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On Legendre’s equation over number fields

By MICHAEL E. POHST (Berlin)

Dedicated to Kálmán Győry on his 60th birthday

Abstract. In this paper we improve on Siegels’s bound for the smallest integral
solution of the equation ax2 + by2 + cz2 = 0 for given integers a, b, c of an algebraic
number field F .

1. Introduction

Throughout this paper F denotes an algebraic number field of degree
n over the rational numbers Q . We assume that it is generated by a root
ρ of a monic irreducible polynomial

(1.1) f(t) = tn + a1t
n−1 + · · ·+ an ∈ Z[t].

Over the complex numbers C the polynomial f(t) splits into a product of
linear factors

(1.2) f(t) =
n∏

j=1

(
t− ρ(j)

)
,

where the conjugates ρ = ρ(1), . . . , ρ(n) are ordered as usual, i.e.
ρ(1), . . . , ρ(r1) ∈ R and ρ(r1+1), . . . , ρ(n) ∈ C \ R subject to
ρ(r1+j) = ρ(r1+r2+j) (1 ≤ j ≤ r2). Especially, we have

(1.3) n = r1 + 2r2.

Mathematics Subject Classification: 11D09, 11Y40, 11H55.
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Any element α of F can be presented as a linear combination of 1, ρ, . . .

. . . , ρn−1 with rational coefficients. Substituting ρ(j) for ρ in that presen-
tation we obtain the j-th conjugate α(j) of α (1 ≤ j ≤ n). Arithmetical
problems usually require computations with algebraic integers contained
in F, i.e. those elements of F whose minimal polynomials have coefficients
in Z. They form a ring oF with a Z-basis ω1, . . . , ωn (integral basis of
F ), the so-called maximal order of F . It is related to a very important
invariant of F , the discriminant dF of F , via

(1.4) dF =
(

det
((

ω
(j)
i

)
1≤i,j≤n

))2

.

In order to make oF a lattice we equip F with a scalar product in the
usual way:

(1.5) 〈 , 〉 : F × F → R≥0 : (x, y) 7→ 〈x, y〉 =
n∑

j=1

x(j)y(j).

Fixing the basis ω1, . . . , ωn of oF then 〈x, x〉 becomes a positive definite
quadratic form with coefficient matrix A = (〈ωi, ωj〉)1≤i,j≤n and (oF , A)
becomes a lattice. We observe that the entries of that Gram matrix are
real algebraic integers which belong to Z in case all zeros of f(t) are real,
i.e. the field F is totally real . The determinant of the Gram matrix is just
|dF |.

We note that the last considerations remain valid, if we replace oF by
any order R of F , i.e. a subring of oF of finite index (oF : R) (Z-module
index). In that case the discriminant of R, obtained from a Z-basis of R as
in (1.4), is denoted by dR. The Gram matrix of that basis has determinant
|dR|.

Considering elements x of F as vectors of all conjugates (x(1), . . . , x(n)),
we have besides the norm from F

N(x) =
n∏

j=1

x(j)

also the well known norms from n-dimensional Euclidean space. In the
sequel we use the maximum norm

‖x‖∞ = max
{
|x(j)| | 1 ≤ j ≤ n

}
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and the Euclidean norm

‖x‖2 =
√
〈x, x〉.

In this paper we improve on Siegel’s bounds [4] for the smallest
integral solution of Legendre’s equation

(1.6) ax2 + by2 + cz2 = 0 (abc 6= 0)

over a given algebraic number field F . These better bounds are of impor-
tance for the calculation of the solutions and needed in connection with the
computation of the solutions of relative quartic index form equations [2].
The result is of theoretical interest also, since it supports the observation
made in [3] that the Euclidean norm seems to yield better bounds than
the maximum norm for problems in algebraic number fields. Since Siegel
uses a different norm than we do, we need to be more precise about the
quality of our results. Our new bounds are always better in the sense that
the resulting search area for a solution has a much smaller volume.

2. Representation of 0 by ternary quadratic forms

Legendre’s equation is a special case of a non-degenerate ternary
quadratic form representing zero. A representation of zero is always sup-
posed to be non-trivial, i.e., a solution with at least one non-zero coordi-
nate exists. Let us assume that a non-degenerate ternary quadratic form
is given over an integral domain R with quotient field F :

(2.7) Q := Q(x1, x2, x3) =
3∑

i,j=1

aijxixj (aij ∈ R, aij = aji).

It is obvious that Q represents 0 over R, if and only if it represents 0 over F .
But over F we can transform the variables x1, x2, x3 linearly into x, y, z

such that Q becomes a sum of three squares. Hence, the representation
of 0 needs to be discussed only for these forms.

Because of possibly occuring denominators during a transformation
of the variables we shortly discuss the relation between integer solutions
of (2.7) and of the diagonalized form Q = ax2 + by2 + cz2. At first, let



538 Michael E. Pohst

us assume that d := a11(a11a22 − a2
12) 6= 0, eventually after reordering the

variables. In that case quadratic supplementing of (2.7) yields

Q = a11

(
x1+

a12

a11
x2+

a13

a11
x3

)2

+
a11a22−a2

12

a11

(
x2 +

a11a23−a12a13

a11a22−a2
12

x3

)2

+
(a11a22 − a2

12)(a11a33 − a2
13)− (a11a23 − a12a13)2

a11(a11a22 − a2
12)

x2
3 = 0.

Therefore we just need to multiply Q by d to obtain a sum of three squares
with coefficients in R. In the remaining cases we either have
a11 6= 0 but a11a22 − a2

12 = a11a33 − a2
13 = 0,

or all diagonal elements vanish.
If the first possibility occurs we substitute (x1, x2, x3) by (y1, y2 + y3,

y2 − y3). For the other case we assume that a12a13 6= 0 (after eventually
reordering the variables). Then a substitution of (x1, x2, x3) by (y1 + y2,

y1−y2, y3) puts us into a situation already discussed, i.e., the coefficient of
y2
1 does not vanish. Hence, the assumption Q = ax2 +by2 +cz2 is justified.

In the case of R being the maximal order of an algebraic number
field F the existence of a solution of Q = 0 is easily decidable by congruence
methods. Let S be the set of all non-zero prime ideals of R which contain
at least one of the coefficients a, b, c. Then a necessary and sufficient
condition for Q representing 0 is that

(i) Q(j) represents 0 in R for 1 ≤ j ≤ r1

and

(ii) Q represents 0 in the completions Rp for all but at most one p ∈ S.

This is the theorem of Hasse–Minkowski and usually refered to as the local
global principle.

In case R is an arbitrary order, the test for a representation of 0 is also
carried out in oF . We note that in the beginning the quadratic form under
consideration must indeed be tested, whether it represents zero. Bounds
for a solution are obtained only under the assumption that a solution exists
at all.

We shall derive bounds for a small solution of Q = 0 by following
Siegel’s ideas (some of which go back to Thue) but using the Euclidean
norm instead of the maximum norm. This not only gives better bounds,
but it also simplifies the presentation. For example, a superfluous discus-
sion of 3n cases can be avoided. We consider (1.6) over an order R of F
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(a, b, c∈R). We assume that a solution (ξ, η, ζ) ∈ R3 \{0} exists. We note
that a representation of zero over R is then tantamount to the n equations

a(κ)(ξ(κ))2 + b(κ)(η(κ))2 + c(κ)(ζ(κ))2 = 0 (1 ≤ κ ≤ n).

For an easier understanding of Siegel’s method we give a short overview
on its important steps.

In Step 1 the existence of elements u, v, w ∈ R of relatively small
norm subject to uξ + vη + wζ = 0 is shown. Siegel does this by using the
maximum norm for the conjugates of u, v, w. He obtains his result from
Minkowkski’s theorem on linear forms. We instead apply Minkowski’s
theorem on successive minima using a T2-norm with suitable weights.

In Step 2 the projective line ux + vy + wz = 0 is considered. It
intersects the cone ax2 + by2 + cz2 = 0 obviously in the point (ξ, η, ζ)
and in a second point with coordinates, say, (X, Y, Z) ∈ F 3. For the
conjugates of X, Y , Z, respectively for the sum of their absolute values,
we get upper bounds from Step 1. Finally, a transition from X, Y , Z to
integral coordinates yields the result.

Theorem 2.1 (Siegel). If the diophantine equation a1x
2
1 + a2x

2
2 +

a3x
2
3 = 0 has a non-trivial solution in the number field F , then it also has

an integral solution X1, X2, X3 whose conjugates X
(κ)
l (1 ≤ l ≤ 3, 1 ≤

κ ≤ n) satisfy
∣∣∣∣∣∣

X
(κ)
1√

a
(κ)
2 a

(κ)
3

∣∣∣∣∣∣
< 6|dR|2/n,

∣∣∣∣∣∣
X

(κ)
2√

a
(κ)
1 a

(κ)
3

∣∣∣∣∣∣
< 6|dR|2/n,

∣∣∣∣∣∣
X

(κ)
3√

a
(κ)
1 a

(κ)
2

∣∣∣∣∣∣
< 6|dR|2/n.

The major improvements obtained in this paper are better estimates
in Step 1. Also, the bounds in Step 2 are better inasmuch as they describe
a search area of smaller volume. They are a whole lot better for totally
real fields F , a case which is not treated separately by Siegel but which is
extremely important for applications to relative quartic index form equa-
tions.

In order to avoid a superfluous discussion of various cases we change
our notation slightly. Instead of (1.6) we consider the equations

(2.8)
(
a1x

2
1 + a2x

2
2 + a3x

2
3

)(κ)
= 0 (1 ≤ κ ≤ n)

for given a1, a2, a3 ∈ R subject to a1a2a3 6= 0. We stipulate that there is
a solution (ξ1, ξ2, ξ3) ∈ R3 \ {0}. Then b := ξ1R+ ξ2R+ ξ3R is a non-zero
ideal of R whose norm N(b) will be denoted by B.
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3. First estimate

In Step 1 we show the existence of (u1, u2, u3) ∈ R3 \ {0} with special
properties satisfying

(3.9) (u1ξ1 + u2ξ2 + u3ξ3)(κ) = 0 (1 ≤ κ ≤ n).

Following Siegel’s precedent we introduce several constants which
will be useful in defining the needed weights for the T2-norm. We re-
call that these weights will guarantee that the conjugates of a lattice
point (u1, u2, u3), which will exist according to Minkowski, have nice prop-
erties. For κ ∈ {1, . . . , n} we choose variables κi, κj , κk with values
{κi, κj , κk} = {1, 2, 3} such that

|a(κ)
κk
| |ξ(κ)

κk
|2 = max

{|a(κ)
1 | |ξ(κ)

1 |2, |a(κ)
2 | |ξ(κ)

2 |2, |a(κ)
3 | |ξ(κ)

3 |2} =: M2
κ .

Hence, we always have ξ
(κ)
κk 6= 0. In case |κ − κ̃| = r2 for two conjugates

κ, κ̃, we must additionally require that the values of κl and of κ̃l coincide
for 1 ≤ l ≤ 3. In the sequel we identify the variables κl and their values to
avoid double indices. For the coordinates of a vector (x1, x2, x3) ∈ F 3 we
introduce the following abbreviation which makes the exposition easier to
read:

(3.10) xκl
:= x(κ)

κl
.

We also write
A2

κ := |a(κ)
1 a

(κ)
2 a

(κ)
3 |.

We let λ be a positive real number which will be specified later. In-
troducing the constants

(3.11)

λκ :=
λB1/nAκ

|dR|3/(2n)Mκ|aκi |
, µκ :=

λB1/nAκ

|dR|3/(2n)Mκ|aκj |
,

νκ :=
M2

κ

|aκk
|B2/n

we can define

(3.12)

Q̃(u1, u2, u3)

:=
n∑

κ=1

(
λκ|uκi |2 + µκ|uκj |2 + νκ

∣∣∣∣uκk
+

ξκi

ξκk

uκi +
ξκj

ξκk

uκj

∣∣∣∣
2
)

.
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We represent the ui (i = 1, 2, 3) by a fixed Z-basis of R. Then Q̃(u1, u2, u3)
becomes a positive definite quadratic form in 3n variables. It is not dif-
ficult to calculate its determinant analogously to the computation of the
determinant of a Gram matrix of a Z-basis of R:

(3.13) det Q̃ = |dR|3
n∏

κ=1

(λκµκνκ) = λ2n.

Minkowski’s theorem on successive minima yields the existence of
(u1, u2, u3) ∈ R3 \ {0} satisfying

(3.14) Q̃(u1, u2, u3) ≤ (γ3n
3nλ2n)1/(3n) =: ∆,

where the constants γ3n
3n denote Hermite’s constants as usual.

On the other hand, we have

Q̃(u1, u2, u3) ≥
n∑

κ=1

νκ

∣∣∣∣uκk
+

ξκi

ξκk

uκi +
ξκj

ξκk

uκj

∣∣∣∣
2

(3.15)

=
n∑

κ=1

B−2/n|(u1ξ1 + u2ξ2 + u3ξ3)(κ)|2.(3.16)

Obviously, the element β := u1ξ1 + u2ξ2 + u3ξ3 of R is in b. By the
inequality between arithmetic and geometric means we obtain

n∑
κ=1

B−2/n|(u1ξ1 + u2ξ2 + u3ξ3)(κ)|2 ≥ n
n
√

(N(β)/B)2.

Hence, we get |N(β)| < B and consequently β = 0, if we stipulate

(Q̃(u1, u2, u3)/n) < 1.

Because of Minkowski’s theorem the latter can be achieved upon requiring

(3.17)
(

1
n

(γ3n
3nλ2n)1/(3n)

)
< 1.

From this we easily deduce the following condition on the constant λ:

(3.18) λ < (n/γ3n)3/2.
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We note that the choice of λ according to (3.18) is tantamount to ∆ < n.
Hence, we can estimate ∆/λ by n/λ. This will be used later. We note
that λ < 1√

2
for n = 1, λ < 4

√
3 for n = 2, and that an upper limit for λ is

exp(log(π) + 1 − log(3))3/2 = 4.8 as n tends to infinity. (For this we use
Blichfeldt’s estimate [1]

γ3n
3n <

(
2
π

)3n

Γ
(

1 +
3n + 2

2

)2

for Hermite’s constants and Stirling’s formula.)
This finishes Step 1.

4. Second estimate

In Step 2 we interchange the role of the triples (u1, u2, u3) and
(ξ1, ξ2, ξ3). Following Siegel’s precedent we consider the projective line

(4.19) u1x1 + u2x2 + u3x3 = 0.

According to Step 1 it intersects the cone

(4.20) a1x
2
1 + a2x

2
2 + a3x

2
3 = 0

in the point (ξ1, ξ2, ξ3). Consequently, there is a second intersection point,
say with coordinates (X1, X2, X3). Since the coordinates of both points
satisfy the preceding two equations, we can eliminate variables and get
relations between them:

(4.21) ξκk
Xκk

= aκj u
2
κi

+ aκiu
2
κj

,

and

(4.22) ξκj Xκk
+ ξκk

Xκj = −2aκiuκj uκk

for κ ∈ {1, . . . , n} and {κi, κj , κk} = {1, 2, 3}. We will use these to get
upper bounds on the absolute values of Xκl

(l ∈ {i, j, k}). We note that
we have (X1, X2, X3) ∈ F 3 because of (4.21).

From (3.11), (3.12) and (3.14) we conclude

(4.23) ∆ ≥ λ(B|dR|−3/2)1/n
nX

κ=1

1q
|aκiaκj ||ξκk |

�|aκj | |uκi |2 + |aκi | |uκj |2
�
,



On Legendre’s equation over number fields 543

and by applying (4.21) we obtain

(4.24)
n∑

κ=1

|Xκk
|√|aκiaκj |

=
n∑

κ=1

|aκj u
2
κi

+ aκiu
2
κj
|√|aκiaκj ||ξκk
| ≤ ∆|dR|3/(2n)

λB1/n
=: K.

This is the bound for a weighted sum of the absolute values of Xκk
which

we need.
For a short overview on the quality of our results we present the

following list of data and add a few explanatory remarks.

n 1 2 3 4 5 10 100 1000 ∞
λ 0.71 1.32 1.31 1.71 2.00 2.86 4.41 4.75 4.80

∆/λ 1.41 1.52 2.28 2.34 2.49 3.50 22.66 210.71 ∞

For large n the upper bound in the last estimate is about 1
30 of the

result we could obtain from Siegel’s bound. For small n we can even beat
Siegel’s result on the biggest conjugate Xκk

. For n = 1, 2 our result is
about one fourth of his, even for n = 10 we still obtain a constant of 3.50
compared to his constant 6.

However, we must recall that according to our notation the elements
Xκk

need not be conjugates of an element of F inasmuch as κk can assume
values between one and three. Therefore we must estimate the weighted
sum of the absolute values of the conjugates of all three elements X1,
X2, X3.

As before we start with the estimate obtained for Q̃. We recall that
(4.23), (4.24) imply the inequality

(4.25) K ≥
n∑

κ=1

1√|aκiaκj ||ξκk
|
(|aκj ||uκi |2 + |aκi ||uκj |2

)
.

Hence, we get a priori

n∑
κ=1

√
|aκj |
|aκi |

|uκi |2
|ξκk

| ≤ K,(4.26)

n∑
κ=1

√
|aκi |
|aκj |

|uκj |2
|ξκk

| ≤ K,(4.27)
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n∑
κ=1

2|uκi ||uκj |
|ξκk

| ≤ K.(4.28)

If we want to estimate Xκi , Xκj from above by (4.21), (4.22) we note that
because of the choice of the index κk we need ξκk

to be a multiplier of
Xκi , Xκj . (Only ξκk

is guaranteed to be non-zero.) Hence, we must use
(4.22). We obtain with the preceding estimates

n∑
κ=1

|Xκj |√
|aκiaκk

| =
n∑

κ=1

1√
|aκiaκk

||ξκk
|
∣∣2aκiuκj uκk

+ ξκj Xκk

∣∣

≤
n∑

κ=1

(
2

|ξκk
|

√
|aκi |
|aκk

| |uκj
|
∣∣∣∣
ξκiuκi + ξκj uκj

|ξκk
|

∣∣∣∣ +

√|aκj ||ξκj |√
|aκk

||ξκk
|

|Xκk
|√|aκiaκj |

)

≤
n∑

κ=1

(
2|uκi

||uκj
|

|ξκk
| + 2

√
|aκi

|
|aκj |

|uκj
|2

|ξκk
| +

|Xκk
|√|aκiaκj |

)
≤ 4K.

Similarly, we get
n∑

κ=1

|Xκi |√|aκj aκk
| ≤ 4K.

Taking into account that because of (4.25) even the sum of the left-hand
sides of (4.26) and (4.27) is bounded by K, we obtain the result

(4.29)
n∑

κ=1




∣∣∣∣∣∣
X

(κ)
1√

a
(κ)
2 a

(κ)
3

∣∣∣∣∣∣
+

∣∣∣∣∣∣
X

(κ)
2√

a
(κ)
1 a

(κ)
3

∣∣∣∣∣∣
+

∣∣∣∣∣∣
X

(κ)
3√

a
(κ)
1 a

(κ)
2

∣∣∣∣∣∣


 ≤ 7K.

We must remark, however, that the found solution (X1, X2, X3) of
Legendre’s equation is not necessarily integral. A look at the equations
(4.21) tells us that the Xl (1 ≤ l ≤ 3) are contained in the inverse b−1 of
the ideal b. For this we need that the ideal b is invertible in its order R,
otherwise these considerations must be transfered to the maximal order.

For any τ ∈ b the elements X̃l = τXl are integral (in R). Again, we
follow Siegel who applies Minkowski’s theorem on linear forms to get the
existence of 0 6= τ ∈ b satisfying

(4.30) |τ (κ)| ≤ |dRB2|1/(2n).

Multiplying the solution (X1, X2, X3) with this τ we obtain our main re-
sult.
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Theorem 4.1. If the diophantine equation a1x
2
1+a2x

2
2+a3x

2
3 = 0 has

a non-trivial solution in the number field F , then it also has an integral
solution X1, X2, X3 which satisfies

n∑
κ=1




∣∣∣∣∣∣
X

(κ)
1√

a
(κ)
2 a

(κ)
3

∣∣∣∣∣∣
+

∣∣∣∣∣∣
X

(κ)
2√

a
(κ)
1 a

(κ)
3

∣∣∣∣∣∣
+

∣∣∣∣∣∣
X

(κ)
3√

a
(κ)
1 a

(κ)
2

∣∣∣∣∣∣


 ≤ 7

∆
λ
|dR|2/n.

Remark. For large n the upper bound in the last estimate is about
0.08 times the result we can derive from Siegel’s bounds. However, because
of the large factor 7 we cannot beat Siegel’s result on the biggest conjugate
of any Xl (1 ≤ l ≤ 3). Hence, the major achievement of the last theorem
is that it decreases the volume of the search area drastically. The latter is
of course important for actual computations.

5. Totally real number fields

We now consider the special case of F being totally real. Because of
α1α2α3 6= 0, exactly two of the three coefficients α

(κ)
1 , α

(κ)
2 , α

(κ)
3 must have

the same sign for each conjugate κ ∈ {1, . . . , n}. Since we chose

M2
κ = |a(κ)

κk
| |ξ(κ)

κk
|2 = max{|a(κ)

1 | |ξ(κ)
1 |2, |a(κ)

2 | |ξ(κ)
2 |2, |a(κ)

3 ||ξ(κ)
3 |2},

we must have
sign(aκk

aκi) < 0 < sign(aκiaκj )

and therefore

(5.31) max{|aκi | |Xκi |2, |aκj | |Xκj |2} ≤ |aκk
| |Xκk

|2.
Using this the estimates of the preceding section become much sharper,
since the poor bounds we got from (4.22) are not needed anymore. With
(4.24) and (4.30) we obtain the following result for totally real number
fields.

Theorem 5.1. If the diophantine equation a1x
2
1 + a2x

2
2 + a3x

2
3 = 0

has a non trivial solution in the totally real number field F , then it also
has an integral solution X1, X2, X3 which satisfies

n∑
κ=1




∣∣∣∣∣∣
X

(κ)
1√

a
(κ)
2 a

(κ)
3

∣∣∣∣∣∣
+

∣∣∣∣∣∣
X

(κ)
2√

a
(κ)
1 a

(κ)
3

∣∣∣∣∣∣
+

∣∣∣∣∣∣
X

(κ)
3√

a
(κ)
1 a

(κ)
2

∣∣∣∣∣∣


 ≤ 3

∆
λ
|dR|2/n.
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Remark. For large n the upper bound in the last estimate is about
0.03 times the result we can derive from Siegel’s bounds. For n = 1, 2 we
even beat Siegel’s result on the biggest conjugate of any Xl (1 ≤ l ≤ 3).
The important improvement is of course the decrease of the volume of the
required search area.
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