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On reducible trinomials, IT

By ANDRZEJ SCHINZEL (Warszawa)

To Professor Kdlmdn Gydry on his 60th birthday

Abstract. It is shown that if a trinomial has a binomial factor then under certain
conditions the cofactor is irreducible.

1. Introduction

This paper is a sequel to [5]. In that paper we considered an arbitrary
field K of characteristic m, the rational function field K(y), where y is a
variable vector, a finite algebraic extension L of K(y;) and a trinomial

(i) T(x;A,B)=2a"+ Az™ + B, wheren >m >0, m{mn(n—m)

and either A,B € K(y)*, AA"B" ™ ¢ Kor A, Be L, AA"B" ™ ¢ K.

A necessary and sufficient condition was given for reducibility of
T(z; A, B) over K(y) or L respectively, provided in the latter case that
L is separable (This proviso was only made in the errata [6].). As a con-
sequence a criterion was derived for reducibility of T'(z;a,b) over an al-
gebraic number field containing a,b. In each case it was assumed that
n > 2m, but this involved no loss of generality, since " + Az™ + B and
2" + AB~12"~™ + B~ are reducible simultaneously. Let

(ii) ny =n/(n,m), my=m/(n,m).

Mathematics Subject Classification: 12E05, 12E10, 11R09.
Key words and phrases: reducibility, trinomials.
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One case of reducibility of T'(z; A, B) over the field Q = K(y) or L is that
2" + Az™ + B has in Q[z] a linear factor. The aim of this paper is to
prove that if ny is sufficiently large and 2™ + Az™' + B has in Q[z] a
linear factor F'(x), but not a quadratic factor, then T'(x; A, B) F (™)1
is irreducible over 2. More precisely, we shall prove using the notation
introduced in (i) and (ii) the following three theorems.

Theorem 1. Let ny > 5 and A,B € K(y)*, A~"B"™™ ¢ K. If
™ + Ax™ + B has in K(y)[z] a linear factor, F(z), but not a quadratic
factor, then T'(x; A, B)F(z(™™)~1 is irreducible over K (y).

Theorem 2. Let nqy > 3 and A, B € L*, where L is a finite separable
extension of K(y;) with KL of genus g and A~"B"™™ ¢ K. If 2™ +
Az™' + B has in L[x] a linear factor F(x), but not a quadratic factor,
then

(iif) T(x; A, B)F(z(™™)~' s reducible over L
if and only if there exists an integer | such that

<%7 ?> =:(v,u) € N?:v < max{17,8¢g}

¥+ Axz"+B
and )
1 S 6.

is reducible over L. Moreover, if g = 1, then (iii) implies

Theorem 3. Let ny > 6, K be an algebraic number field and a,b €
K*. If the trinomial ™ +axz™ +b has in K[z]| a monic linear factor F(x),
but not a quadratic factor, then T'(z; a, b) F(z(™™)~1 is reducible over K if
and only if there exists an integer | such that (n/l,m/l) =: (v, u) € N* and
a=u"""ag, b=u"by, F = uFy (£), where u € K*, (ag, by, Fo) € F, ,(K)
and F ,(K) is a certain finite set, possibly empty.

There is no principal difficulty in determining in Theorems 1, 2 for
g =1, and 3 all cases of reducibility when n; < 6 in much the same way
as it was done in [5] for T'(x; A, B) or T(z;a,b), however this seems of
secondary interest. On the other hand, it is natural to ask what happens
when z™* + Ax™ + B has a quadratic factor. We intend to return to this
question in the next paper of this series.

In analogy with a conjecture proposed in [5] we formulate
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Conjecture. For every algebraic number field one can choose sets
F, ,(K) such that the set

Zl = U U {z" + ax* + b} is finite.

v, F {a,b,F)EF]

2. 16 lemmas to Theorems 1-2

Lemma 1. Ifin a transitive permutation group G the length of a cycle
C € (G is at least equal to the length of a block of imprimitivity, then it is
divisible by the latter.

Proor. Let C = (a1,...,a,), apy; == a; (1 = 1,2...) and let
By, Bs, ... be conjugate blocks of imprimitivity. Let u be the least positive
integer such that for some i, a; and a;4, belong to the same block B. If
w =1, then by induction a; € B for all i, hence v < |B| and, since v > | B
by the assumption, we have v = |B|.

If 4 > 1 we may assume, changing if necessary the numeration of the
a; and of the blocks, that

a; € B; (1§i§u), Qp+1 € Bs.
It follows by induction on ¢ that
(1) appri € Bi (1<i<p, k=0,1,...),

hence, in particular, ¢ = j mod v implies i = j mod pu, thus u | v.
If a € By then C(a) € By, hence C(a) # a and there exists a; such
that a = a;. By (1) we have

j =1mod p.

Thus among a; (1 < j < v, j = 1 mod u) occur all elements of By and
only such elements. However a; in question are distinct, hence

Y 2 |By| and |Bil|v. O
o
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2 ta™ —(141) oo
z—1

Lemma 2. If (m,n) = 1 the polynomial Ry(x,t) =
absolutely irreducible. The algebraic function x(t) defined by the equation
Ry (x,t) = 0 has just n—2 branch points t; # —1, co with one 2-cycle given
by the Puiseux expansions

w(t) =&+ (t— ;)P (i(t - ti)1/2> , &#F0(1<i<n-2)
and the remaining expansions
.%‘(t) :Pi‘(t—ti) (2 S] Sn—2)

At the branch point —1 x(t) has one m-cycle given by the Puiseux expan-
sions

2m

z(t) = G+ 1)Y™P, 14 (42”1(75 + 1)1/m) (0<i<m)
and the remaining expansions at this point are
2(t) = Py y(t+1) (2<j<n—m).

At the branch point oo z(t) has one (n — m)-cycle given by the Puiseux
expansions

a(t) = G2t Py (G )

and the remaining expansions at this point are
2(t) = Po(t™) (2 <j <m).

Here P;; are ordinary formal power series with P;;(0) # 0 and (, is a
primitive root of unity of order q. For a fixed i the values &; and P;;(0)
(j > 1) are distinct.

PROOF. The polynomial R;(x,t) is absolutely irreducible since it can

be written as
" —1 +txm—1
r—1 r—1

: _ z"—1 z™—-1) _
and, since (m,n) = 1, we have ( — S ) =1.
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If 7 is a finite branch point of the algebraic function z(¢) we have for
some &

(2) Rl(éaT): /138(5’7-):0’

hence also T'(&;7,—7 — 1) = T.(&;7,—7 — 1) = 0, which gives either £ = 0,
T=—1or

e m m n 7+1
T#Oa 5 :_ET) 6 = .

n—m T

If 7 = —2, then "™ =1, {™ = 1 and, since (m,n) =1, { = 1.
However R}, (1,—2) = M=l _n mim=l) _ ”(n;m) # 0 thus for 7 # —1

m 2 m 2
(2) implies (—27)™ = (L2 ThLyn=m oL _ 1 which gives

n—m

(—m)™(n—m)"""r" —n"(r+ 1)V =0.

The only multiple root of this equation is 7 = — 7+ and it has multiplicity 2.
Denoting the remaining roots by t; (1 <i <n — 2) we find ¢; # 0, —1,

( @t.)m_ no t;+1\""
n')  \n-m t ’

hence for a uniquely determined &; # 0, 1

énfm——@t- em n t;+1
i - 1Sy T
n

and Ry(&;,ti) = Ry, (&, ti) = 0.
Further,
1o (Gisti)
n(n — 1) —n(n — 1)5;‘_2 +m(m — 1)tiflm_1 —m(m — 1)ti§;“_2

7

(& —1)2
_nn- 1)5?_22‘1’55”1 - Dtg? em=2 m(?: Ib)tz' 20
and "
) e Y

G-l (G- Dn-m)
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It follows that the Taylor expansion of Ri(z,t) at (£,¢;) has the lowest
terms

SR (Gt (@ —&)7 and Ryy(&,t)(t — 1),

which implies the existence at the point ; of the two-cycle with the expan-
sions given in the lemma. The remaining expansions are obtained using
the fact that Ri(x,t;) has n — 3 distinct zeros, different from 0 and ¢&;.
These zeros are P;;(0) (2 < j <n —2). The assertions concerning branch
points —1 and oo are proved in a standard way. O

Lemma 3. If (m,n) = 1, the discriminant D1(t) of Ry(z,t) with
respect to x equals

n—2
ct+ )" [[t-t), ceK™

i=1

PROOF. Since R; is monic with respect to = we have

1<J

where Ry(z,t) = H;:ll (x — ;). Using Lemma 2 we find that the only
possible zeros of Di(t) are t; (1 < i < —2) and —1. Taking for z; the
Puiseux expansion of x(t) at these points we find the exponents with which

t —t; and ¢t + 1 divide Dy (¢). O

Lemma 4. If (m,n) = 1 the Galois group of the polynomial Ry(x,t)
over K (t) is the symmetric group S,,_1.

PROOF. Since, by Lemma 2, R;(z,t) is absolutely irreducible, the
group G in question is transitive. By Lemma 1(c) of [5] and Lemma 2
G contains a transposition (for n > 2), an m-cycle and an (n — m)-cycle,
where we may assume m < n —m. If G were imprimitive with blocks of
imprimitivity of length b, 1 < b < n—1 we should have 2b <n—1,b <n—m
and by Lemma 1, b | m and b | (n,m), b = 1, a contradiction. Thus G
is primitive and since it contains a transposition it must be symmetric by
Theorem 14 in Chapter 1 of [7]. O
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Definition 1. Let (m,n) =1, Ry(z,t) = [[7= (z — z4(t)). We set

i=1

Ll(k‘,m,n) = K(t,Tl(J?l,. . .,xk),. . .,Tk(xl,..‘,l‘k))

Lf(k,m,n) = K(t,ﬁ(wl,. . .,xk),...,Tk(xl,...,xk)),

where 7; is the j-th fundamental symmetric function.

Remark. By Lemma 4 the fields L1 (k,m, n) and L7 (k, m, n) are deter-
mined by k, m, n up to an isomorphism fixing K (t) and K (t), respectively.

Lemma 5. The numerator of t — t; in Li(k,m,n) has (Zj’

divisors in the second power and none in the higher ones.

) prime

PROOF. The proof is analogous to the proof of Lemma 5 in [5].

Lemma 6. The numerator of t + 1 in Lj(k, m,n) has

k
1 n—m-—1 m/d
— d
mz( k—1 > Z(’D()<l/d>
=0 dl(m,1)
distinct prime divisors.

PrOOF. By Lemma 1(a) of [5] the prime divisors of the numerator
of t + 1 are in one-to-one correspondence with the cycles of the Puiseux
expansions of a generating element of Li(k,m,n) at ¢t = —1 provided
the lengths of these cycles are not divisible by w. For the generating
element we take y(t) = Z?Zl a’7j(x1,...,xK), where a € K if K is fi-
nite and a € K otherwise, is chosen so that 25:1 AT (Tiys oy Tiy) =
Z§:1 a’7j(x1,...,xy) implies {i1,...,ix} = {1,...,k}. By Lemma 4 for
each set {i1,...,ix} C {1,...,n — 1} there is an automorphism of the ex-
tension K (t,z1(t),...,z,_1(t))/K(t) taking z1(t), ..., 21 (t) into z;, (t), ...
..., 2, (t), respectively. Thus at ¢ = —1 we obtain the following Puiseux
expansions for y(t)

k

Qt,Lir,... i)=Y a7 (gi:’;“(t )Y P (G 1)Y™), L
j=1

C2il+1(t+ 1)1/7’71Pn_171(<27;l+1(t+ 1)1/7’)’1/)7

2m 2m

P’nfl,’ljl+1 (t + 1)7 st 7Pn*1,ik (t + 1))
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where [ runs from 0 to k, {i1,...,4} runs through all subsets of
{0,1,...,m—1} of cardinality [ and {i;41, ..., i} runs through all subsets
of {2,3,...,n— m} of cardinality k — [.

To see this note that the fundamental symmetric functions of
Q(t,l,11,...,1) coincide with the fundamental symmetric functions of the
conjugates of y(t) over K(t).

If P is an ordinary formal power series, the conjugates of P ((t+1)1/ m)
over K(((t + 1)/%)), where d | m are P(¢%(t 4+ 1)V/™), (0 < e < m/d).
Therefore

Qt,Lin,. .. i) € ?(((H 1)1/d)), where d | m,
if and only if
Q(t,l iy, ... i) = Q(t, i1 +ed,....i5+ed,ij41,...,1k) (0<e<m/d),
hence by the choice of a if and only if
{i1,..., i} +d ={i1,..., 41} mod m.

It follows by Lemma 7 of [5] that y(¢) has at t = —1 exactly

> somta (")

=0

expansions belonging to K (((t+ 1))\ U;s, K (((t+1)'/%)), where d | m

and
d

A
6 (dydt/m) H(0) (%//6) if m | dl,

0 otherwise.

flm,l,d) = {

These expansions split into cycles of d conjugate expansions each, where
m | dl, ie.
m

d= em, e| (m,l).

Hence the number of distinct prime divisors of the numerator of ¢ + 1 is

k

Sy = o (i) ()

=0 el(m,l)
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which, by the formula (1) of [5], equals
1 <~ (n—m—1 m/d
— d . O
() 2 ()
1=0 d|(m,1)
Lemma 7. The denominator of t in L} (k,m,n) has

LS () S (0

=0 d|(n—m,l)

distinct prime divisors.
PRrROOF. The proof is analogous to the proof of Lemma 6. O

Lemma 8. Ifn > 6, (m,n) =1, n—1 > 2k > 4, the genus g5 (k,m,n)
of Li(k,m,n) satisfies g7 (k,m,n) > &.

PROOF. By Lemma 2 the only branch points of y(t) may be t; (1 <
i <n—2), —1 and oco. It follows now from Lemma 2(a) of [5], 5, 6 and 7
that

=32 A5 () Z o)

1=0 d|(m,)
1 b im—1 (n—m)/d
_2m—nﬂgg<k—l>wgiﬂﬂ®< 1/d >+L

Using this formula we verify the lemma by direct calculation for n = 6,7, 8.
To proceed further we first establish the inequality

Q ik = 1+ ot (M o)
where
ﬁ;ﬁt&5 itm=1,n-1,
p1(k,m,n) =kin—k—1)— (n— 1)222__2?;1 +55) ifm=2n-2,
n<1—|-m(3'5) if2<m<n-—2.

n—m)
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Indeed, by Lemma 13 of [5] we have for > 0

> () = (5 (7)

d|(m,l)
and trivially for [ > 0

)

Similar inequalities hold with m replaced by n — m. Hence, for m =1

gi‘(kamm):;(Z:l) i;( )

o)

ot
21*'“(212-1 ( ) -a()
o= <1+n&_51) (n;)’

> v ()

d|(m,l)

form =2
=32 () 0)

- 2(n1—1) l:il( + n3;52) <n;2) 1
:1+k(;b(;fz)1) (n;l) ;<n;1>
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for m between 2 and n — 2

(e () (==
stk =5 (17 o ()
() () ) - (T e
st (3 4) (a2 (7 +

e () ()

(e ) (om0

it () 2 (D ()

21+ 05 ()

S () ) ) ()
- T (n; 1) (”‘m‘ o n3—'5m>

“z () (1)

In each case the right hand side of the obtained inequality coincides with
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the right hand side of (3). Now for n > 9, p1(k, m,n)>p1 (2, min{m, 3},n)>
min,, <3 p1(2,m,9) = 1.25, hence by (3)

1.25 n—1 n
1(k >14+ —F —. g

Lemma 9. Let n >3, (m,n) =1, Ry (z,t) = [[/=,'(x — x:(t)). In the
field K (t,x1(t), z2(t)) we have the factorizations

m— n—m-— n—m— 1 9
Hz‘=11p§nnj_1 1qj H: 1 mH(n m—1)(n—m— ) 5

t+1gH;L:_{n 1tn mHm 1 n m m 1 Un mH(m 1)(m 2)
n—m—1
xl(t)gH eI O

n—m-—1
Hj:l tH 1u7f

n—m—1
Hz 1 le t]
n—m—1
Hj:l t Hz 1 Uz
where p;, 45, tj, Sk, t;, u;, v;, w0, are distinct prime divisors. For t; defined

in Lemma 2 the numerators of t — t; has (n — 3)(n — 4) factors in the first
power only, the remaining factors are double.

i) (t) =

PrOOF. By Lemma 1(a)(b) of [5] the prime divisors of the numerator
or the denominator of t—c are in one-to-one correspondence with the cycles
of the Puiseux expansions of a generating element of K (¢, z1(t), x2(t))/K(t)
at t = ¢ or t = o0, respectively, provided the lengths of the cycles are not
divisible by 7. For the generating element we take y(t) = ax(t) + bza(t),
where a,b € K are chosen so that for all i < n, j < n, i # j we have
either ax;(t) + bx;(t) # axq(t) + bxa(t) or (i,j) = (1,2). By Lemma 4
for each pair (i,7) with ¢ < n, j < n there is an automorphism of the
extension K (t,z1(t),...,z,(t))/K(t) taking z1(t),z2(t) into z;(t), z;(t),
respectively. At t = —1 we obtain for y(t) the expansions

oG 1+ 0P (G )
(L Py (G0

(0<i<m, 0<j<m,i#j),
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aGBH 1+ 0P (G A+ DY) + bRy (14 1)

APy -1 (1) + G (14 )17 Py (G (1 )Y/
0<i<m,2<j<n-—m),
aPy_ 1 (14t)+bP,_1(1+t) (2<i<n-—m, 2<j<n—m, i j).

The m(m — 1) expansions of the first set form m — 1 m-cycles cor-
responding to the divisors pi,...,pm—_1, that divide the numerators of
r1(t), 22(t) in exactly first power. (Note that ord,, x1 = mords1i(1 +
Y™ P, (G (1 +t)Y™) for p < m and similarly for x3). The m(n —
m — 1) expansions of the second set form n —m — 1 m-cycles correspond-
ing to the divisors q1,...,qn—m—1, that divide the numerator of x;(¢) in
exactly first power and do not divide the numerator of xs(t).

The m(n —m —1) expansions of the third set form n—m — 1 m-cycles
corresponding to the divisors t1,...,t,_;,—1 that divide the numerator of
x2(t) in exactly first power and do not divide the numerator of z1(¢). The
(n—m —1)(n—m —2) expansions of the fourth set form as many 1-cycles
corresponding to the divisors that divide the numerator of 1+t in exactly
first power and divide the numerator of neither z1(t) nor z2(t).

Since z1(t) = 0 implies ¢ = —1 we have found all factors of the
numerator of x;(t) and similarly of z5(t).

At t = oo we obtain for y(¢) again four sets of expansions that cor-
respond to the four sets of divisors: t; (1 < j < n—m —1), u;, v;
1<j<m-1)and w; (1 < j < (m —1)(m — 2)) occurring in the
denominator of 1+ ¢, z1(t) and x5 (t).

Since x1(t) = oo implies ¢ = 0o no other divisor occurs in the denom-
inator of x1(t), or of xa(t).

At t = t; we obtain for y(t) among others the expansions

aP;+bP; (1<i<n—-2,2<j<n—-2,2<k<n-2j#k)

which form (n — 3)(n —4) 1-cycles corresponding to (n — 3)(n — 4) simple
factors of the numerator of ¢ — ¢;. All the remaining expansions contain
(t —t;)/2. O
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Lemma 10. If (m,n) = 1, for all primes p

Vi+1¢ K(t,zi(t),...,zn1(t)) = Q.

PROOF. The argument used in the proof of Lemma 9 applied to the
field 2 gives that the multiplicity of every prime divisor of the numerator
and the denominator of ¢t + 1 divides m and n — m, respectively. Since
(m,n) =1 we cannot have 1 +¢t =~?, v € Q. O

Lemma 11. Let (m,n) =1, n > 3. For every positive integer
q %= 0 mod 7 and for every choice of qth roots we have

{F({I/T(t), m> (t,x1(t),...,xn_1(t))| = ¢" .

PrOOF. By Theorem 1 of [4] it is enough to prove that for every
prime p | ¢

n—1

(4) Hac;” =y, ye Q=K t,z1(t),..., 20 1(t))

Jj=1

implies a; = Omod p for all j < n. Assume that (4) holds, but say
a1 #Z 0 mod p.
If for all j we have a; = aq mod p it follows from (4) that

a1

ij :7/p7 ’YEQa

and since

Hmj— D"+ 1)

we obtain ¥/t + 1 € €2, contrary to Lemma 10. Therefore, there exists an
i <n — 1 such that «; Z a1 mod p, and in particular n > 3. Changing, if
necessary, the numeration of x; we may assume that ¢ = 2. By Lemma 4
there exists an automorphism 7 of Q/K (t) such that 7(x1) = a9, T(22) =
x1, T(x;) = z; (i #1,2). Applying 7 to (4) we obtain

n—1
Qg0 a; T\P
L1 Ta ij =",
j=1
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-
o NT )

Since a3 — as # 0 mod p it follows that

hence on division

(5) s, seq.

P
The extension K(t,x1,22,0)/K(t,z1,72) is a normal subextension of
Q/K(t,z1,72) of degree 1 or p and, since by Lemma 4 the latter has
the symmetric Galois group, we have either § € K (¢,x1,x2), or p = 2,

n—1
s K(t,x1,$2 H (x, — JJM)) \ K(t,z1, ).
=3
V>

In the former case we compare the divisors on both sides of (5) and obtain

—m—1 ~1
H?:lm q; [Ti2, v

or = 1 1
n—m— m—
Hj:l Y Hj:l u;

a contradiction.
In the latter case, since the conjugates of § with respect to K (t,x1,x2)
are +9 we have

n—1

0=¢ H (), — ), e € K(t,z1,z2),
w,v=3
v>u

hence

n—1 o1 —

d=¢ (xy —x,,) - L2
H1:£3 Y : Hu>1(331/ ry) - Hy;éz(xv — T3)
v>p
n—1

=n H ('ru_x/,b)v UEK(t;JUl,ﬂfz)-

w,v=1
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It follows by (5) and Lemma 3 that

n—2
e n?disc, Ry (x,t) = constn*(t + 1)™* H (t—t;).
T2 i=1

For n > 5, by Lemma 9, ¢t — ¢t; has at least one simple factor, which occurs
with a non-zero exponent on the right-hand side, but not on the left, a
contradiction. On the other hand for n = 3 or 4 the divisor of the right
hand side is a square, of the left hand side is not. O

Lemma 12. Letn >3, (n,m) =1,¢q # 0 mod 7, ¢ > 2 and y;, = (1)
(1 <i<n). Then

() ]

PROOF. By Lemmas 4 and 11 all embeddings of K (t,y14, .-, Yn—1.4)/

K(t) into K(t)/K(t) are given by

(6) Yig = Cg ' Yo(iyg (1 <0< m),
where o is a permutation of {1,2,...,n — 1} and
(7) (1,...,0n_1) € (Z)qZ)" 1.

We shall show that there are exactly ¢" 2 distinct images of (Z?:_ll Yig)?

under transformations (6). Indeed, if we apply (7) with o(i) = i to
(Z?:_ll Yiq)? we obtain

If this were equal to (Z?;ll (Piyiq)? for a vector (B1,...,0n-1) €
(Z/qZ)"~! with B; — B1 # aj — a; for a certain j we should obtain

Yiq € F(Qqu s 7yn71,q)7 OT Yjq € F(qua e Yi—1,5Yj+1,95 -0 s ynfl,q)a

contrary to Lemma 11. Thus the number of distinct images is at least
equal to the number of vectors satisfying (7) with a; = 0, thus to ¢" 2.
On the other hand, (Z?:_ll Yig)? is invariant under transformations (6)
with a; = a9 = -+ = «a,,_1, which form a group, hence the number in
question does not exceed ¢" 2. O
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Definition 2. Let (m,n) = 1, ¢ # Omod 7 and yj, = x(t), where
x;(t) are defined in Definition 1. We set

M (m,n,q) = < (Zyzq>>, My.(m,n,q) = ( (Zyzq>).

Remark. By Lemma 12, for n > 3, My(m,n,q) and My.(m,n,q) are
determined by m, n, ¢ up to an isomorphism which fixes K (t) and K (),
respectively.

Lemma 13. For n > 3 the numerator of t — t; has in Mi.(m,n,q) X

(q"=2 — ¢"3)/2 factors in the second power.

PROOF. Let us put for each i <n — 2

yig =671 <1£q>§_k/q(t — ;)" Py ((f - tz‘)m)k ;
k=0

o0 1 q _ k
R G L T G

k=0

so that for j = 1,2

Yhg =&+ (1771t = )PP (1)1 (¢ - 1))
(8) Yilg + Yizq € F((t — tz’)),
(9) (Yirg — yizg) (t — t:)"/? € K ((t — 1))
and choose in an arbitrary way
(10)  wijg= (Pyat—t)) " e K((t—t:)) (2<j<n).

It follows from Lemma 2 that over the field K((t —t;))

H H ‘T - Cayﬂq Rl l‘q t H H Cayz]q
j=1 a=0 j=1 a=0
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thus the corresponding fundamental symmetric functions of (y;, (1 <
J<mn, 0 <a<q)and of (J'y;j, coincide. Hence

q—1 qg—1 n—1 q
I 11 <x—<y1q+ZC§"yjq>>
j=2

a2:0 an,1:0

q—1 q—1 n—1 q
— (&7}
“T1 - T (o (et X civmn) )
as=0 ap_1=0 j=2

which means that (Z;:ll yjq)q has the following Puiseux expansions at
t=t,

n—1

q
(yilq + C,?QZ/qu + Z ngyijq> 3 <Ck2, v 704n—1> S (Z/qZ>n72

§=3
If such an expansion belongs to K ((t — t;)), then either

n—1

Yitg + (g Yizg + Z Ciyije € K((t —t:))
i=3
or 2| ¢ and
n—1
. 1=
<yi1q + (g Yizg + Z ngyijq> (t—t;)2 e K((t—1t;)).
i=3

In the former case, by (8) and (10)

(1 - cgz>yﬂq € K((t—t))

and since P;1(0) # 0, ag = 0.
In the latter case, by (9), on multiplying it by (¢f* —1)/2 and adding

1+ C‘?Q iy o 1/2 7
5 (Yitg + Yizg) + D (g ) (t— ) € K((t 1))
j=3
and, since
1 +Ca2 n—1

T (ying + Yizg) + Z Cq?Yijq € F((t - ti))
j=3

2
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by (8) and (10), we obtain

1+ ¢ o
(11) 5 (Yi1g + Yizg) + Z Cq?Yijq = 0.
=3

However the left hand side is an expansion at t = ¢; of

1+ ¢oe = .
2 = (Yiq + Y2q) + Z S Yia>
j=3

hence (11) contradicts for n > 3 the linear independence of y;, (1 < j < n)
over K resulting from Lemma 11.

Therefore for n > 3 we obtain ¢" 2 —¢" 3 expansions for (Z?;Bl Yjq)?
belonging to K (((t —t;)*/2)) \ K((t — t;)), which correspond to (¢"~2 —
q"3)/2 distinct prime divisors of the numerator of t — t; in My.(m,n, q).

O

Lemma 14. The numerator of t + 1 in My.(m,n,q) has at most

qmax{n73,m71} m—1
£ (14—
m qso(WJ)/so(II)

distinct prime divisors.

PRrOOF. By Lemma 1(a) in [5] the prime divisors of the numerator of
t 4+ 1 correspond to the cycles of the Puiseux expansions of (Z?;ll Yiq)?
at t = —1 provided the lenghts of these cycles are not divisible by 7. By
Lemma 2 and the argument about symmetric functions used in the proof

of Lemma 13 we obtain the expansions

- , . 1/
(Z GG e+ DY (G e+ 1))
=1
(12) J

n—1

q
+ Cﬁjpn—l,j—m+1(t+1)1/q> ,

j=m—+1

where (a1, ..., an_1) € (Z/qZ)""1, a; = 0. Note that gm # 0 mod 7. Let
S be the set of vectors {aa, ..., ) € (Z/qZ)™~* such that

LD GG =0,
j=2
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By Lemma 21 of [5]
(13) card § < gmelam)/e(a) =1,

If n >m+2and (asg,...,a,) ¢ S the least power of ¢t + 1 occurring in
the first or the second sum in (12) is (t+1)'/9™ and (t-+1)"°, respectively,
where 1 is a nonnegative integer. Hence the expansion (12) contains with
a non-zero coefficient

(14) (t+ 1)1/m and (¢t + 1)(qfl)/qm+uo_
Indeed, if we had for some nonnegative integers a,, (1 =0,1,...)
e )
1 -1
Zauzqand Zaﬂ <+,u> :L+V0
n=0 u=0 qam m qm

it would follow from the second formula that E:o:o a, = q — 1 mod g,
contrary to the first formula.
The least common denominator of the two exponents in (14) is

e e
m, = =dqm,
(qm7 q— 1) (q2m7 (C_[ - 1)m7 qm)

hence we obtain at most

(gm~! —card S)g" ™!
qm

gm-cycles.

Ifn >m+2and (asg,...,a,) € S the least power of t+ 1 occurring in
the first or the second sum in (12) is (t+ 1)q%n+%0 and (t+1)"°, respectively,
where 1o € N and v, € N. Hence the expansion (12) contains with a non-
zero coefficient

—1, (a=Du 1
(1)t e — L B0
qgm  m

and
(t+ 1)ﬁ+%€+(q_l)'/0, otherwise.
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Since both exponents in the reduced form have ¢ in the denominator we

obtain at most
n—m-—1

card S - ¢
q

g-cycles.

Ifn=m+1and (ag,...,a,) ¢ S the least power of ¢t + 1 occurring
in the parentheses in (12) is (¢ + 1)¥/9™, thus the expresion (12) contains
with a non-zero exponent (¢ + 1)*/™ and we obtain at most M%“ls
m-cycles.

Finally if n = m + 1 and (axq,. .., ) runs through S we bound the
number of cycles by card S. Therefore by (13), if n > m + 2 the total

number of cycles does not exceed

(g1 — card §)g" ™! n card S - ¢~ 1!
qm q

n—3 -1 n—3 -1
_q 1+(m )ClardS Sq Ly _m ’
m qm— m gelam)/e(a)

if n = m + 1 the total number of cycles does not exceed

m—1 o
q <1 N (m —1)card S)
m

(g™~ — card 9)
m

+ card S

m—1

m—1
. q m—1
T om <1 + qw(qm)/w(q)> ’ -
Lemma 15. The denominator of t has in Mi,.(m,n,q) at most

qmax{nfS,nfmfl} n—m-—1
ot —
n—m gvlatn—m))/e(q)

distinct prime divisors.
PROOF. Proof is analogous to the proof of Lemma 14. O

Lemma 16. For all positive integers m,n and ¢ where n > 3, n > m,
(n,m) =1, gnm(n —m) Z 0 mod 7 and q > 2 the genus g1.(m,n,q) of
M. (m,n,q) is greater than “L unless nq < 16. Moreover gi.(m,n,q) > 1

8
unless n < 6.
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PrOOF. By Lemma 2(a) of [5] and by Lemmas 13-15 we have

n—3 -1 max{0,m—n+2} -1
gi-(m,n,q) > 142 (q(n—Q)—q <1+ i )

2 2 m qw(qm)/w(q)

qmax{0,2—m} n—m—1
—— |14+ ——— .
n—m gela(n—m))/e(q)

Hence, by Lemma 24 of [5]

n—3
gl*(mv naQ) 2 1+ ’Yl(qnﬂ&?m)a
where
-1 1
q2 (n—2)—1—Q+ itm=1lorm=n-—1,
n_
71((]7717777’): g—1 1 1 1 '
—n-2)——+ 1+ - otherwise.
2 m n—m q

For n > 6 we have ¢"3 > %nq, v (g, n,m) > %, hence gi.(m,n,q) >

2%‘1>%>1; for 6 >n > 3 gj(m,n,q) < % implies ng < 16. O

3. Proof of Theorem 1

Let F(z) = x — C, where C € K(y). Since F(z) | 2™ + Az™ + B
we obtain B = —C™ — AC™!, C # 0. From A™"B"~™ ¢ K we infer that
t:=AC™ ™™ ¢ K. We have the identity

" + Ax™ + B

F(x)

(C7lz)™ +t(C7lz)™ — (t+1)
Clxz—1

(15) Qz) :=

— Cn1—1

If T(z; A, B)F(2(™™)~1 is reducible over K (y), then by Capelli’s Lemma
(see e.g. [1], p. 662) either

(16) Q(z) is reducible over K (y),
or

(17) ™™ — ¢ is reducible over K(y, &), where € is a zero of Q(x).
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In the former case Q(z) has in K(y)[z] a factor 2* + Zle a;x"~% where,
by the assumption, 2 < k < ”lel The identity (15) implies that the field
Li(k,mq1,n1) defined in Definition 1 is a rational function field parametr-
ized as follows:

t=AC™ "™ 1(x1,...,2) = (=1)'a;C™" (1<i<k).

By Lemma 2(b) of [5] ¢5(k,my1,n1) = 0.
Assume now that we have (17) but not (16). It follows by Capelli’s
theorem that either

(18) & =nP, where p is a prime, p | (m,n), n € K(y,§),
or
(19) €= —dyl, where 4| (m,n), 7€ K(y,€).
Let § - -
x 1+t:;_11(t+1) o). ot o,
j=1

It follows from (15) that if t = AC™ =™ one can take
qd =D, Yjq = C'_l/pnj if (18) holds,
q =4, yjq = (1+¢)C™Y4; if (19) holds,
where 7); are conjugates of 7 over K (y). Hence the field
My (mi,n1,q) = K (t, (Y10 + - + Yny—1,4)7)
is parametrized by rational functions as follows

t=AC™

C~Ymi+ -+ +m,—1)P  if (18) holds,

+---+ ny— 1=
(Y14 Y ~1.0) { —407 (4 -+, —1)?if (19) holds

and, by Lemma 2(b) of [5], g1.(m1,mn1,q) = 0, contrary to Lemma 16.

PROOF of Theorem 2. The sufficiency of the condition is obvious.
The proof of the necessity is similar to that of Theorem 1.
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Let F(x) =x — C, where C € L,

"+ Az + B

Q(x; A, B) = Fl)

Since F(x) | 2™ +Ax™ +B and B # 0 we have C # 0, B = —C™ —AC™.
Since A="B"™™ ¢ K, we have t := AC™ ™ ¢ K.

If T(z; A, B)F(z(™™)~1 = Q(z(™™); A, B) is reducible over L then
either

(20) Q(z) := Q(z; A, B) is reducible over L
or
(21) (™™ — ¢ is reducible over L(€) where ¢ is a zero of Q.

In the former case  has in L[z]| a factor of degree k, where by the
assumption 2 < k < ”12_1 and it follows from the identity (15) that the field
L% (k,my,n1) is isomorphic to a subfield of K L. Hence, by Lemma 2(c) of
[5], g5 (k,m1,n1) < g and, by Lemma 8, ny < 6max{1,¢}. In particular,
for g = 1 we have n; < 6. The condition given in the theorem holds with
l= <m>n)7 <Va n = <n17m1>'

Assume now that we have (21), but not (20). Then in the same way
as in the proof of Theorem 1 we infer that for a certain ¢ | (m,n), ¢ = 4

or a prime

(22) x? — £ is reducible over L(§)

and the field Mi,(my,n1,q) is isomorphic to a subfield of KL. Hence,
by Lemma 2(c) of [5], we have gi.(m1,n1,q) < g, thus by Lemma 16 for
ny > 3 we have n;q < max{17,8¢} and g > 1 for ny > 6. On the other
hand, by (22), @Q(x?) is reducible over L. Hence the condition given in the

theorem holds with | = (Lq’n), (v, ) = (n1q,m1q). O

4. 2 lemmas to Theorem 3

Lemma 17. Let L be a finite extension of a field K, q a prime dif-
ferent from char K. There exists a finite subset F' = F(q,L/K) of K* of
cardinality at most ¢°"d4LKl such that if

(23) ceK', yelL, c=71,
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then there exist f € F' and e € K* such that

(24) c= fel.

PROOF. Let
(25) A={ae K" :a=0a% ac L}

and let B be a finite subset of A with the property that for all functions
r:B—7Z

(26) H a®™@ = b9, b e K implies z(a) = 0 mod ¢ for all a € B.
acB

It follows from Theorem 1 of [4] that for every choice of ¢g-th roots
[K (¢a:acB):K] — B,
hence by (25), in view of B C A,
4B | [L: K]

and card B < ordy[L : K|. Among all subsets B of A with the property
(26) let us choose one of maximal cardinality and denote it by Ag. We
assert that the set

F = { H a™ @ : x(Ag) C {0,1,...,(]—1}}
a€Ag
has the property asserted in the lemma. Indeed

card F = qcardAo < qordq[L:K]‘

On the other hand, if ¢ € A, (24) holds with d = ¢, e = 1. If ¢ ¢ A the
set B = Ap U {c} has more elements than Ay. By definition of Ay it has

not the property (26). Hence there exist integers x(a) (a € Ap) and z(c)
such that ¢*(¢) [Toca, a®@) = b9, b € K and either

(27)  x(c) =0 mod ¢ and for at least one a € Ay : x(a) # 0 mod ¢
or

(28) z(c) # 0 mod gq.
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The case (27) is impossible, since it implies
T @ = (s %)"
a€Ap

contrary to the choice of Ag.
In the case (28) there exist integers y and z such that

—z(c)y=1+qz
and we obtain (24) with
f: H aq{%}’ e=b"Yc"% H a[%]’
a€Ag (leAO

where { -} and [-] denote the fractional and the integral part, respectively.
O

Lemma 18. Let q¢ be a prime or ¢ = 4. For every finite extension
K (&) of a field K there exists a finite subset S(q, K,§) of K such that if
c e K* and

c&=n? neK(&)" ifqisa prime,

(29)
c§ =—4n',ne K€" ifq=4,
then
(30) c=del, where de S(q,K,§), ec K*.

PROOF. Assume first that ¢ is a prime. If there is no ¢ € K* such
that (29) holds we put S(g¢, K, &) = (). Otherwise we have

(31) co§ =mng, 10 € K(§)", co € K~
and the equations (29) and (31) give

c/co = (n/mo)?.
Hence, by Lemma 17

c/co = fe?, where fe F(q,K(§)/K), ec K*
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and in order to satisfy (30) it is enough to put

S(q, K,&) ={cof : f € Flq, K(§)/K)}.

601

Assume now that ¢ = 4. Again if there is no ¢ such that (29) holds we put

S(q, K, &) = 0. Otherwise, we have
(32) cof = —4ng, no € K(§)*, ¢o € K*
and the equations (29) and (32) give
(33) c/co = (n/mo)* .
By Lemma 17 applied with ¢ = 2
(34) c/co = fe*, € F(2,K(§)/K), ee K"
If for a given f € F(2,K(£)/K) there exists ey € K* such that
(35) fer =94 Ve K
the equations (33)—(35) give
(e/er)” = (n/no¥)*, hence e/e; = =+ (n/no?)’
and another application of Lemma 17 gives
e/ey = +fiel, fL € F(2,K(&)/K), e € K*.

Hence, by (34)

242 4
c/co :fefflel

and in order to satisfy (30) it is enough to put

S(@K.& = |J A{cofeifi: 1€ F(2,K()/K)}.

fEF(2,K(£)/K)

ey exists

O
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5. Proof of Theorem 3

We begin by defining the sets Fl} x(K). This is done in three steps.
First we put ¢ = (u,v), 1 = v/q, 1 = p/q and introduce the fields
Ly(k,p1,v1) and My(p1,v1,q) as defined in Definitions 1, 2. Since K is
infinite we have Ly (k,u1,v1) = K(t,y(t)), where y(t) is defined up to a
conjugacy over K (t) in the proof of Lemma 6. Let ®; be the minimal
polynomial of y(t) over K(t). It follows from the definition of y(t) that
®; € K|t,z]. By Lemma 12 the function (y14 + - + ¥, —1,4)? generating
M (p1,v1,q) over K(t) is determined up to a conjugacy. Let W] be its
minimal polynomial over K (t). Since y;, are integral over K|[t] we have
U, € Klt,z]. If v; > 6 we put

U {to € K:®.(to,2) has a zero in K} if ¢=1,

Siu(K) = { 2<2k<vy
7 {to € K : W} (to, z) has a zero in K} ifg>1.

Since for 1 > 6 and kK > 1 or ¢ > 1 we have ¢7(k,p1,1) > 1 or
g1+(p1,v1,9) > 1, respectively, it follows by the Faltings theorem that
the sets S} ,(K) are finite. Now we put

1
TV,pL(K)

U {{te.—to—1,1)} ifg=1,

toeS , (K)

B U {(tod”* =1, —(to + 1)d"*,d) : 3¢, d € S(q, K, &),
to€S} . (K)

4 tolht — (to+1) =0}  if g is a prime or ¢ =4,

0 otherwise

(S(q, K, &) is defined in Lemma 18);

1 B ‘ 1 x¥ +az” +b
F, (K)={{a,b,x —d):{a,b,d) € T, ,(K) and i
is a polynomial reducible over K}.

Since the sets S} ,(K) and the sets S(q, K, &) are finite, so are the sets
FI}N(K ). We proceed to prove that they have all the other properties
asserted in the theorem.
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By the assumption n; > 6 and 2™ + az™ + b has in K[z] a linear
factor F'(x) but not a quadratic factor. Let F/(z) = x — ¢, where ¢ € K*,
so that b = —c™ —ac™ . Put

™ 4 ax™ +b

(36) to =ac™ ™", Q(x;a,b) = F)

Assume that

n m b
ity = @ (a7 sab) s reducible over K.

By Capelli’s lemma either

(37) Q(z;a,b) is reducible over K
or
(38) (™™ — ¢ is reducible over K, where Q(&;a,b) =0

In the case (37) Q(x;a,b) has a factor in K[z| of degree k such that 1 <
k<ML say Hle(x —¢&;). It follows from the identity

™ + tol‘m'l — (to + 1)
z—1

(39) =c'"™Q(cz;a,b)

that the left hand side has the factor Hle(:r — L&), thus 7 (c7 1€y, ...
o) € K (1 <id < k) and at least one value of the algebraic function
y(t) at t = to lies in K, hence to € S}, (K). It follows that (to, —to —
1L1) € Ty, (K), (to,—to — 1L,z —1) € F, . (K) and the condition
given in the theorem holds with [ = (m,n), v = ny, p = mq, ag = to,
bOZ*tofl, FOZCC*L’UJ:C.

In the case (38) note that

(40) Q& a,b) =0, implies & #0.
Further, by Capelli’s theorem, there exists a ¢ | (m,n) such that
either ¢ is a prime and £ =n?, n € K(§)" or g =4

(41) \
and € = —41*, n € K(€)".
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If m,...,mn,—1 are all the conjugates of n over K we have

H:L:ll_l(x —nd) if ¢ is a prime,

Q(x;a,b :{ S
( ) Hi:lll(x‘i“hﬁ) if ¢ = 4,

hence

(42) Q(x%;a,b) is reducible over K.

By the identity (39) it follows that

" tox™ — (to +1) { H?:lfl(ﬂU —c 'p¥)  if ¢ is a prime,

z -1 [T @+ detyd) if g =4

Hence W} (to,uo) = 0, where

{ c71(771 + 1) if ¢ is a prime,
0= .
_4671 (771 +”. +7’n171)4 lfq :4.

and, since 7y + - -+ +np,—1 € K, we have ug € K, tg € Spy m, (K).
Further, it follows from (39) and (40) that & = ¢~ ¢ is a zero of
. 1+t0£71_(t°+1) and, by (41), c€y = n? or —4n*, where n € K(&)* and q

is a prime or g = 4, respectively.
By Lemma 18 ¢ = de?, where d € S(q, K, &), e € K, hence

(tod™ ™™, —(to + 1)d™,d) € T}

nlq,mlq(K) °
By (39)

™94 tod™ T ™9 — (tg 4+ 1)d™
9 —d N

(cd™ )" Q((ex)%; a,b),

hence, by (42)

2™ todm g™ — (fg + 1)d™

is reducible over K
9 —d

and (tod™ =", —(to + 1)d"™,z —d) € F, . ,(K). Thus the condition
given in the theorem holds with | = (m,n)/q, v = n1q, p = miq, ag =

todnlfml, bO _ _(tO + 1)dn1’ FO =T — d7 u =e.
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Assume now that for an integer [ : n/l = v, m/l = p and a = v’ *ay,
b= u’by, F(x) = uFy (%), where u € K*, (a,b, Fy) € F, ,(K). Then by

the definition of F, ,(K)

v “w b
W is a polynomial reducible over K,

and by the substitution z — %l we obtain reducibility of
T(x;a,b)F(z™™) =1 over K.

The proof of Theorem 3 is complete.

6. Addenda and corrigenda to the paper [5]

The paper [5] has been corrected in [6]. Regretfully further corrections
are needed.

Page 6, Table 1: Ag.1 should read 4v(v? + 3), Bg 1 should read —
—(v? +4v —1)(v? —4v —1).
in B7 2 for v2 —v —1read v2 —v+1
(This correction is due to G. Turnwald).
in A5 5 for 100v? read 10v?
(This correction is due to J. Browkin).
Page 27, lines —13
to —1: for K(x1,...) read K(t,x1,...) nine times.
Page 28, line —10: for Y"1 1 yig read (301 yig)?.
Page 31, line —13: for %—i— read 1+.
Page 37, formula (24): for n read (m,n).
line —13: for ny read 7y, .

Page 40, line —3: for (p—1)n read (p—1)d, not pd as indicated in [6].
Page 41, line —14: after 2 insert 7.
line —7: for v2 — v — 1 read v?> — v + 1 (This and the
previous correction are due to G. Turnwald).
Page 55, line —2: As pointed out in [6] (with a misprint)

the following inclusion has been used

(*) Ko(y)*P N Ki(y) C (K5° N Ki)(y),

where K is a subfield of K1, y = (y1,...,y) is a variable vector, K;°*
and K(y)*P is the separable closure of Ky and Ky(y), respectively.
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Here is a proof of (%) by induction on r. For r = 0 (x) is obvious.
Assume () is true for y of r — 1 coordinates and let

te Ko(y)sep N Kl(y)

We have F(y,t) = 0, where F' € Kyly,T] and the discriminant D(y)
of F(y,T) with respect to T is not zero. Let a € Ky[y| be the leading
coefficient of F' with respect to T, so that

(%) G(y,at) =0,

where G(y,T) := a%®¢r F~1F(y, T /a) is monic with respect to T'. We have
at € Kily], hence

n
(:*) at:zauy?_yu al/eKl[ylv"wy'r'fl] (OSI/SH)
v=0

Choose n + 1 distinct elements 7y, ..., n, of K;™ such that

(:I) a(yh'- . 7yT—lani)D(y17'~' 7Z/r—1777i) 7é 0 (O S 1 S n)

Since by (xx) and (")

n
G<y17 ceey Yr—1,1i, Zazﬂ??_y> =0
v=0

and, by (77), the discriminant of G(y1,...,yr—1,7:;,T) with respect to T
is not zero, we have

n
Z a,,nf_” S Kg(yl, . ’yr_l)sep'
v=0

Since det(n; ") # 0 we have a, € Ko(y1,...,yr-1)°P(0 < v < n). By
the inductive assumption a, € (K5 N K1) (y1,...,4r—1) (0 <v <n) and
by ()

te (K N KL ()

Page 61, line —9: for v read vy.
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Page 62, lines 10 and 11: The formulae make sense only for ug # 0. If

ug = 0 one should write instead, both for ¢ prime and g = 4,

(thdv—m/a teqv/7) where d € S(q, K, &) and §g/q + tg&g/q +t5 = 0.
S(q, K, €) is the set defined in Lemma 18 above.

If 2™ + ax™ + b is reducible over K and x™ + ax™* 4 b is irreducible
over K, then retaining the notation of [5] and putting & = a~*b"¢ we
argue as follows.

Since a®b~ "¢y = £ = n? or —4n*, where € K(£)* and ¢ is a prime or
q = 4, respectively, we have by Lemma 18 above

a’b™" =de?, de S(q, K, &), e € K.
Since, by (74) tg = a~"b"* =™ we obtain
a = a*M M) g (o)L — T T prid g
b=p¥mmm) T — s (fed)™ = g7 ed™

By (75) a9 4 t{d™ ™ x™19 4 t5d"™ is reducible over K, hence
(thd™ =™ 13d™) € Frygm,q and (ix) holds with [ = (2% = nyq,
[ =migq, u=e.

Page 80, Table 5: Insert three new examples

Number Trinomial Factor Discoverer
11a z104+36. 112 +2-38 23 + 322 + 9z + 18 Cistowska [2]
12a 210 426.5.76.11.6312 | 23 + 1422 4 3922 + 3332 | Cistowska [2]

+27.77.17-19-73
36a 215 — 3646 4 39 2% + 324 4+ 923 + 1822 Chatadus [1]
+ 27z 4 27
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