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Pethő’s cubics

By MAURICE MIGNOTTE (Strasbourg)

This paper is dedicated to Kálmán Győry,
for the occasion of his 60th birthday

Abstract. We compute all the solutions of the family of cubic Thue equations

Φn(x, y) = x3 − nx2y − (n + 1)xy2 − y3 = 1

for all rational integers n.

1. Introduction

We continue the study of a non-Galois family of cubic Thue equations
Φn(x, y) = 1 which was initiated in a joint paper with N. Tzanakis [MT].
The associated fields Q(θn), where Φn(θn, 1) = 0, are totally real.

The family of cubics we consider is

(1) Φn(x, y) = x3 − nx2y − (n + 1)xy2 − y3.

Notice that the transformation (x, y) 7→ (−y,−x) defines a one-to-one
correspondence between the solutions of the equations Φn(X,Y ) = 1 and
Φ−n−1(X, Y ) = 1, thus we consider only the case n ≥ 0.

Note also that each equation Φn(x, y) = 1 has the solutions (x, y) =
(1, 0), (0,−1), (1,−1), (−n − 1,−1), (1,−n). This gives five “trivial so-
lutions” for n 6= 0, 1 and four ones otherwise. To simplify we solve the
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equations for 0 ≤ n ≤ 19 using Kant, this shows that in this range the
equation has only trivial solutions except for n = 0 where there is the extra
solution (x, y) = (4, 3), for n = 3 (then the discriminant is 49) where there
are the four non-trivial solutions (−5, 14), (−2, 3), (−1, 2) and (9,−13)
and for n = 4 (then the discriminant is 257) where there is the non-trivial
solution (7,−9). From now on we always suppose n ≥ 20, without refering
explicitly to this assumption.

According to a conjecture of A. Pethő [P] based on extensive com-
putations, for any irreducible cubic form Φn(x, y) ∈ Z[x, y] with positive
discriminant 6= 49, 81, 148, 257, 361, the equation Φn(x, y) = 1 has at most
five solutions. In [MT], it is proved that, indeed, the above mentioned five
solutions are the only solutions of the equation

(2) x3 − nx2y − (n + 1)xy2 − y3 = 1,

if n ≥ 3.67×1032, in accordance to Pethő’s conjecture. (We chose the title
of this paper because this family gives the maximum number of solutions
known for a family of cubics.) Here we prove this result for all n ≥ 5:

Theorem. If n ≥ 5, then the only solutions of the diophantine equa-

tion

x3 − nx2y − (n + 1)xy2 − y3 = 1

are

(x, y) = (1, 0), (0,−1), (1,−1), (−n− 1,−1), (1,−n).

We give a sketch of the method, which contains several steps. We
work in number fields K attached to the Thue equation, depending on
the parameter n. We know explicitly a fundamental system {ξ, 1 + ξ}, for
the units of K; and we notice that a solution (x, y) of the Thue equation
satisfies x + yξ = ξa(1 + ξ)b.

It is understood that all estimates and bounds refered to below are
explicit and contain the parameter n, except if they are explicitly charac-
terized as “numerical”. The plan is the following.

1. Estimate the regulator R of K

2. Find an upper bound for A := max{|a|, |b|}, in terms of R and log |y|.
3. Obtain an upper bound for the linear form |Λ| in three logarithms

obtained by Siegel’s formula, of the form |Λ| = O(|y|−3).
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Combine the results of steps 1, 2, 3 to find an upper bound for |Λ| in
terms of A.

5. Find a lower bound for A: this is a fundamental step, and there is no
systematic way to get it.

6. Combine the results of steps 4 and 5 to obtain a negative upper bound
for log |Λ|.

7. Transform Λ into a homogeneous linear form in two logarithms in
order that the sharp result of Laurent–Mignotte–Nesterenko can be
applied to give a good negative lower bound for log |Λ|.

8. Combine the results of steps 6, 7 to obtain a numerical upper bound
for n, say n ≤ N .

9. View Λ, again, as a homogeneous linear form in three logarithms and
apply Waldschmidt’s result in order to obtain a negative lower bound
for log |Λ|, containing A.

10. Combine the results of steps 4, 9 to obtain a numerical upper bound
for A.

11. Apply a lemma à la Baker-Davenport, in which the bound for A,
obtained in step 10, is necessary, to treat the values of n ≤ N , the
bound found in step 8.

2. Preliminaries

We work in the field K = Q(ξ), where ξ3 − nξ2 − (n + 1)ξ − 1 = 0
(clearly ξ = ξn and K = Kn depend on n). The equation x3 − nx2y −
(n + 1)xy2 − y3 = 1 implies that x− yξ is a unit of K.

The discriminant of ξ is n4 +2n3−5n2−6n−23 = (n2 +n−3)2−32,
hence it is positive for n ≥ 3 and it is a square only if n = 3, hence K is
not Galois for n > 3. For n ≥ 4 we know two fundamental units in K:
Put ξ = λ−1 − 1. Then K = Q(λ) and λ3 − (n + 2)λ2 + (n + 3)λ− 1 = 0,
therefore, by E. Thomas’ paper [T1], a pair of fundamental units is λ,
λ− 1, i.e. 1/(1 + ξ) and (−ξ)/(1 + ξ). From this it follows that ξ, ξ + 1 is
a pair of fundamental units of K. Then, x− yξ = ±ξa(1 + ξ)b for some a,
b ∈ Z. Since the norms of ξ and 1 + ξ are +1, the minus sign is excluded
and

x− yξ = ξa(1 + ξ)b.
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Put
F (X) = Fn(X) = X3 − nX2 − (n + 1)X − 1.

We can have good estimates of the roots of F by appropriate substitutions.
Since F (n + 1) = −1 and also F (n + 1 + n−2) = 3n−1 + 2n−2 + 2n−3 +
3n−4 + n−6 > 0, the polynomial F has a root, say ξ1, with

(3)1 n + 1 < ξ1 < n + 1 + n−2.

Similarly, sign changes of the polynomial F show that

−1 +
1

n + 1
< ξ2 < −1 +

1
n + 1

+
1

(n + 1)2
(3)2

and

− 1
n
− 1

n3
< ξ3 < − 1

n
.(3)3

We shall often use the simpler following estimates: the roots of ξ1, ξ2,
ξ3 of F satisfy:

n + 1 < ξ1 < n + 1 +
1
n2

,(3)

− n

n + 1
< ξ2 < −n− 1

n
, − 1

n− 1
< ξ3 < − 1

n
,

But, more precise estimates will also be necessary. We use the Lagrange’s
method to compute the beginning of the continued fraction expansion of
the ξ’s.

R1) Approximate value of ξ1

By the change of variable X = n + 1 + Y −1, the polynomial F is
transformed into g(Y ) = −Y 3 + (n2 + 3n + 2)Y 2 + (2n + 3)Y + 1. Since
g(n2 + 3n + 2) = 2n3 + 9n2 + 13n + 7 > 0, and g(n2 + 3n + 3) = −n4 −
4n3 − 6n2 − 3n + 1 < 0, we have

n + 1 +
1

n2 + 3n + 3
< ξ1 < n + 1 +

1
n2 + 3n + 2

,

thus the beginning of the continued fraction expansion of ξ1 is

ξ1 = [n + 1; n2 + 3n + 2, . . . ].
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R2) Approximate value of ξ2

By the successive changes of variables X = −1 + Y −1, Y = n + Z−1

and Z = 1 + T−1 we get the continued fraction expansion

ξ2 = [−1;n, 1, b(n− 2)/2c, . . . ].

Which shows that

−1 +
1

n + 1− 2
n−3

< ξ2 < −1 +
1

n + 1− 2
n

.

R3) Approximate value of ξ3

By a similar study we see that

ξ3 = −[0;n− 1, 1, n2 − n− 2, . . . ],

hence
− 1

n− 1
n2−n−1

< ξ3 < − 1
n− 1

n2−n

.

Notice also the formulae

Φn(x, n−1) =x3− (n2 − n)x2− (n3−n2−n +1)x− (n3− 3n2+3n−1),

Φn(x, n) = x3 − n2x2 − (n3 + n2)x− n3,

Φn(x, n +1)= x3− (n2+ n)x2− (n3+ 3n2+3n +1)x− (n3+3n2+ 3n +1).

We make a very elementary study of the solutions of equation (2):
• If y = 0 then, clearly, x = 0.
• If |y| = 1, consider first the case y = 1, then Φn(x, y) = x3 −

nx2 − (n + 1)x − 1 = g(x), say. It is easy to verify that g(x) = −1
iff x ∈ {−1, 0, n + 1} and that |g(x)| > 1 for all other x ∈ Z, hence
Φn(x, 1) 6= 1 for any x ∈ Z. If y = −1 then since Φn(x,−y) = −Φ(−x, y),
we have Φn(x,−y) = 1 iff x ∈ {1, 0,−(n + 1)}, showing that in this case
solutions (x, y) are the “trivial ones” (0,−1), (1,−1) and (−n− 1,−1).

• If |y| = 2, consider first the case y = 2, then Φn(x, y) = x3 −
2nx2 − 4(n + 1)x− 8 = h(x), say. And it is easy to verify that |h(x)| ≥ 8
for x 6= −1, whereas h(−1) = 2n− 5. Thus Φn(x, 2) = 1 only when n = 3
and x = −1. Moreover, using again the formula Φn(x,−y) = −Φ(−x, y),
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we see that the diophantine equation Φn(x,−2) = 1 has no solution for
n ≥ 3. Thus we may now suppose that |y| ≥ 3.

From formula (2), we have

(x− ξ1y)(x− ξ2y)(x− ξ3y) = 1.

Let i be the index such that

|x− ξiy| = min
1≤j≤3

|x− ξjy|,

then |x−ξiy| < 1 and, by the estimate (3) for the roots of F , ξ1−ξk > n+1
for k 6= 1, thus

(j 6= i) & (1 ∈ {i, j})
⇒ |x− ξjy| ≥ |ξj − ξi| |y| − |x− ξiy| ≥ (n + 1)|y| − 1 > (n + 2/3)|y|.

Hence, |x− ξiy|2 (n + 2/3)|y| < 1, in other words

|x− ξiy| <
(
(n + 2/3)|y|)−1/2 ≤ 1/

√
62,

in particular i is indeed unique.

For n ≥ 20, by (3),

|ξ2 − ξ3| > 1− 1
n + 1

− 1
n− 1

= 1− 2n

n2 − 1

and by a previous computation |x− ξiy| < 1/
√

62, thus

∏

j 6=i

|x− ξjy| > n

(
1− 40

399
− 1

2
√

62

)
y2 > 0.836 n y2 > 16y2

and ∣∣∣∣
x

y
− ξi

∣∣∣∣ <
1

0.836n|y|3 <
1

16|y|3 .

This short study proves that the rational number x/y is a principal
convergent of ξi. Now, we have to consider the three cases i = 1, 2, 3.

i = 1

Then ξ1 = [n + 1; n2 + 3n + 2, . . . ] thus |y| ≥ n2 + 3n + 2.
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i = 2

Then ξ2 = [−1; n, 1, b(n− 2)/2c, . . . ] thus |y| = n, n + 1 or
|y| ≥ (n2 − 3)/2.

i = 3

Then ξ3 = −[0;n− 1, 1, n2 − n− 2, . . . ] thus |y| = n− 1,
n or |y| > n2.

If y = ±(n− 1) then x = ±1 and it is easy to verify that no solution
(x, y) with |y| = n− 1 exists.

If y = ±n then x = ±(n− 1) or x = ∓1. In the second case we have
Φn(1,−n) = 1, finding the last “trivial solution” (x, y) = (1,−n). While,
in the first case a direct computation shows that there is no solution (x, y)
with |y| = n.

If y = ±(n + 1) then x = ±n and by direct computation we see that
there is no solution (x, y) with |y| = n + 1.

This elementary study shows that a non trivial solution (x, y) must
satisfy |y| ≥ (n2 − 3)/2.

Put εh = 1+ ξh for h = 1, 2, 3. From the formula x− ξy = ξa(1+ ξ)b,
we get

x− ξjy = ξa
j εb

j , 1 ≤ j ≤ 3,

which implies

(4) y(ξj+1 − ξj) = ξa
j εb

j − ξa
j+1ε

b
j+1,

where ξj+1 = ξ(j+1) mod 3, with some abuse of notation.

Now we want to estimate the exponents a and b in terms of y. Put
lh = log |ξh|, l′h = log |εh| and µh = log |x− ξhy| for h = 1, 2, 3. Then the
relations x− ξhy = ξa

hεb
h can be written as lha + l′hb = µh, from which we

get, for j 6= k,

(5) a =
l′kµj − l′jµk

l′klj − l′j lk
, b = − lkµj − ljµk

l′klj − l′j lk
.

Put R = l′2l3 − l′3l2; using the obvious relations l1 + l2 + l3 = 0 and
l′1 + l′2 + l′3 = 0 it is easy to verify that R = l′3l1 − l′1l3 = l′1l2 − l′2l1 and we
shall see that R is positive.
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From the estimates (3) one easily deduces that

log(n + 1) < l1 < log(n + 2), − 1
n− 1

< l2 < − 1
n + 1

,

− log n < l3 < − log(n− 1),

log(n + 2) < l′1 < log(n + 3), − log(n + 1) < l′2 < − log n,

− 1
n− 2

< l′3 < − 1
n

.

To estimate the µh we can write, for h 6= i,

|(ξi−ξh)y|− 1
16y2

≤ |x−ξhy| = |(ξi−ξh)y+x−ξiy| ≤ |(ξi−ξh)y|+ 1
16y2

,

since |ξi − ξh| > 0.8 we get

|(ξi − ξh)y|
(

1− 0.08
|y|3

)
≤ |x− ξhy| ≤ |(ξi − ξh)y|

(
1 +

0.08
|y|3

)
.

This implies

(6) log |ξi − ξh| − 0.1
|y|3 ≤ µh − log |y| ≤ log |ξi − ξh|+ 0.1

|y|3 .

From the estimates of the roots of F it is easy to check the following
inequalities

1− 2n

n2 − 1
< ξ3 − ξ2 < 1− 2

n + 1
,

n + 2− 1
n

< ξ1 − ξ2 < n + 2,

n + 1 +
1
n

< ξ1 − ξ3 < n + 1 +
1

n− 2
.

It will be very useful to have estimates for R. From the above esti-
mates of the lh and l′h, we get

log(n− 1)× log n− 1
(n− 1)(n− 2)

< R < log n× log(n + 1).
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Indeed, we have the simpler estimate

(7) log2(n− 1) < R < log n× log(n + 1).

Now we want to get estimates of a and b in terms of y. To simplify
the notations, put

η = 0.1|y|−3 and z = log |y|.

We have to distinguish the three cases i = 1, 2 and 3.

i = 1

By (5),

a =
l′2µ3 − l′3µ2

R
, b =

l3µ2 − l2µ3

R
.

Here,

log(n + 2− 1/n)− η ≤ µ2 − z ≤ log(n + 2) + η,

log(n + 1)− η ≤ µ3 − z ≤ log(n + 2) + η.

Hence, a and b are negative and we have

l′3µ2 − l′2µ3 ≤ |l′2|µ3 ≤ log n× (
z + log(n + 2) + η

)
,

l2µ3 − l3µ2 ≤ |l3|µ2 ≤ log n× (
z + log(n + 2) + η

)
,

thus

A ≤ log n

R

(
z + log(n + 2) + η

) ≤ log n

log2(n− 1)

(
z + log(n + 2) + η

)
,

where we have put
A = max{|a|, |b|}.

This implies

(8)1 A ≤ z
log n

R
+ 3.
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i = 2

By (5),

a =
l′3µ1 − l′1µ3

R
, b =

l1µ3 − l3µ1

R
.

Here,

log (n + 2− 1/n)− η ≤ µ1 − z ≤ log(n + 2) + η,

log
(

1− 2n

n2 − 1

)
− η ≤ µ3 − z ≤ η.

In this case a < 0 < b and we have

0 < l′1µ3 − l′3µ1 ≤ log(n + 3) · (z + η) +
1

n− 2
(
z + log(n + 2) + η

)
,

|l3µ1 − l1µ3| ≤ log n · (z + log(n + 2) + η
)

+ log(n + 2) · (z + η),

thus

(8)2 A ≤ 2 log(n + 2)
R

(
z + 1

2 log(n + 2) + η
)
.

i = 3

Here,

a =
l′1µ2 − l′2µ1

R
, b =

l2µ1 − l1µ2

R
.

And,

log (n + 2− 1/n)− η ≤ µ1 − z ≤ log(n + 2) + η,

log
(

1− 2n

n2 − 1

)
− η ≤ µ2 − z ≤ η.

In this case b < 0 < a and we have

|l′2µ1 − l′1µ2| ≤ log(n + 1) · (z + log(n + 2) + η
)

+ log(n + 3) · (z + η),

|l2µ1 − l1µ2| ≤ log(n + 2) · (z + η) +
1

n− 1
· (z + log(n + 2) + η

)
,
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thus

(8)3 A ≤ 2 log(n + 3)
R

(
z + 1

2 log(n + 2) + η
)
.

Comparing the inequalities (8)i we get the following conclusion:

(8) A ≤ 2 log(n + 3)
R

(
z +

1
2

log(n + 2) + η

)
.

3. A study of a linear form in three variables

In our case Siegel’s identity is

(ξi − ξj)ξa
kεb

k + (ξj − ξk)ξa
i εb

i + (ξk − ξi)ξa
j εb

j = 0

which leads to the relation

(ξj − ξi)ξa
kεb

k

(ξk − ξi)ξa
j εb

j

− 1 =
(ξk − ξj)ξa

i εb
i

(ξi − ξk)ξa
j εb

j

.

We choose j = i+1 and k = i+2, where these values are counted modulo 3,
and consider the linear form of three logarithms

Λ = log |δi|+ a log |ξk/ξj |+ b log |εk/εj |,

where

δi =
ξi+1 − ξi

ξi+2 − ξi
.

Then elementary computation using estimates of Section 2 show that

(9) |Λ| < |ξk − ξj |
|ξi − ξk| ×

1
0.709n|y|3 ×

1.02
|ξi − ξj | <

5
n|y|3 .

Using (8) and (7) this implies

log |Λ| < −3A

2
R

log(n + 2)
+

3
2

log(n + 3) + 2(10)

< −3A

2
log2(n− 1)
log(n + 3)

+
3
2

log(n + 3) + 2.
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Now, we have to find upper bounds for the heights of the algebraic
numbers which appear in Λ.

M1) Measure of δ

We have δ = ξ3−ξ2
ξ1−ξ2

, this number is reciprocal. The conjugates of
modulus > 1 correspond to a numerator which contains the largest of the
conjugates of ξ, this shows that the measure of δ is given by the formula

M(δ) =
∣∣∣∣
ξ1 − ξ3

ξ2 − ξ3

∣∣∣∣ ·
∣∣∣∣
ξ2 − ξ1

ξ3 − ξ1

∣∣∣∣ ·
∣∣∣∣
ξ1 − ξ2

ξ3 − ξ2

∣∣∣∣ ·
(
(ξ1 − ξ2)(ξ2 − ξ3)(ξ3 − ξ1)

)2

= |ξ1 − ξ2|4|ξ1 − ξ3|2.

Thus
M(δ) < (n + 2)6.

M2) Measure of ξ1/ξ2

This number is a unit and it is also reciprocal. Its conjugates of
modulus > 1 correspond to a numerator which contains the largest of the
conjugates of ξ, or to the denominator equal to the smallest conjugate.
Thus

M(ξ1/ξ2) =
∣∣(ξ1/ξ2) · (ξ1/ξ3) · (ξ2/ξ3)

∣∣

= (ξ1/ξ3)2 <

(
n + 1 + 1/n

1/n

)2

< (n + 2)4.

M3) Measure of ε1/ε2

The same arguments than for the study of δ apply and show that the
measure of ε1/ε2 satisfies

M(ε1/ε2) =
∣∣∣∣
ε1

ε2

∣∣∣∣ ·
∣∣∣∣
ε1

ε3

∣∣∣∣ ·
∣∣∣∣
ε3

ε2

∣∣∣∣ · (ε1ε2ε3)2 = ε4
1ε

2
3.

This easily leads to the estimate

M(ε1/ε2) < (n + 2)4.

We quote the result of [LMN] that we shall use three times.
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Proposition 1. Let α1, α2 be nonzeroalgebraic numbers, and let

log α1 and log α2 be any determinations of their logarithms. Consider

the linear form

Λ = b2 log α2 − b1 log α1,

where b1 and b2 are positive integers. We suppose that |α1| and |α2| are

≥ 1. Put

D = [Q(α1, α2) : Q]/[R(α1, α2) : R].

Let a1, a2, h, ρ be positive real numbers, with ρ > 1. Put λ = log ρ and

suppose that

h ≥ max
{

D

2
, 5λ,D

(
log

(
b1

a2
+

b2

a1

)
+ log λ + 2.1

)}
,(i)

ai ≥ max
{

2, 2λ, ρ| log αi| − log |αi|+ 2Dh(αi)
}

, (i = 1, 2).(ii)

When α1 and α2 are multiplicatively independent, we have

(iiii)

log |Λ| ≥ −λa1a2

9

(
4h

λ2
+

4
λ

+
1
h

)2

− 2λ

3
(a1 + a2)

(
4h

λ2
+

4
λ

+
1
h

)

−16
√

2a1a2

3

(
1 +

h

λ

)3/2

− 2(λ + h)− log

(
a1a2

(
1 +

h

λ

)2
)

+
λ

2
+ log λ− 0.15.

Now we consider the three cases for i.

i = 1

We have seen above that in this case a < 0, b < 0 and a ≈ b, for this
reason we put c = a− b and rewrite the linear form Λ as

Λ1 = Λ = log |δ1| − c log
∣∣∣∣
ε3

ε2

∣∣∣∣ + a log
∣∣∣∣
ξ3ε3

ξ2ε2

∣∣∣∣ = b2 log α2 − b1 log α1,

with

b1 = |a|, α1 =
∣∣∣∣
ξ3ε3

ξ2ε2

∣∣∣∣ , b2 = 1, α2 =
∣∣δ1(ε2/ε3)c

∣∣σ where σ ∈ {−1,+1}.
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Put `1 = log α1, `′1 = log α2 then

Λ = |a|`1 − `′1.

1. Estimating `1

One can verify that the minimal polynomial for εξ = ξ + ξ2 is

G(X) = X3 − (n2 + 3n + 2)X2 − (2n + 3)X − 1

and that

G

(
− 1

n
+

1
n2

)
> 0,

G

(
− 1

n
+

1
n2
− 1

n3

)
< 0,

G

(
− 1

n
+

2
n2
− 4

n3

)
< 0,

G

(
− 1

n
+

2
n2
− 5

n3

)
> 0.

Since the function x 7→ x(1−x) is increasing for 0 < x < 0.5, we have

(
1− 1

n

)
1
n

< |ξ3ε3| <
(

1− 1
n− 1

)
1

n− 1
.

For similar reasons,
(

1− 1
n + 1

)
1

n + 1
< |ξ2ε2| <

(
1− 1

n

)
1
n

.

Which implies |ξ3ε3|/|ξ2ε2| > 1.
These remarks show that

1
n
− 1

n2
< |ξ3ε3| < 1

n
− 1

n2
+

1
n3

1
n
− 2

n2
+

4
n3

< |ξ2ε2| < 1
n
− 2

n2
+

5
n3
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thus

1 +
1

n + 5
≤ n2 − n

n2 − 2n + 5
<

∣∣∣∣
ξ3ε3

ξ2ε2

∣∣∣∣ <
n2 − n + 1
n2 − 2n + 4

< 1 +
1
n

and
1

n + 6
< `1 <

1
n

.

2. Estimating `′1
We have

1 +
1− 2n

n2−1

n + 2
< δ1 = 1 +

ξ3 − ξ2

ξ1 − ξ3
< 1 +

1
n + 1

,

thus 0 < log δ1 < 1
n+1 , and moreover

n− 1.5 < n− 1− 1
n− 1

=
1− 1

n−1

1/n
<

∣∣∣∣
ε3

ε2

∣∣∣∣ <
1− 1

n

1/(n + 1)
= n− 1

n
.

So that
|c| log(n− 1.5)− 1

n + 1
< `′1 < |c| log n +

1
n + 1

.

As a consequence of the estimates of `1, `′1 and |Λ|, we have

n
(|c| log(n− 1.5)− 1/n

) ≤ |a| ≤ (n + 6)
(|c| log n + 1/n

)
.

3. Estimating measures

We have

M
(
ξ3ε3/(ξ2ε2)

)
= |ξ1ε1|4|ξ2ε2|2 < (n + 2)4(n + 3)4n−2 < (n + 4)6

and
M(ξ3/ξ2) ≤ (n + 2)4, M(δ1) ≤ (n + 2)6.

4. Application of Proposition 1

We have to take

h ≥ max
{

5λ, D log
( |a|

a2
+

1
a1

)
+ log λ + 1.56

}
,
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by the upper bound of |a| we choose

h = max

{
5λ, 6 log

(
(n + 6)

(|c| log n + 1/n
)

a2
+

1
a1

)
+ log λ + 1.56

}
,

and we can choose

a1 = max
{
2λ, (ρ− 1)/n + 12 log(n + 4)

}
,

a2 = max
{

2λ, (ρ− 1)
(|c| log n + |, 1/n

)
+ 12

(
1 +

2|c|
3

)
log(n + 4)

}
.

Applying inequality (iii), we get,

log |Λ1| ≥ −L1, (say).

5. Upper bound on n

In this case, using (8)1 and (7), we get

log |Λ1| ≤ −3A
R

log(n + 3)
+

3
2

log(n + 3) + 2

≤ −3A
log2(n− 1)
log(n + 3)

+
3
2

log(n + 3) + 2,

where A ≥ |a|.
We have already seen that

|a| ≥ n
(|c| log(n− 1.5)− 1/n

)
.

When c 6= 0, choosing ρ = 67.1 and combining the previous inequalities,
we get

n ≤ 150000.

6. The case c = 0

In the special case c = 0, we have

Λ1 = log |δ1|+ a log
∣∣∣∣
ξ3ε3

ξ2ε2

∣∣∣∣ .
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By the estimates of δ1, ξ3ε3
ξ2ε2

and |Λ| we have

|a| ≤ 1/n

1/(n + 6)
=

n + 6
n

< 2.

The case a = b = 1 gives x − ξy = ξ + ξ2 which is impossible. Whereas
the case a = b = −1 gives

|y| =
∣∣∣∣
(ξ1ε1)−1 − (ξ2ε2)−1

ξ2 − ξ1

∣∣∣∣ <

((
1− 1

n

)
1

n+1

)
+ (n + 1)−2

n + 1

<

n(n+1)
n−1 + 1

n−1

n + 1
=

n + 1
n− 1

,

so that |y| ≤ 1, and this has been studied above.

i = 2

Here we choose j = 3, k = 1 and put b = −2a + c − 1 (recall that
a < 0 and b > 0) and rewrite Λ as

Λ2 = Λ = log δ′2 + c log
∣∣∣∣
ε1

ε3

∣∣∣∣ + a log
∣∣∣∣
ξ1ε

2
3

ξ3ε2
1

∣∣∣∣ = b2 log α2 − b1 log α1,

with

b1 = |a|, α1 =
∣∣∣∣
ξ3ε

2
1

ξ1ε2
3

∣∣∣∣ , b2 = 1, α2 = |δ′2(ε1/ε3)c|σ where σ ∈ {−1, +1},

and where

δ′2 =
ε3(ξ1 − ξ2)
ε1(ξ3 − ξ2)

.

Now we put `2 = log α1, `′2 = log α2 then

Λ2 = |a|`2 − `′2.
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1. Estimating `2

Using the estimate R3 we get

(n + 1)
(
1− 1

n−1/(n2−n−1)

)2

1
n−1/(n2−n) (n + 2 + n−2)2

≤ α1 =
∣∣∣∣
ξ1ε

2
3

ξ3ε2
1

∣∣∣∣ ≤
(n + 1 + n−2)

(
1− 1

n−1/(n2−n)

)2

1
n−1/(n2−n−1) (n + 2)2

,

from which we can deduce

1 +
5
n

< α1 < 1 +
5
n

+
11
n2

.

Thus
5

n + 3
<

5
n
− 13

n2
< `2 <

5
n

+
11
n2

<
5

n− 3
.

2. Estimating `′2
Here,

δ′2 =
ε3(ξ1 − ξ2)
ε1(ξ3 − ξ2)

= 1 +
ε2(ξ1 − ξ3)
ε1(ξ3 − ξ2)

,

which implies

1 +
1
n

< 1 +
1

(n + 2)
(
1− 2

n+1

) < δ′2 < 1 +
n+2

n

(n + 1)
(
1− 2n

n2−1

)

=1 +
1 + 2/n

n−1−2/(n−1)
< 1+

n− 1
(n− 1)2− 2

+
2

(n− 1)2− 2
=1 +

n + 1
n2− 2n− 1

,

so that 1 + 1
n < δ′2 < 1 + 1

n−3 for n ≥ 4. Also

n + 3 <
n + 2

1− 1
n−1

<

∣∣∣∣
ε1

ε3

∣∣∣∣ <
n + 2 + 1/n2

1− 1
n

< n + 4.

So that

|c| log(n + 3)− 1
n− 3

< `′2 < |c| log(n + 4) +
1

n− 3
.
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As a consequence of the estimates of `2, `′2 and |Λ|, we have

n− 3
5

(|c| log(n + 3)− 1/(n− 4)
)

< |a| < n + 3
5

(|c| log(n + 4) + 1/(n− 4)
)
.

3. Estimating measures

Here

δ′2 =
ε1(ξ2 − ξ3)
ε3(ξ2 − ξ1)

,

and

h(δ′2) ≤
5
3

log(n + 2), h
(

ε1

ε3

)
≤ 2

3
log(n + 2).

Moreover
M

(
ξ1ε

2
3/(ξ3ε

2
1)

) ≤ (n + 2)6.

[Look at the conjugates of modulus > 1 of this number.]

4. Application of Proposition 1

We take

h = max

{
5λ, 6 log

(
(n + 3)

(|c| log(n + 4) + 1)
)

5a2
+

1
a1

)
+ log λ + 1.56

}

and we can choose

a1 = max
{

2λ,
5

n− 3
(ρ− 1) + 12 log(n + 4)

}
,

a2 = max
{

2λ, (ρ−1)
(|c| log(n+4)+1/(n−4)

)
+12

(
5
3

+
2
3
|c|

)
log(n+4)

}
.

By Proposition 1,
log |Λ2| ≥ −L2, (say).

5. Upper bound on n

By (8),

log |Λ2| ≤ −3A

2
R

log(n + 3)
+

3
2

log(n + 3) + 2.
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We have seen that

|a| ≥ n− 3
5

(|c| log(n + 3)− 1/(n− 4)
)
,

this implies

A = |b| ≥ |a|
(

2− 5
(n− 3) log n

)
− 2.

When c 6= 0, choosing ρ = 81.2 we get

n ≤ 810000.

6. The special case c = 0

If c = 0 then the relations Λ2 = |a|`2 − log δ′2, `2 > 5/(n − 3) and
log(1 + 1/n) < log δ′2 < 1/(n− 3) imply

|Λ2| ≥ min
{

5
n + 3

− 1
n− 3

,
1
n
− 1

2n2

}

in contradiction with (9).

i = 3

Here j = 1 and k = 2, put a = −2b + c + 1 and rewrite Λ as

Λ3 = Λ = log δ′3 + c log
∣∣∣∣
ξ2

ξ1

∣∣∣∣ + b log
∣∣∣∣
ξ2
1ε2

ξ2
2ε1

∣∣∣∣ = b2 log α2 − b1 log α1,

with

b1 = |b|, α1 =
∣∣∣∣
ξ2
1ε2

ξ2
2ε1

∣∣∣∣ , b2 = 1, α2 =
∣∣δ′3(ξ2/ξ1)c

∣∣σ where σ ∈ {−1, +1},

and where

δ′3 =
ξ2(ξ1 − ξ3)
ξ1(ξ2 − ξ3)

.

Put `3 = log α1, `′3 = log α2 then

Λ3 = |b|`3 − `′3.
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1. Estimating `3

One can prove that

1
n

< log
(

1 +
1
n

+
3
n2

)
< `3 <

1
n

+
4
n2

.

2. Estimating `′3
One can also prove that

|c| log(n + 1)− 1
n
− 5

n2
< `′3 < |c| log(n + 4) +

1
n

+
5
n2

.

As a consequence of the estimates of `3, `′3 and |Λ|, we have

n

1 + 4/n

(
|c| log(n + 1)− 1

n
− 5

n2

)
< |b| < n

(
|c| log(n + 4) +

1
n

+
5
n2

)
.

3. Estimating measures

One has

h(δ3) ≤ log(n + 2), h(ξ2/ξ1) ≤ 2
3

log(n + 2), h
(

ξ2
1ε2

ξ2
2ε1

)
≤ log n.

4. Application of Proposition 1

We take

h = max

{
5λ, 6 log

(
n
(|c| log(n + 1) + 1)

)

a2
+

1
a1

)
+ log λ + 1.56

}

and we can choose

a1 = max
{

2λ,
1
n

(ρ− 1) + 12 log(n + 4)
}

,

a2 = max
{
2λ,

(|c|+ 1
n

)
(ρ− 1) log(n + 4) + 12

(
1 + 2

3 |c|
)
log(n + 4)

}
.

By Proposition 1,

log |Λ3| ≥ −L3, (say).
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5. Upper bound on n

We have

log |Λ3| ≤ 3A

2
R

log(n + 3)
+

3
2

log(n + 3) + 2.

We have seen that

|b| ≥ n

1 + 4/n

(
|c| log(n + 1)− 1

n
− 5

n2

)
,

this implies

A = |a| ≥ |b|
(

2− 1 + 4/n

n log n

)
− 2.

When c 6= 0, choosing ρ = 48.3 we get

n ≤ 260000.

6. The special case c = 0

If c = 0 then b = −1 and a = 3, and

|y| =
∣∣∣∣
ξ3
1ε−1

1 − ξ3
2ε−1

2

ξ2 − ξ1

∣∣∣∣ <
(n + 1 + 1/n)2

n + 2− 1/n
< n + 2,

in contradiction with the hypothesis |y| ≥ (n2 − 3)/2.

Application of a theorem of M. Waldschmidt

Let αi, 1 ≤ i ≤ n be non-zero algebraic numbers and b1, b2, . . . , bn

be positive rational integers and suppose that the number

Λ = b1 log α1 + · · ·+ bn log αn

is not zero. We apply a theorem of M. Waldschmidt [W], Corollaire 1.5.
Put D = [Q(α1, . . . , αn) : Q] and g = [R(log α1, . . . , log αn) : R]. For

1 ≤ i ≤ n, let Ai > 1 be real numbers such that log Ai ≥ h(αi). Then the
quoted result is the following:
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Proposition 2. Let E and f be positive real numbers, E ≥ e such

that,

E ≤ min

{
AD

1 , . . . , AD
n ,

nD

f

( n∑

i=1

| log αi|
| log Ai|

)−1
}

.

Put

Z0 = max
{

7 + 3 log n,
g

D
log E, log

(
D

log E

)}
,

M = max
1≤j<n

{
bn

log Aj
+

bj

log An

}
,

G0 = max{4nZ0, log M},

U0 = max
{
D2 log A1, . . . , D2 log An, Dn+2G0Z0 log A1 · · ·
· · · log An(log E)−n−1

}
.

Then

|Λ| ≥ exp
{−1500 g−n−2 22n n3n+5(1 + g/f)nU0

}
.

In the present case we have three logarithms, D = 6, g = 1 and, for
n ≥ 3 (here n is again the parameter of our cubic equations), we can take

log A1 = log(n + 2), log A2 = log A3 =
2
3

log(n + 2),

and

E = e, f = 3/e, Z0 = 7 + 3 log 3, G0 = max{12Z0, log M}.

A short computation shows that Proposition 2 implies

log |Λ| >
{ −1.398× 1019 × log3(n + 2), if log M < 123.6,

−1.132× 1017 × log M × log3(n + 2), otherwise.

We can take

M =
3

2 log(n + 2)
+

A

log(n + 2)
<

A + 2
log(n + 2)

.
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Using the upper bound (10) on log |Λ| proved before (we get

3A

2
R

log(n + 3)
≤ C max

{
123.6, log

( A + 2
log(n + 2)

)}
× log3(n + 2)

+2 log(n + 3) + 3,

where C = 1.398× 1019. Which gives the following upper bound for A in
terms of n:

A≤
(

2C

3
max

{
123.6, log

( A + 2
log(n+ 2)

)}
× log3(n + 2) + 2 log(n + 3) + 3

)

× log(n + 3)
R

.

Using the upper bound on n, we find A < 1.1× 1023.

4. Application of Diophantine approximation

We use the following lemma which is a variant of a result of Baker–
Davenport.

Lemma. Let Λ = uα + vβ + γ, where α, β and γ are nonzero real

numbers and where u and v are rational integers, with |u| ≤ A. Let Q > 0
be a real number. Suppose that θ1 and θ2 satisfy

|θ1 − α/β| < 1
100Q2

, and |θ2 − γ/β| < 1
Q2

.

Let p/q be a rational number with 1 ≤ q ≤ Q and |θ1 − p/q| < 1/q2 and

suppose that q‖qθ2‖ ≥ 1.01, A + 2, [where ‖ · ‖ denotes the distance to the

nearest integer] then

|Λ| ≥ |β|
Q2

.

Proof. Put |Λ| = η, then
∣∣∣∣q

Λ
β

∣∣∣∣ =
∣∣∣∣uq

(
α

β
− θ1

)
+ u(qθ1 − p) + pu + vq + q

(
γ

β
− θ2

)
+ qθ2

∣∣∣∣ =
qη

|β| .
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Hence,

q‖qθ2‖ ≤ q

(
qη

|β| + |uq|
∣∣∣∣
α

β
− θ1

∣∣∣∣ +
|u|
q

+ q

∣∣∣∣
γ

β
− θ2

∣∣∣∣
)

<
q2η

|β| +
|u|q2

100Q2
+ |u|+ q2

Q2
≤ Q2η

|β| + 1.01A + 1,

which leads at once to the result. ¤

We applied the above lemma for n ≤ 150000, n ≤ 810000 and n ≤
260000 respectively in the three cases i = 1, 2 and 3. We found no non-
trivial solution for n ≥ 10. The verification took less than six hours on a
DEC alpha Station 1000A.

Thus, we have proved the Theorem stated in the Introduction.
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