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Integer sequences and semidefinite programming

By LÁSZLÓ LOVÁSZ (Redmond)

Dedicated to Kálmán Győry on the occasion of his 60th birthday

Abstract. We show that Roth’s theorem on the discrepancy of the family of
arithmetic progressions can be derived using rather standard arguments in semidefinite
optimization.

1. Roth’s Theorem

Let F be a family of subsets of {0, 1, . . . , n}. We want to find a
sequence x = (x0, x1, . . . , xn−1) of ±1’s so that each member of F contains
about as many 1’s as −1’s. More exactly, we define the discrepancy of the
sequence x by

max
A∈F

∣∣∣∣
∑

i∈A

xi

∣∣∣∣,

and the discrepancy of the family F by

min
x∈{−1,1}n

max
A∈F

∣∣∣∣
∑

i∈A

xi

∣∣∣∣.

The following basic theorem in discrepancy theory was proved by Roth [4]:

Theorem 1. The discrepancy of the family of arithmetic progressions

is Ω(n1/4).
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One way of looking at this result is to think of the xi in the definition
of discrepancy as the output of a pseudorandom number generator, and
of the discrepancy, as a randomness test. If the xi are truly random,
we expect this discrepancy to be about n1/2. Most “bad” sequences one
encounters fail by producing a larger discrepancy. Roth’s Theorem shows
that the discrepancy cannot be arbitrarily small, but it allows sequences
to have substantially smaller discrepancy than a random sequence. One
might expect that the lower bound in the theorem can be strengthened
to about Ω(n1/2), but it was shown by Beck [2] that Roth’s estimate is
sharp up to a logarithmic factor. Recently, even this logarithmic factor
was removed by Matoušek and Spencer [5].

Let us state Roth’s Theorem with the constant we are going to prove.

Theorem 2. For every sequence x0, x1, . . . , xn−1 there exists an arith-
metic sequence A ⊆ {0, 1, . . . , n− 1} such that

∣∣∣∣
∑

i∈A

xi

∣∣∣∣ >
1
14

n1/4.

The aim of this note is to show that Roth’s estimate can be obtained
by a rather standard argument based on a quite different field, namely
semidefinite optimization (see [1] and [6] for surveys of this field). It is
beyond the scope of this note to give an introduction to semidefinite pro-
gramming, but the arguments will be self-contained.

It seems that all proofs of this theorem establish more. First, one
shows that this quantity is large even if we maximize over the following
subfamily of arithmetic progressions. Let k = b

√
n/8c. Consider arith-

metic progressions with difference at most 8k and length exactly k. We
consider arithmetic progressions modulo n, i.e., we let them wrap around.
(Of course, in this case it may happen that the progression with the large
discrepancy is wrapped; but since (k−1)(8k) < n, it wraps over n at most
once, and so it is the union of two unwrapped arithmetic progressions,
one of which has discrepancy at least half the original.) Let H denote the
family of such arithmetic progressions. Clearly |H| = 8kn.

Roth proves that for every set S the discrepancy of arithmetic pro-
gressions in H is large even on the average:

Theorem 3.

(1)
1

8kn

∑

A∈H

∣∣∣∣
∑

i∈A

xi

∣∣∣∣
2

>
1
49

n1/2.

We prove this theorem in the next section.
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2. Semidefinite relaxation

Let q(x) denote the quadratic form on the left hand side of (1). We
want to show that the minimum of q(x) over all xi = ±1 is at least
(1/49)n1/2. The condition that xi = ±1 can be written as a quadratic
equation, and so we get the quadratic program

minimize q(x)(2)

subject to x2
0 = · · · = x2

n−1 = 1.(3)

The technique of semidefinite optimization we apply here is that we
introduce new variables yij = xixj , and consider the matrix Y = (yij). In
these terms, q(x) = `(Y ) is a linear function of the entries of Y , and so
the objective function and the constraints become linear:

minimize `(Y )(4)

subject to y00 = · · · = yn−1,n−1 = 1.(5)

In addition, we can note that

Y is positive semidefinite,(6)

and

Y has rank 1.(7)

It is easy to see that the minimum in (4) subject to (5), (6) and (7) is the
same as the minimum in (2) subject to (3): if Y is positive semidefinite
and has rank 1, then we can write yij = xixj , and the vector x defined
this way is a solution of (2).

We drop constraint (7) (which is non-convex), and show that the
bound claimed holds for the solution of (4) subject to (5) and (6). This is
clearly stronger than Theorem 3.

The next step is to notice that both (5) and (6) define convex sets in
the space of matrices, and the objective function is linear. Moreover, all of
them are invariant under the cyclic shift of indices. Hence by averaging,
we get an optimum solution Y which itself is invariant under the cyclic
shift of indices, i.e., it satisfies

(8) yi+1,j+1 = yij
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(where the addition in the subscript is modulo n).
Now since Y is positive semidefinite, we can write Yij = uT

i uj , where
ui ∈ Rd for some d ≤ n. We may assume that the ui span Rd. The
objective function (4) becomes

(9)
1

8kn

∑

A∈H

∣∣∣∣
∑

i∈A

ui

∣∣∣∣
2

.

Equation (5) implies that the ui are unit vectors, and (8) says that uT
i uj =

uT
i+1uj+1. In other words, the cyclic shift u0 7→ u1 7→ · · · 7→ un−1 7→ u0

preserves the length of the ui and all the angles between them, and hence
there is an orthogonal matrix M such that ui+1 = Mui, and hence ut =
M tu0 for t = 0, 1, . . . . Thus Mnui = ui for all i, and hence Mn = I (the
identity matrix).

Up to this point, our arguments have been standard in semidefinite
optimization. The next trick is to allow complex numbers and choose a
basis so that M has a diagonal form

M =




ε1 0 . . . 0
0 ε2 . . . 0
...

...
0 0 . . . εd




where each εt is an n-th root of unity. Then the objective function (9) can
be written as

(10)
1

8kn

d∑
t=1

∑

A∈H

∣∣∣∣
∑

j∈A

εj
t

∣∣∣∣
2

|u0t|2.

Now take any coordinate t, and let εt = e2πa/n. By Dirichlet’s Theorem,
there are integers 1 ≤ q ≤ 8k and p such that |q(a/n) − p| < 1/(8k).
This implies that for every arithmetic progression A of difference q and
length k, the complex numbers εj

t (j ∈ A) point in almost the same direc-
tion: the maximum angle between them is less than (k−1)(2π/(8k)) < π/4.
Hence ∣∣∣∣

∑

j∈A

εj
t

∣∣∣∣
2

>
k2

2
.
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Since there are n arithmetic progressions in H with this difference, we get

∑

A∈H

∣∣∣∣
∑

j∈A

εj
t

∣∣∣∣
2

>
k2n

2
,

and thus

1
8kn

d∑
t=1

∑

A∈H

∣∣∣∣
∑

j∈A

εj
t

∣∣∣∣
2

|u0t|2 >
k2n

2
1

8kn

d∑
t=1

|u0t|2 =
k

16
>

n1/2

49

as claimed. ¤
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