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On prime factors of integers of the form ab + 1

By A. SÁRKÖZY (Budapest) and C. L. STEWART (Waterloo)

To Professor Kálmán Győry
on the occasion of his sixtieth birthday

Abstract. Let N be a positive integer and let A and B be subsets of {1, . . . , N}.
In this article we discuss estimates for the least prime factor and the greatest prime
factor of integers of the form ab + 1 where a is taken from A and b is taken from B.

1. Introduction

If n is a positive integer, p is a prime number and k is a non-negative
integer with pk | n, pk+1 - n then we write pk‖n. For n > 1 let p(n) and
P (n) denote the least and greatest prime factor of n, respectively.

In the last 15 years many papers have been written on the arithmetical
properties of elements of sum sets A+B (defined as the set of the integers
of the form a + b with a ∈ A, b ∈ B) where A and B are two “dense” sets
of positive integers. In particular, it has been shown that

(i) (Sárközy and Stewart [10]) If δ > 0, N is a positive integer with
N > N0(δ), A,B ⊂ {1, 2, . . . , N} and

(|A| |B|)1/2 > N5/6+δ,
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560 A. Sárközy and C. L. Stewart

then there are a ∈ A, b ∈ B with

P (a + b) >
c1(|A| |B|)1/2

log R log log R

where c1 = c1(δ) is a positive number and

(1.1) R =
3N

(|A| |B|)1/2
.

(So that

(1.2) A,B ⊂ {1, 2, . . . , N}, |A|, |B| > εN

and N > N1(ε) imply that there are a ∈ A, b ∈ B with

(1.3) P (a + b) > c2(ε)N. )

(ii) (Sárközy and Stewart [11]) If k is a positive integer with k ≥ 2,
δ > 0, N is a positive integer with N > N0(δ, k), A,B ⊂ {1, 2, . . . , N}
and

(|A| |B|)1/2 > N1−θk+δ

where θk = (1+2k ·4k−1)−1, then there are a ∈ A, b ∈ B and a prime
p with

pk | (a + b)

and

pk >
c1(|A| |B|)1/2

exp(c2(log k log R)/ log log R)

where c1 = c1(δ, k) and c2 = c2(δ, k) are positive numbers and R is
defined by (1.1). So that (1.2) and N > N1(ε, k) imply that there are
a ∈ A, b ∈ B and a prime p with

pk | (a + b), pk > c3(ε, k)N.

(iii) (Sárközy and Stewart [12]) If β > 0, 1/2 < θ < 1, N is a positive
integer with N > N0(β, θ), A,B ⊂ {1, 2, . . . , N} and

(|A| |B|)1/2 ≥ Nθ,
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then there is a prime number p with

β < p ≤
(

log N

2

)1/(2θ−1)

such that every residue class modulo p contains a member of A + B.
So that having these assumptions, there are a ∈ A, b ∈ B with

p(a + b) ≤
(

log N

2

)1/(2θ−1)

.

2. The results

One might like to study the multiplicative analogues of sum set results.
One way of doing this, proposed by Sárközy [7], is to replace the sums
a + b by the numbers ab + 1 (see also [4] and [8]). However, it should be
noted that the first result on the arithmetic properties of numbers ab+1 is
due, probably, to Vinogradov (see Chapter V of [14]). Let p be a prime
number and k be an integer coprime with p. Let

(
n
p

)
denote the Legendre

symbol of n over p. Vinogradov established the estimate
∣∣∣∣∣
∑

a∈A

∑

b∈B

(
ab + k

p

)∣∣∣∣∣ < (2|A||B|p)1/2.

This result can be considered as the multiplicative analogue of the recent
results of Friedlander and Iwaniec [2] on sums of the form∑

a∈A

∑
b∈B χ(a+b) where χ is a non-principal character modulo a prime p.

In this paper, first we will prove the multiplicative analogue of re-
sult (iii).

Theorem 1. Let N be a positive integer and let θ and β be real num-
bers with 1/2 < θ < 1. There is a positive number c, which is effectively
computable in terms of θ and β, such that if A and B are subsets of
{1, . . . , N} with

(|A| |B|)1/2 ≥ Nθ,

and N exceeds c then there is a prime number p with

β < p ≤
(

log N

2

)1/(2θ−1)

,
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and integers a in A and b in B such that p divides ab + 1.

Next, we will study the multiplicative analogue of result (i). Almost
certainly the following conjectures are true.

Conjecture 1. For each positive real number ε there are positive real

numbers N0(ε) and c(ε) such that if N exceeds N0(ε) and (1.2) holds, then

there are a in A and b in B with

P (ab + 1) > c(ε)N2.

Conjecture 2. For each positive real number ε and each integer k,

with k ≥ 2, there are positive real numbers N0(ε, k) and c(ε, k) such that

if N exceeds N0(ε, k) and (1.2) holds, then there are a in A and b in B

and a prime p with

pk | ab + 1 and pk > c(ε, k)N2.

However, these conjectures seem to be hopelessly difficult.
For the additive case of these conjectures we have applied the Hardy–

Littlewood method [10], [11]. Since the multiplicative problems are of a
binary nature, the Hardy–Littlewood method fails completely here. An-
other approach used in several related papers [1], [12] and [13] is based on
the application of the large sieve. In the multiplicative case this approach
works too, however one gets only relatively weak partial results. In case of
Conjecture 1, the natural limit of this approach is to show that assuming
(1.2), there are a, b with

P (ab + 1) À N.

By an elementary argument, reminiscent both of Gallagher’s larger sieve
[3] and of Ruzsa’s argument in [6], we shall show that

max
a∈A,b∈B

P (ab + 1)
N

→ +∞.
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Theorem 2. For each ε > 0 there are numbers N0 = N0(ε) and
C = C(ε), which are effectively computable in terms of ε, such that if
N > N0, A,B ⊂ {1, 2, . . . , N} and

(2.1) min(|A|, |B|) > C
N

log N
,

then there are a in A and b in B such that

(2.2) P (ab + 1) > (1− ε) min(|A|, |B|) log N.

In the case of Conjecture 2, again the Hardy–Littlewood method fails
for the same reasons. The method of the proof of Theorem 2 fails as
well. Again, the application of the large sieve gives a partial result. By a
straightforward application of the prime power moduli large sieve in [9],
one gets, assuming (1.2), that there are a ∈ A, b ∈ B and a prime p with

pk | (ab + 1)

and

(2.3) pk > c(ε, k)
(

N

log N

)k/(2k−1)

.

However, this lower bound is not quite satisfactory. Namely, the natural
limit of the sieve approach seems to be that the sifting moduli can be as
large as cN ; this would correspond to

(2.4) pk > c(ε, k)N

in place of (2.3). We shall treat this problem in a subsequent paper by
means of an improved version of the prime power moduli large sieve.

3. Proof of Theorem 1

Lemma 1 (Large sieve). Let M and N be integers with N positive.
Let A be a set of integers in the interval [M +1,M +N ]. For each prime p
let ν(p) denote the number of residue classes (mod p) which contain a
member of A. Then for any positive number Q we have

|A| ≤ N + Q2

L
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where
L =

∑′

q≤Q

∏

p|q
(p− ν(p))/ν(p),

the dash indicating the sum is over square-free positive integers q.

Proof. See Theorem 7.1 of [5]. ¤
Lemma 2. Let p be an integer with p ≥ 3 and let

D =
{

(x1, x2)∈R2
∣∣∣ x1+ x2≤ 1+

1
p

and
1
p
≤xi≤ p−1

p
for i = 1, 2

}
.

Then

min
D

(
1
x1
− 1

) (
1
x2
− 1

)
=

1
2

(
p− 2
p− 1

)
.

Proof. Put f(x1, x2) =
(

1
x1
− 1

)(
1
x2
− 1

)
. We readily check that

there are no local maxima or minima of f in D and so the minimum occurs
on the boundary. Next note that on that part of the boundary of D with
either x1 = 1

p or x2 = 1
p one has f(x1, x2) ≥ 1. Further for that part of

the boundary where either x1 = p−1
p or x2 = p−1

p , f(x1, x2) ≥ 1
2

(
p−2
p−1

)

with equality holding when (x1, x2) is
(

p−1
p , 2

p

)
or

(
2
p , p−1

p

)
. Finally on

the line segment from
(

2
p , p−1

p

)
to

(
p−1

p , 2
p

)
we find that the minimum

value is attained at the endpoints and so our result follows. ¤
Lemma 3. Let N be a positive integer and let A and B be non-empty

subsets of {1, . . . , N}. Let α and β be real numbers with α > 1. Let T be

the set of primes p which satisfy β < p ≤
(

log N
2

)α

and let S be a subset

of T consisting of all but at most 2 log N elements of T . There is a real
number C which is effectively computable in terms of α and β such that
if N exceeds C and

(3.1) (|A| |B|)1/2 ≥ N

10

1+1/α
2

then there is a prime p from S and integers a in A and b in B such that p
divides ab + 1.

Proof. Suppose the contrary. For each prime p let ν1(p) denote the
number of residue classes modulo p which contain an element of A and
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let ν2(p) denote the number of those which contain an element of B. It
follows from the large sieve inequality, Lemma 1 (applying it to estimate
both |A| and |B|), that, for each Q ≥ 1,

(3.2) (|A| |B|)1/2 ≤ (N + Q2)/H,

where

H =




2∏

i=1

∑′

q≤Q

∏

p|q

(
p

νi(p)
− 1

)


1/2

and where the dash indicates the sum is over square-free positive integers q.
From the Cauchy–Schwarz inequality we have

H ≥
∑′

q≤Q


∏

p|q

(
p

ν1(p)
− 1

)(
p

ν2(p)
− 1

)


1/2

.

Let Q = N1/2 and let R be the set of integers from {1, . . . , [N1/2]}
composed of

[
log Q

α log log Q

]
distinct primes p from S with p ≥ 11. Then

(3.3) H ≥
∑

r∈R


∏

p|r

(
p

ν1(p)
− 1

) (
p

ν2(p)
− 1

)


1/2

.

By assumption, for each prime p from S the congruence ab ≡ −1
(mod p) has no solution with a ∈ A, b ∈ B. Let ν∗1 (p) denote the number of
residue classes different from the residue class of 0 that contain an element
of A and let ν∗2 (p) be the number for B. We have ν∗1 (p) + ν∗2 (p) ≤ p − 1
and thus ν1(p) + ν2(p) ≤ p + 1. By Lemma 2

(
p

ν1(p)
− 1

)(
p

ν2(p)
− 1

)
≥ 1

2
− 1

2(p− 1)
,

for p ∈ S. Thus for p ∈ S with p ≥ 11 we plainly have

(3.4)
(

p

ν1(p)
− 1

)(
p

ν2(p)
− 1

)
≥ 9

20
.

Therefore from (3.2), (3.3) and (3.4) we see that

(3.5) (|A| |B|)1/2 ≤ 2N

H ′
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where

(3.6) H ′ ≥
(

9
20

) 1
2 [ log Q

α log log Q ]
|R|.

It remains to estimate |R|. Let S′ be the subset of S of primes bigger
than 10. Then by the prime number theorem with error term,

(3.7) |S′| ≥ π((log Q)α)− π(β)− π(10)− 2 log N >
(log Q)α

α log log Q

provided that N > c1, where c1, c2, . . . are positive numbers which are
effectively computable in terms of α and β. We now count the number of
distinct ways of choosing [log Q/α log log Q] primes from S′. Each choice
gives rise to a distinct square-free integer, given by the product of the
primes, which does not exceed Q. Then

|R| ≥
( |S′|[

log Q
α log log Q

]
)
≥

(
|S′| −

[
log Q

α log log Q

])
[

log Q
α log log Q

]
!

log Q
α log log Q−1

.

Thus by (3.7) and Stirling’s formula

|R| ≥

(
(log Q)α

α log log Q

(
1− 1

(log Q)α−1

)) log Q
α log log Q

(log Q)α+1
(

log Q
eα log log Q

) log Q
α log log Q

,

for N > c2. Since log(1− x) > −2x for 0 < x < 1/2,

(3.8) |R| ≥ Q1−1/αe

�
log Q

α log log Q− 2(log Q)2−α

α log log Q

�
(log Q)−α−1,

for N > c3. Further, since
(

20
9

)1/2
< e, it follows from (3.6) and (3.8) that

H ′ > 20Q1−1/α,

for N > c4. Therefore, by (3.5),

(|A| |B|)1/2 <
N

10

1−(1/2)(1−1/α)

=
N

10

1+1/α
2

,



On prime factors of integers of the form ab + 1 567

for N > c5 which contradicts (3.1). The result now follows.

Proof of Theorem 1. Let S be the set of primes p which satisfy
β < p ≤ (log(N1/2))1/(2θ−1). Put α = 1/(2θ− 1) and note that α is a real
number greater than one since 1

2 < θ < 1. Theorem 1 now follows from
Lemma 3 on noting that (1 + 1/α)/2 = θ. ¤

4. Proof of Theorem 2

First note that we may assume |A| = |B|. Put

(4.1) |A| = |B| = Z.

Let
E =

∏

a∈A

∏

b∈B

(ab + 1).

Then clearly we have

(4.2)

E ≥
∏

a∈A
a≥εZ/10

∏

b∈B
b≥εZ/10

((
εZ

10

)2

+ 1

)

>

(
εZ

10

)2(|A|−εZ/10)(|B|−εZ/10)

=
(

εZ

10

)2(1−ε/10)2Z2

.

If C and N are large enough in terms of ε, then it follows from (2.1), (4.1)
and (4.2) that

(4.3) log E > 2
(
1− ε

10

)2

Z2 log
(

εZ

10

)
> 2

(
1− ε

5

)
Z2 log N.

If p is a prime with p ≤ N2 + 1, then define u(p) by pu(p)‖E, and for
each positive integer k write α(p, k) = |{(a, b) : a ∈ A, b ∈ B, pk | ab+1}|
so that

E =
∏

p≤N2+1

pu(p)

where

u(p) =
∑

k≤ log(N2+1)
log p

α(p, k).(4.4)
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Write
T = (1− ε)min(|A|, |B|) log N,

and let P1, P2 and P3 denote the set of the primes p with p ≤ N , N < p ≤ T

and T < p ≤ N2 + 1, respectively, and write

(4.5) E = E1E2E3

where

(4.6) Ei =
∏

p∈Pi

pu(p) for i = 1, 2, 3.

Then it suffices to prove that E3 > 1, or, equivalently, that

(4.7) log E3 > 0.

Next we will give an upper bound for E1. If U is a subset of {1, . . . , N},
m is a positive integer and h is an integer, then write

r(U, h, m) = |{n : n ∈ U, n ≡ h (mod m)}|.

When (h,m) = 1, let h(m) denote the integer from {1, . . . , m} with

hh(m) ≡ −1 (mod m).

We shall need the following lemma.

Lemma 4. If N is a positive integer and U ⊂ {1, 2, . . . , N} then we

have

(4.8)
∑

p≤N

log p
∑

k≤ log N
log p

pk∑

h=1

(
r(U, h, pk)

)2 ≤ |U | (|U | − 1 + π(N)) log N.

Proof of Lemma 4. Write

D(U) =
∏

n,n′∈U
n′<n

(n− n′),
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and for p ≤ N define the integer v(U, p) by pv(U,p)‖D(U). Then we have

(4.9)

∑

p≤N

v(U, p) log p = log
∏

p≤N

pv(U,p) = log D(U) ≤ log
∏

n,n′∈U
n′<n

N

= |{(n, n′) : n, n′ ∈ U, n′ < n}| log N

=
(|U |

2

)
log N.

Moreover, defining β(m, p) by pβ(m,p)‖m, clearly we have

v(U, p) =
∑

n,n′∈U
n′<n

β(n− n′, p) =
∑

n,n′∈U
n′<n

∣∣∣∣
{

k : k ≤ log N

log p
, pk | n− n′

}∣∣∣∣

=
∑

k≤ log N
log p

∣∣{(n, n′) : n, n′ ∈ U, n′ < n, pk | n− n′
}∣∣

=
∑

k≤ log N
log p

pk∑

h=1

∣∣{(n, n′) : n, n′ ∈ U, n′ < n, n ≡ n′ ≡ h (mod pk)
}∣∣

=
∑

k≤ log N
log p

pk∑

h=1

(|{n : n ∈ U, n ≡ h (mod pk)}|
2

)

=
∑

k≤ log N
log p

pk∑

h=1

(
r(U, h, pk)

2

)

=
∑

k≤ log N
log p


1

2

pk∑

h=1

(
r(U, h, pk)

)2 − 1
2

pk∑

h=1

r(U, h, pk)




=
1
2

∑

k≤ log N
log p




pk∑

h=1

(
r(U, h, pk)

)2 − |U |


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whence

(4.10)

∑

p≤N

v(U, p) log p =
1
2

∑

p≤N

log p
∑

k≤ log N
log p

( pk∑

h=1

(r(U, h, pk))2 − |U |
)

≥ 1
2

∑

p≤N

(
log p

∑

k≤ log N
log p

pk∑

h=1

(r(U, h, pk))2 − |U | log N

)

=
1
2

(∑

p≤N

log p
∑

k≤ log n
log p

pk∑

h=1

(r(U, h, pk))2 − |U |π(N) log N

)
.

It follows from (4.9) and (4.10) that the left hand side of (4.8) is

≤ 2
(|U |

2

)
log N + |U |π(N) log N = |U | (|U | − 1 + π(N)) log N

and this completes the proof of the lemma. ¤
By (4.4) and (4.6), we may estimate log E1 in the following way:

log E1 =
∑

p∈P1

u(p) log p =
∑

p≤N

( ∑

k≤ log(N2+1)
log p

α(p, k)

)
log p(4.11)

=
∑

p≤N

log p
∑

k≤ log(N2+1)
log p

|{(a, b) : a ∈ A, b ∈ B, ab ≡ −1 (mod pk)}|

=
∑

1
+

∑
2

where in
∑

1 we sum over p ≤ N , k ≤ log N
log p , while in

∑
2 we have p ≤ N ,

log(N+1)
log p ≤ k ≤ log(N2+1)

log p . Using the inequality |xy| ≤ 1
2 (x2 + y2) we

obtain

∑
1

=
∑

p≤N

log p

( ∑

k≤ log N
log p

∑

1≤h≤pk

(h,pk)=1

|{a : a ∈ A, a ≡ h (mod pk)}|

· |{b : b ∈ B, b ≡ h(pk) (mod pk)}|
)
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=
∑

p≤N

log p
∑

k≤ log N
log p

∑

1≤h≤pk

(h,pk)=1

r(A, h, pk)r(B, h(pk), pk)

=
1
2

∑

p≤N

log p
∑

k≤ log N
log p

( ∑

1≤h≤pk

(h,pk)=1

r2(A, h, pk)

+
∑

1≤h≤pk

(h,pk)=1

r2(B, h(pk), pk)

)

=
1
2

∑

p≤N

log p
∑

k≤ log N
log p

∑

1≤h≤pk

(h,pk)=1

(r2(A, h, pk) + r2(B, h, pk)).

Using Lemma 4 with A, respectively B, in place of U , by (4.1) we obtain

(4.12)

∑
1
≤ 1

2
(|A|(|A| − 1 + π(N)) + |B|(|B| − 1 + π(N))) log N

= Z(Z − 1 + π(N)) log N ≤ (Z2 + Zπ(N)) log N.

To estimate
∑

2 observe that if N < pk and a is fixed (which can be
done in |A| ways), then, by B ⊂ {1, 2, . . . , N}, there is at most one b ∈ B

with
ab ≡ −1 (mod pk).

It follows that

(4.13)

∑
2
≤

∑

p≤N

log p
∑

k≤ log(N2+1)
log p

|A|

≤ |A|
∑

p≤N

log p
log(N2 + 1)

log p
< 3Z log Nπ(N).

By (2.1), (4.11), (4.12) and (4.13), for large enough C we have

(4.14) log E1 < (Z2 + 4Zπ(N)) log N <
(
1 +

ε

5

)
Z2 log N.

To estimate log E2, observe that for p> N , k≥ 2, A,B ⊂ {1, 2, . . . , N}
we have α(p, k) = 0. Moreover, for p > N and fixed a ≤ N there is at
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most one b ≤ N with p | ab + 1. Thus by (4.1) and (4.4), for p ∈ P2 we
have

(4.15)

u(p) =
∑

k≤ log(N2+1)
log p

α(p, k) = α(p, 1)

= |{(a, b) : a ∈ A, b ∈ B, p | ab + 1}|

=
∑

a∈A

|{b : b ∈ B, p | ab + 1}| ≤
∑

a∈A

1 = |A| = Z.

It follows from (4.6) and (4.15) that

log E2 =
∑

p∈P2

u(p) log p ≤ Z
∑

N<p≤T

log p.

By (2.1), (4.1) and the definition of T , and using the prime number theo-
rem, for C large we obtain that

(4.16) log E2 ≤ Z(1 + o(1))(T −N) <

(
1− 4ε

5

)
Z2 log N.

It follows from (4.3), (4.5), (4.14) and (4.16) that

log E3 = log E − log E1 − log E2 > 2
(
1− ε

5

)
Z2 log N

−
(
1 +

ε

5

)
Z2 log N −

(
1− 4ε

5

)
Z2 log N =

ε

5
Z2 log N > 0

which proves (4.7).
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