proposition 3.2. ξ_{c} is Lagrangian iff there exists $L \in \mathcal{F}\left(\mathcal{J}^{r} Q\right)$ such that:

$$
\begin{equation*}
i_{\xi_{c}} \omega_{L}=0 \tag{3.8}
\end{equation*}
$$

where $\omega_{L}=-d \theta_{L, \xi_{c}}$. We call ξ_{c} the Lagrange vector for L.
We now describe how the usual formulation of higher-order dynamics fits into to framework described above. It will be recalled that the Lagrangian function of $\mathcal{J}^{r} Q$ leads to Euler-Lagrange equations which are
$2 r$-order differential equations. We must therefore consider the $(2 r-1)$ order jet-prolongation $\mathcal{J}^{2 r-1} Q$ and functions on it of the form $\pi_{r}^{2 r-1 *} L$, where L is a function on $\mathcal{J}^{r} Q$.

It follows that, if ξ_{c} is a $2 r$-order differential equation field which is Lagrangian, with Lagrangian function L on $\mathcal{J}^{r} Q$, then :

$$
\begin{equation*}
\frac{\partial L}{\partial q_{(0)}^{i}}-\frac{d}{d t}\left(\frac{\partial L}{\partial q_{(0)}^{i}}\right)+\frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial q_{(0)}^{i}}\right)+\ldots+(-1)^{r} \frac{d^{r}}{d t^{r}}\left(\frac{\partial L}{\partial q_{(0)}^{i}}\right)=0 \tag{3.9}
\end{equation*}
$$

along any integral curve of ξ_{c}.
Proposition 3.3. Let L be a non-autonomous regular Lagrangian on $\mathcal{J}^{r} Q$, and let ξ_{c} be a Lagrange vector field for L. Then there exists a dynamical connection Γ on $\mathcal{J}^{2 r-1} Q$ whose paths are the solutions of the equations. This connection is given by $\Gamma=-L_{\xi_{c}} \tilde{S}$.

References

[1] M. Crampin and W. Sarlet and F. Cantrijn, Higher-order differential equations and higher-order Lagrangian mechanics, Math. Proc. Camb. Phil. Soc. 99 (1986), 565.
[2] M. Ferraris and M. Francaviglia, On the globalization of Lagrangian and Hamiltonian formalisms in higher order mechanics, Atti della Accademia delle Science di Torino 117 (1983).
[3] M. De Leon and P. Rodrigues, Dynamical connections and non-autonomous Lagrangian systems, Annales Faculté des Sciences de Toulouse IX, no. 2 (1988).
[4] K. Yano and S. Ishihara, Tangent and cotangent bundles, Pure and Appl. Math. Ser. 16. Marcel Dekker N. Y. (1973).

```
D. OPRIS
SEMINAR OF GEOMETRY AND TOPOLOGY
UNIVERSITY OF TIMIŞOARA
ROUMANIA
F.C. KLEPP
DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY OF TIMIŞOARA
ROUMANIA
```

(Received August 29, 1991; revised March 10, 1992)

[^0]: *This paper was presented at the Conference on Finsler Geometry and its Applications to Physics and Control Theory, August 26-31, 1991, Debrecen, Hungary.

