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Zeros of linear recurrence sequences

By WOLFGANG M. SCHMIDT (Boulder)
Dedicated to Kdlmdn Gydry on his 60th birthday

Abstract. Let {un}nez be a linear recurrence sequence. A classical theorem of
Skolem—Mahler—Lech asserts that the set Z of subscripts n with u, = 0 is a finite union
of arithmetic progressions and single numbers. We now show that when the sequence
is of order ¢, then Z is a union of at most c¢(t) progressions and single numbers.

1. Introduction

The sequences {u, }nez of complex numbers form a vector space V
under component-wise addition. A polynomial

(11) P(z):cozt+...+ct

acts on V by setting P({u,}) = {v,} with v,, = coup+crup—_1+- - -+cethn—¢
(neZ).

When P(z) is a polynomial of degree ¢ with constant term c¢; # 0,
the sequences {u,} with P({u,}) = {0} (the zero sequence) make up a
subspace V(P) of P of dimension ¢. If

(1.2) P(z) =co H(z — )t
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with distinct roots aq, . .., ay, the space V(P) is spanned by the sequences
{n?a}}nez

where 1 £4 <k, 0 £ j < t;, so that it consists of the sequences

(1.3) up, = Pr(n)al + -+ Pp(n)ay

where P; is a polynomial of degree < t; (i =1,...,k).

On the other hand, given a sequence {u,}, the polynomials P with
P({un}) = {0} make up an ideal in C[z]. A polynomial P(z) is in the ideal
precisely when 2P(z) is. When the ideal is not the zero ideal, it is generated
by a unique monic polynomial P, and this polynomial has nonzero constant
term ¢;. In this case we say that {u,} is a linear recurrence sequence, and
the polynomial P is its companion polynomial. The order of the recurrence
sequence is the degree of its companion polynomial. A sequence is of
order t precisely if (1.3) holds with distinct nonzero a;, ..., ax and Zle
(deg P;+1) = t. Only the zero sequence has order t = 0. A sequence {u,,}
of order t > 0 with companion polynomial (1.1) satisfies the recurrence
relation

Uy = —ClUp—1 — **+ — CtUp_¢ (n€z).

The sequence is said to be nondegenerate if the quotients c;/a; (i # j) of
the roots of its companion polynomial are not roots of 1.

Let {u,} be a linear recurrence sequence with companion polynomial
(1.1) of degree t > 0. We are interested in the set Z = Z({u,, }) of numbers
n € Z with u,, = 0, i.e., with

(1.4) Pi(n)al + -+ Px(n)ag = 0.

The Skolem-Mahler-Lech Theorem [3] says that Z is a finite union of
arithmetic progressions and of single numbers. Moreover, Z is finite if
the sequence is non-degenerate. Actually, Z is finite under the weaker
hypothesis that for some 7y, no quotient «;,/co; with j # i is a root of 1.

We recently showed [4] that in the nondegenerate case of order t > 0,
the set Z has cardinality |Z| < ¢1(¢t) where ¢;(t) depends on ¢ only. In the
present paper we will prove the following.
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Theorem. Suppose {u, } is a recurrence of order t. Then Z is a union
of not more than cs(t) arithmetic progressions and single numbers, where
we may take

(1.5) co(t) = exp expexp(20¢).

If the companion polynomial (1.2) has max;t; = a, then Z also is the
union of at most c3(k,a) numbers and progressions, where

c3(k,a) = exp exp(30ak®log k).

Note that in the nondegenerate case, we have replaced the bound
c1(t) = expexpexp(3tlogt) of [4] by (1.5). When the companion polyno-
mial has only simple roots, so that a = 1, we have c3(k,1) =
exp exp(30klog k) = expexp(30tlogt), i.e., a bound which is only double
exponential.

We do not claim that the union involves arithmetic progressions which
all have the same common difference a, i.e., progressions n = ax + b;, or
that our progressions do not intersect. Suppose (, £ are primitive roots
of 1 of respective orders r, s where r, s are coprime, and let

up = 1" = (" =&+ ()" = (1 -1 =¢") (neZ)

This is a sequence of order 4, and Z is the union of the two progressions rz
(r € Z), and sz (x € Z). It is an easy exercise to show that given a > 0,
at least r + s — 1 progressions n = ax + b; (z € Z) are needed such that
their union equals Z.

It will be convenient to introduce the following equivalence relation
on C*: we set a ~ 3 if a/f is a root of 1. Given

f(n)=Pi(n)a} + -+ Pr(n)ay

we group together summands P;(n)af and Pj(n)aj with a; =~ a;. After
relabeling, we may write (uniquely up to ordering)

f(n) = fi(n) + -+ f4(n)

where
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with ¢1 +---4+ ¢, =k and a;; ~ ajy when 1 S ¢ < g, 1 < j, £ £ ¢4, but
ijFapgwhen1Zi#i" g, 127 q, 102 g

We will now show that if f(n) = 0 for every n in an arithmetic pro-
gression A :n=ax+b (v € Z), then

(1.6) filn) =+ = fo(n) =0

for every n € A. Pick m € Nsuch that (/i)™ =1for1 =i <g,1 <5,
¢ < g;. The progression A is a finite union of progressions A’ : n = amax+b’
(z € Z), so that it will suffice to prove our assertion for each progression .A’.
b{a“mx, so that

When n = amz +b" in A’, we have o}, = aj;af

fi(n) = Qi(x)ai™
with Qi(z) = 227, ozﬁ-’],-Pij (amz +b'). We may infer that
(1.7) Qi(x)af™ + -+ Qg(z) g™

vanishes for each x € Z. Since a1 % a1, for i # i/, we have oy % a7,
so that {zfa¥™*},cz for 1 £i < g, £ =0,1,... are linearly independent
recurrence sequences. Therefore (1.7) can vanish for each z € Z only if
Q1 =---= Q4 =0. But then (1.6) holds indeed for every n € A’.

In view of the observation just made, our Theorem yields the following
result, akin to Lemma 8 of [4].

Corollary. (1.6) holds for all but at most cy(t) number n € Z.

If for some i we have oy, # «; for each j # iy, 1 < j < k, then some
fi equals P; (n)aj , hence has at most ¢ zeros. In this case Z contains no
arithmetic progression, hence has cardinality < ca(t).

The present paper is a sequel to [4], and the proof of the theorem
will depend heavily on the machinery introduced in that earlier paper. We
will frequently use without mention the fact that when z runs through
an arithmetic progression, then so does ax + b when a > 0, b in Z are
given. As for notation, h(a) will denote the absolute logarithmic height of
a nonzero algebraic number «, and ord § will denote the order of a root
of unity .
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2. A specialization argument

By arithmetic progression we will, of course, understand a set A =
A(a,b) C Z where a > 0, b are in Z, consisting of numbers ax + b with
x € Z. We will call a = a(A) the modulus of A. Suppose a set Z C Z is
a finite union of numbers and of arithmetic progressions. We then write
v(Z) for the minimum of w4 v such that Z can be expressed as the union
of u numbers and v arithmetic progressions. For example, when Z is finite,
v(Z) is its cardinality |Z[; on the other hand Z = A(2,0) U .A(3,0) has
v(Z) = 2. We write v(2) = oo if Z cannot be expressed as such a union.

In general, 2’ O Z does not imply v(Z’) = v(Z). We therefore will
require the following

Lemma 1. Suppose v(Z2) is finite. Then there is a finite set 7 C Z
with ZN7T = () such that every set Z' D Z with 2’ NT = has v(Z') =
v(Z).

PROOF. Suppose v(Z) = u+ v, and Z = Z1 U Z5 where |Z1| = u
and Z, is a union of v arithmetic progressions. Clearly Z; N Z5 = () and
I/(ZQ) = .

Say Z1 = {n1,...,ny}. When v =0 or 1, set 73 = (). When u > 1
and n; < nj, we note that A(n; — n;,n;) is not contained in Z, for if it
were, it clearly would be contained in Z, so that n;,n; € Z5, and we
could remove n;,n; from Z;, thus diminishing u +v. We may then pick
some t;; € A(n; — n;,n;) which is not in Z. We now let 77 be the union
of the numbers ¢;; so obtained. Then

Any arithmetic progression A with AN 7Ty = () contains at most one
element of Z,.

Therefore when v = 0, the lemma holds with 7 = 7;.

Now suppose v > 0, and let Z5 be the union of arithmetic progressions
Ala;,b;) (i =1,...,v). Set ¢ = lem(ay,...,a,); then Z5 is periodic with
period ¢, i.e., when n € Z,, then A(q,n) C Z5. Set £ = qu(Z). After a
translation, we may suppose that

1,q¢0)NZ =0.

Let 75 consist of all numbers n € [1, ¢f] which are not in Z. Suppose A
is an arithmetic progression with modulus a < ¢ which is not contained
in Z,. Let b,b+a,...,b+(¢—1)a with 1 < b < a be consecutive elements
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of A. If all were in Z5, then by periodicity of Z5, all of A would be in Z,.
Therefore at least one of the above ¢ elements of A is ¢ Z,, hence is in 75.
Therefore

FEvery arithmetic progression A with ANTy = ) and modulus a(A) < £
1s contained in Zo.

Set 7 = 7; U7T5. Suppose Z/ D Z with 2’ N7 = () is the union
of «/ numbers and v’ arithmetic progressions; say 2’ = Z| U 2} where
|Z1| =« and Z} is the union of v’ arithmetic progressions A} = A;(al, b))
(i =1,...,v"). We have to show that

(2.1) u+v Zu+v=rv(2).

If some A} is disjoint from Z,, its intersection with Z is empty or consists
of a single element of Z;. Remove A] from Z’, or replace it by this single
element of Z;. In this way Z’ is replaced by a set Z” D Z with Z"NT = 0,
and Z” can be covered by at most v’ + 1 numbers and v’ — 1 progressions.
If we can show that (v’ 4+ 1)+ (v —1) 2 u+ v, then (2.1) will follow. After
some replacements of this kind we may suppose that each A, (i =1,...,7")
intersects Zs.

We may suppose that A}, ..., Al havemodulus <fand A;, _ ,,..., A,
have modulus > ¢, where 0 < w < v'. Then A},..., A’ are contained in
Zy. Given A} = A(al,b}) where 1 £ i < w, each b, + za) € Z5, and since
Z, has period ¢, each b, +za,+yq with x,y € Z is in Z5. Therefore, setting
a! = ged(al, q), the progression A(a/,b}) C Z,. Since clearly AjU---UA,,
covers Zo, this union remains unchanged if we replace A, by A(a/,b}) for
1 <4 < w. Therefore we may suppose that a} | ¢ (i = 1,...,w), so that

1y..., Al have period gq.

We claim that 4] U---UA! = Z5. Say Z5 has r elements per period
of length ¢, and A} U---U A/ has s elements. Thus Z; has “density” r/q,
and A} U--- U A}, has density s/q. The sequences A, ,,...,Al, have
density < 1/¢, so that 25 = A U---UA!, has density < (s/q)+ (v'/¢). In
proving (2.1) we may clearly suppose that v < v(Z), and then Z), hence
Z’, has density

<(s/q) + W(2)/qv(2)) = (s +1)/q.

Therefore, since 2’ O Z and Z has density r/q, we see that s = r, and
our claim is established.
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We may conclude that w 2 v(2;) = v. The sequences A}, ,...,Al,,
together with Z{, must cover Z;. Since each A, contains at most one
element of Z1, we have (v —w) + |Z]]| 2 |Z1], i.e., vV —w + v = u. We

may conclude that v’ +v" 2 u+w 2 u + v. O

Consider an equation (1.4) where P, ..., P are of respective degrees
S$1,...,8k. The numbers aq,...,a; and the coefficients of Py,..., P, are
not necessarily algebraic. Denote the coefficients of P; by cjo,cj1,. .., ¢ ;-

By the Skolem-Mahler-Lech Theorem, the solutions n € Z of (1.4) make
up a set Z with finite v(Z). Construct 7 according to Lemma 2.1.
Given n € Z, the equation (1.4) defines an algebraic variety V'(n)
in the points (a,c) where o = (a1,...,;) and ¢ has components c;g
(1£j=k,0=4Zs;). Our particular (e, c) lies in the variety

V(Z2)= ) V(n).

nez

Since ZN7T =0, (a,¢) ¢ W(T), where

W(T)= ] V(n).
neT
In fact (¢, c) € V(Z)\Wy(7T ), where Wy(7') is the union of W(7') and the
surface o ...aRCi s, ... Crs, = 0.
There is an algebraic specialization (&, ¢) € V(Z)\Wy(7), i.e., a point
(&, ¢) with algebraic coordinates in this set. It gives rise to an equation

~ ~

(2.2) Pi(n)ay + -+ Py(n)ap =0

where &; # 0 and deg P = s (1 =4 < k). Let Z consist of solutions
n € Z of this equation. Since (&, ¢) € V(Z), we have Z S Z, but since
(&,8) ¢ W(T), non € T is a solution. Therefore ZN 7T = ), so that
v(Z) = v(Z) by the lemma.

Therefore it will suffice to prove our theorem in the situation where
Qi,...,q and the coefficients of Pi,..., P, are algebraic. We will as-
sume from now on that o, . .., a and these coefficients lie in an algebraic
number field K.



616 Wolfgang M. Schmidt
3. A Proposition which implies the Theorem

Proposition. Let M;(X) = a1; X1 + -+ +a; Xp (j = 1,...,n) be
linear forms which are linearly independent over Q. We suppose that the
coefficients a;; are algebraic, we write a; = (a;1, ..., a;,) and assume that
each a; # 0 (i = 1,...,k). We define t; to be the integer such that
a; = (ail,...,ai,ti,o,...,O) with Qi t, 75 0. Sett:tl + - +tk,

(3.1) T = min(k", e'?),
(3.2) h=HhT)=e "
Suppose ai,...,a are nonzero algebraic numbers. Consider numbers

x € Z for which

(3.3) Mi(af,...,a%), ..., My(af,...,aF)

are linearly dependent over Q. These numbers fall into at most
(3.4) H(T) = exp ((71)°7)

classes with the following property. For each class C there is a natural
number m such that
(a) solutions z, ' in C' have z =z’ (mod m),

(b) there are i # j such that either a; % «; and h(af*/aj') = h, or
a; ~ a; and ord(aj" /o) = ht.

Deduction of the Theorem. When P is a nonzero polynomial, set
t(P) =1+ deg P, and when P = 0 set t(P) =0. When P = (P,..., P)
is a vector of polynomials, put t = t(P) = t(Py) + -+ + t(Pg). Also set
a = a(P) = max; t(FP;). Suppose Pi,..., P, have algebraic coefficients,
and aq, ..., q, are nonzero algebraic numbers. We will prove by induction
on t that the set Z of solutions = € Z of

(3.5) Py (z)af + -+ Py(x)ag =0
has

(3.6) v(Z) S Z(t,T) =exp ((2" — 1)(7T)™"),
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where
(3.7) T = min(k?, e'?").

We clearly may suppose that k = 2, t = 3, and that Py,..., P are
not zero. Set t; = t(P;) (i = 1,...,k). When P;(z) = Z?Zl a;jxit
(i=1,...,k), define linear forms

k
N;(X) = Nj(X1,.... Xp) = ai;X; (j=1,...,0).
=1

Then a; = (a;1, ..., 0iq) = (ai1,...,ai4,,0,...,0) with a; ¢, # 0
(¢=1,...,a). The forms Ni,..., N, are not necessarily linearly indepen-
dent over Q. Let Mj,..., M, be a maximal independent (over Q) subset
of them. If we replace Ny,...,N, by Mi,..., M,, then the numbers t;
(i=1,...,k)and t = t; + - - - + t, induced by them cannot increase.

The equation (3.5) may be written as

(3.8) ZNj(af,...,az)xj_l = 0.
j=1

Each N;(X) is a linear combination >_""_, ¢;M,(X) with rational ¢j;, so

that (3.8) may be expressed as

(3.9) Zn:(za:cjrxj—1>Mr(af,...,ai) =0.

r=1 “j=1

There are fewer than @ numbers x € Z such that each polynomial
Z;=1 cjrx?~t (r = 1,...,n) vanishes. For other solutions of (3.9), the
numbers M, (af,...,af) (r =1,...,n) are linearly dependent over Q. By
the Proposition, these numbers fall into at most H(T') classes. Let us
consider solutions in a fixed class.

The numbers in such a class are of the form x = g + my with y € Z.
In terms of y, the equation (3.5) becomes

(3.10) Pi(y)é

=

+ 4 Pe(y)ag =0

where &; = o™, P,(y) = o™ Pi(zg +my) (i =1,...,k).

(2
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The Proposition leads to two cases. Let us first consider the case
where i # j, a; = a; and ord(&;/a;) = ord(af*/af") < H(T)~'. We may
suppose that i = k, j = k—1, say, and we set ¢ = ord(d&y/dg—1). We divide
Z into the arithmetic progressions A(g,¢) (0 = ¢ < q). When y = gz +/ is
in such a progression, then &} = &£a* |, and (3.10) becomes

(3.11) Pi(z)ar” 4+ 4+ P (2)apZ, = 0

with of = a? 1 <i <k—1), Pr(2) = &P(qz+ L) for 1 i < k-2,
but P} ,(z) = di_lﬁk,l(qz +0)+ dﬁﬁk(qz +¢). Since t(Pf,..., Pf_;) <
t(P), the zeros of (3.11) make up at most Z(¢ — 1,7T) single numbers and
arithmetic progressions. Taking the sum over ¢ in

05 ¢<q<HT) ' =exp (6T4) < exp ((6T)6T),
we see that the set Z¢ of solutions in our class has
(3.12) v(Zc) <exp ((61)%7)Z(t—1,T).

In the other case of the Proposition, some a; % a; have h(a]" /") 2 h.
Then just as in Section 5 of [4], there are polynomial vectors P(*) =
P P™) £ (0,...,0) with a(P™) < q, t(P™) < t(P) = ¢, and
where 1 < w = F, such that every solution of (3.10) satisfies

(3.13) P ) + -+ B () =0
for some w: here (as in [4])

F =exp((6t)”) +5Flog E with E = 16t*a/h.
Therefore E < 1673 exp(6T*) < exp(7T*), Elog E < exp(8T%),
(3.14) F < exp ((67)°") + 5exp(8T*) < exp ((67)°).

By our induction on ¢, the solutions of (3.13) consist of at most Z(t —1,T")
single numbers and arithmetic progressions. The single numbers give no
problem, but we have to observe that the solutions of (3.10) are just con-
tained in these progressions.

Say the progression is y = az + b (z € Z), and (3.13) becomes

(3.15) P (2)as + -+ P (2)a; = 0
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with @ = a¢ and P{")(z) = a'P™(az +b) (i = 1,...,k). Now if

7

aj....,a5 were distinct, then the validity of (3.15) for each z € Z would
imply that each ]Si(w) = 0, hence each Pi(w) = 0, which is not the case.
Therefore aq, ..., a are not all distinct, say ar_1 = dg. In terms of z in
y = az + b, the equation (3.10) becomes

(3.16) Pi(2)a; 4+ Pes1(2)df 4 =0

where ]Bl(z) = o?fﬁi(az +b) for 1Si<k—2, but ]Bk_l(z) = dz_lﬁk_l(az +
b)+al Py(az+b). Since t(P,. .., Pr_1) < t(P) = t, the solutions to (3.16)
make up a set of not more that Z(t — 1,7") numbers and progressions.
Altogether, the set Z¢ of solutions in our class has

(3.17) V(Zc) S FZ(t—1,T)* < exp((6T))Z(t — 1,T)?

by (3.14).
Considering the possible (fewer than a) solutions mentioned at the
beginning, and summing over the classes C, we obtain

v(Z) <a+ H(T)exp ((67)°")Z(t — 1,T)?
< T +exp (7T)°T 4 (6T)T) (exp (21 — 1)(77)77))?
<exp ((2' = 1)(7TT)"") = Z(¢,T).

Hence (3.6) is established.
Since ¢t £ T', we have in fact

v(Z) <exp (27(7T)"T).

We have T < T := e'?!. Here (since we may suppose t = 2 in our
theorem) Ty 2 €4, and

v(Z) < exp (T3") = expexp(12t - 8¢'?") < exp exp exp(20t).

On the other hand T' £ k", so that T < Ty := k%, since n < a. Here
Ty 2 2, so that

v(Z) < exp (TQP’OTZ) = exp exp(307; log Ty) = exp exp(30ak®logk). O
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4. A lemma on linear independence
Lemma 2. Let K be a field, and aq,...,ay vectors in K™. Suppose
ai:(a“,...,ai,ti,O,...,O) (121,,]{2)

where t; = 0 (so thata; =0)ort; >0, a;, #0. Sett =t;+---+t,. Then

there are fewer than e'?! ordered n-tuplesiy, ..., i, (with1<iy,..., i, <k)
for which a;,,...,a;, are linearly independent.
Remark. The conclusion is trivially true when ay, ..., a; do not span

K™, in particular when k < n.

PROOF. We may suppose that each a; # 0, so that each t; > 0. Let
a;,,...,a;, be linearly independent. For 1 < j =< m = [logn/log2] + 2,
let S; be the set of numbers ¢, 1 < ¢ < n, with n/29 < t;, < n/2971.
Then Si,..., Sy, are pairwise disjoint, and their union is {1,...,n}. We
have t;, < n/27=1 for £ € S;NSj41U---USy, so that the independence
of a;,,...,a;, implies |Si|+ -+ 4+ [Sj_1] =2 n—n/2771 (2 £ j < m).
Given Si,...,5;_1, the set S; is contained in the set {1,...,n}\(S1U---U
S;_1) of cardinality < n/2/~!. This gives at most 2"/ 27" choices for S;.
Altogether the number of possibilities for all the sets Sip,...,.S,, is less
than 27t (/2)+ = gn,

Now supppose S1,..., S, are given. When £ € S;, how many choices
are there for i, ? For such £, t;, > n/27, and since the number of subscripts
i with t; > n/27 is < (27/n)t, the number of choices for our iy is < (27 /n)t.
Since |S;] < n /2771, we see that given j, the number of choices for all the
ip with £ € S; is

< (20t/n)M?

Taking the product over j, 1 < j < m, we obtain

< (/)2 (2-22/2 . 23/4 948 |y < (8t/n)?".

The number of possibilities for S1,...,5S;, was < 4™, so that altogether we
get fewer than

(16t/n)*"
n-tuples i1, ...,i,. The function f(x) = (16¢t/x)* takes its maximum at

xo = 16t /e, so that

(16t/n)2" — f(n)2 § f(-'L‘O)Q — 83275/@ < el2t 0
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5. Denominators of certain rational numbers

Let g € N be given, and R the system of numbers u/q with 1 < u < ¢,
ged(u, q) = 1. This system has n = ¢(q) elements, so that we may set
R = {p1,...,pn}, say. For 1 <4, j < n, let r;; be the denominator of
pi — pj, i.e., r;; is the least natural number with r;;(p; — p;) € Z. Write
N(e) for the number of triples i, 7,k in 1 < 4,5,k < n with

(5.1) lem(ri;, i) < en.

By a special case of Theorem A in [4], N(¢) < ((2 — k)e"n? for any
0 < k < 1, where ( is the Riemann zeta function.
Here we will have to deal with the number M (¢) of triples i, j, k with

(5.2) lem(ri;, rix) < €q.
Lemma 3. For0 < x <1
(5.3) M(e) £ e(r)e"n®.

For instance, when k = 1/2, we may take c¢(k) = 11.

PRrROOF. lem(r;;,7%) is the least common denominator of p; — pj,
pi — px- The least common denominator of (u/q) — (v/q), (u/q) — (w/q) is
q/d where d = ged(u — v,u — w, q). So if S denotes the set of numbers z
in 1 £ 2z < ¢ with ged(z,¢q) = 1, then M (¢) is the number of triples u, v, w
in S with

(5.4) ged(u —v,u —w,q) = 1/e.

When ged(r, q) = 1, the left hand side of (5.4) is unchanged if u, v, w are
replaced by numbers congruent to ru, rv, 7w (mod q). Therefore M(e) =
nMi (e), where M () is the number of pairs v, w in S with

ged(l —v,1 —w,q) 2 1/e.
Given h, let Ms(h) be the number of pairs v,w in S such that

(5.5) h|ged(l—v,1—w,q).
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Then
Mi(e) £ Y My(h)= Y My(h).
h21/e hlq
h21/e

The Euler totient function has ¢(h) = ¢ (k)b %72 for 0 < k < 1,
and in particular one may take c;(1/2) = (2/27)'/* (see, e.g., [2], Theo-
rem 327, and the proof given there). Now suppose h | ¢, and let h’, ¢’ be
their respective square free parts, i.e., the products of primes dividing h, g
respectively. Then ¢(q)/q = ¢(¢')/q’ and ¢(h)/h = ¢(h")/h'. Define t,t’
by ¢ = ht, ¢ = h't’, so that ¢(q') = ¢(h')p(t"). We obtain

(o) /') (a/h) = (¢(d')/d(R))(t/t)
(5.6) = (¢(a)/o(M)(d' /a)(h/1") (/') = ¢(q)/d(h)
c1(k) " Lo(q)h~(1TR/2 = cl(/@)_lnh_(1+”)/2.

A

(5.5) yields v = 1 + hz, and v € S further implies 0 < = < ¢/h and
(14 hz,q) =1, so that (1 + hz,t") = 1. Since (h,t") = 1, the last relation
allows ¢(t') values of x in an interval of length t', hence (¢(t')/t")(q/h)
values of z in 0 < x < g/h. This, then, is the number of possible values
for v. It is also the number of possibilities for w, so that

My(h) = ((6(t')/¢')(a/h))" < er(w)2n2h~1 "

by (5.6), and therefore

Mi(e) S cr(r)™n Y h7IR
h>1/e

Suppose 0 < € < 1/2. The last sum may be estimated by an integral from
(1/e) — 1 to oo, and since (1/¢) —1 = 1/2¢, it is < k= 1(2¢)". We obtain

M(e) =nM(e) = 01(5)72:‘?712'("8/{713.

When £21/2, we have £ > 1/2, so that trivially M(e) < n3 < 2e"n3.
Thus (5.3) is established.

When x = 1/2, the value of ¢(1/2) given above yields M (g)<(27/2)'/2.
2-21/251/2p3 < 11e1/2n3. We therefore may take c(1/2) = 11. O
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In [4] a triple 4, j, k was called e-bad when (5.1) holds. We now (given
our special system R) will consider 4, j, k to be e-bbad if (5.2) holds. Thus
M (e) is the number of e-bbad triples. When ¢ =2 3 and wq,...,u, is an
(-tuple of integers with 1 < uq,...,upy < n, we will call this ¢-tuple e-bbad
if some triple u;, u;, ux with distinct 4, j, k£ is e-tuples is e-bbad.

Corollary. The number of e-bbad (-tuples is

< 2e1/203p 1,

PROOF. By the case k = 1/2 of Lemma 3, the number of e-bbad triples
is < 11e'/2n?. Therefore given i, j, k with 1 < i < j < k < ¢, the number
of f-tuples u1, ..., u, for which u;, u;, uy is e-bbad is < 11e1/2p3 . nt=3 =

Z), so that the

11e'/2nf. The number of triples 4, j, k in question is (3

number of e-bbad ¢-tuples is

/
<11 (3) el/2pt < 21203t O

As in [4], for «, B, v in C*, let G(« : B : ¥) be the subgroup of C*
generated by o/ and a/~.
Suppose [ is a primitive ¢g-th root of 1, so that deg 3 = ¢(¢) = n. The

set of conjugates B, ..., 8" of B consists of the numbers exp(2miu/q)
with 1 £ u < ¢, (u,q) = 1. Clearly an ¢-tuple of integers wuy, ..., u, with
1 < uy,...,ug £ nis e-bbad precisely if for some triple u;, u;, ji with

distinct 4, 7, k in 1 < 4,5,k < £ we have
G(ﬂ[“” . glud] ;ﬁ[uk]) < q.

Suppose Q(8) € K, and let & — £(9) (¢ = 1,...,D) signify the
embeddings K «— C. Given ¢ = 3, an /-tuple uq,..., e of numbers in
1 £ p £ D will be called e-bbad if there are distinct numbers 4, j, k in
1 <4,7,k < £ such that

(5.7) G(ﬁ(.“«i) :ﬁ(uj) :5(%)) < eq.

Since for each v in 1 < u < n there are D/n numbers pin 1 < p < D with
B = glul the number of e-bbad ¢-tuples is less than

(5.8) 2612030 (D /n)* = 2eY/203 D",



624 Wolfgang M. Schmidt

6. The cases k = 1 and n = 1 of the Proposition

When k =1, M;(X) = b; X where by,...,b, are linearly independent

over Q. Then bi1af,...,b,af are linearly independent for every x € Z.
When n =1, M;(X) = a1 X7 + - -+ + ax X with nonzero coefficients.
The number M;(of,...,af) is dependent when it is zero, i.e., when

araf + -+ agaj = 0.

If = is a solution of this equation, there is a subset S(z) C {1,...,k} such
that 1 € S(x) and

(6.1) Z ajay =0,

1€S(x)

but no subsum of (6.1) vanishes, i.e., (6.1) fails to hold when S(z) is
replaced by a set &’ with ) # &’ & S(x). By Lemma 8 of [4], for all but
at most

(6.2) G(k) = exp ((7k)4k)

solutions x, the set S(x) has the property that o; ~ «; for any 4, j € S(x).
We put such exceptional solutions z into a class by itself; condition (b) of
the Proposition will be satisfied by taking m sufficiently large.

Now let § # () be a subset of {1, ..., k} such that a; ~ o for i,j € S.
We will consider solutions having S(x) = S. For convenience of notation,
we will suppose S = {1,...,¢}, so that (6.1) becomes

(6.3) araf + -+ agay = 0.

There is no solution when ¢ = 1; hence we may suppose £ = 2. Since
no subsum of (6.3) vanishes, we know from Lemma 3 in [4] (which is an
immediate consequence of a theorem of EVERTSE [1]) that there are vectors

c®@ = (") ,céw)) where
1<w< B) =6C <3

such that af,...,aj is proportional to some ¢, Consider solutions with

fixed w. When x, 2’ are such solutions, (a;/as)? = ng) / c(zw), and similarly
for 2/, so that

’

(al/ag)g”ﬂ” =1.
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When m is the order of o /g, then x = 2’ (mod m), and af*/a8* =1, so
that ord(af*/ab) = 1.

The number of sets S is < 2¥, the number of choices for w is < k3k2,
S0 that we obtain < 2% - k3% classes. The total number of classes is

< Gk) + 2" k3 < exp ((7k)%F) = exp ((77)T) = H(T),

since n = 1 yields T' = k.

7. Proof of the Proposition

We may suppose that & > 1, n > 1. Let K be a field containing

Qi,...,qr and the coefficients of our linear forms. Set D = deg K, and
let £ — £ (¢ = 1,...,D) signify the embeddings K < C. For 1 <
01y...,0np S Dand 1< 4q,...,0, Sk, set
A<0-17’O-n> :agol)-.-aga’ll),
Uyeenyln ! "
A (fj,l""’(,jn> :det(agfl),...,agan))
11y000,lpn n
as in [4]. Given o = (01, ...,0,) write
i b o o o o *
1 U _ A 1y---90Un 1,---5Un )
w0 e =30 s ( T ) (4(T)
1= In=

Then according to (10.2) of [4], whenever the n quantities (3.3) are linearly
dependent over Q, we have

(7.2) fo(r) =0

for each o = (01,...,00).

Let ¢ = q(o) be the number of nonzero summands in (7.1). Then
q < k™, but also g < e'?* by Lemma 2. Therefore q(o) < T, where T is
defined by (3.1).

As in [4], there are 03,...,0, and uq,...,u, such that

A( 1,09,...,0n ) £0.

U, U2y - vy Up
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As in §10 of [4], define a set S of n-tuples such that this holds for every
o = (01 = 1,09,...,0,,) € S. Define sets Z(o) as in [4]. They have
cardinality < T

Suppose |Z(o)| =1 for some o € S. Then (7.2) has at most

G(g) = G(T) = H(T)

solutions z where G(q) = exp((7¢)??): This follows from the Corollary to
Lemma 8 of [4], and corresponds to the inequality in the paragraph below
(10.6) of [4].

We may then suppose that |Z(o)| > 1 for each o € S. The number of
n-tuples (i1,...,4,) is k™. Further Z(o) is a set of at most 7" such n-tuples.
Therefore the number of possibilities for Z(o) is < k"T. As in [4], we
construct a set Z of n-tuples (i1, ..., i, ), and sets S5, S5(02), ..., S, (02, ...
...y0n—1). Here |Z| £ T. In place of (10.8) of [4], we may conclude that
each set SJ(...) has cardinality

(7.3) Si(..)| > D/(nk"™) =2 D/T*T" > D/TO/HT

where we used that n 2 2, k 2 2, T 2 max(4,n,k). With 8" constructed
as in [4],
I(oc)=Z when oed8.

For 2 < j = n, let 7; be the set of numbers i; # u; in 1 < i; < k such
that

(74) (il,...,ij_l,ij,Uj+1,...,Un)GI

for certain iy, ...,7;_1. (When j = n, (7.4) becomes (i1,...,in—1,in) € Z.)
Lemma 17 of [4] holds in the following modified form.

Lemma 4. Suppose i; € T; and o;; % o;. Then

h(aij /auj) > 1/(8T7 deg(az’j /auj))'

PROOF. (10.12) of [4] becomes ng (ai, /cv,) > D/TG/IT by (7.3).
The Corollary to Lemma 11 of [4] yields

h(ai, Jaw,) > 1/(4(log T/DT)? deg(ai, /o).
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Here (since T = 4),

4(1og TO/YT*)? < 8(T210g T)® < 8T 0

For 2 = j = n, let 7* be the set of numbers «;; /a,; with i; € 7;.
Say 7 = {f1,--., [} In analogy to (10.13), (10.14) of [4] we have

(7.5) ni(Bs) > D/TG/T* - h(B,) > 1/(8T7 deg ;)

for each s, 1 < s < r, with s # 1. Lemma 18 of [4] now becomes

Lemma 5. Set { = 3T, and suppose

(7.6) D> et

Let 2 é 7 é n and 01y,.--505-1 with o1 = 1, 09 € Sé, .., 051 €
Si_1(02,...,0j-2) be given. There is a subset S] = §/(o1,...,0;-1) of
Si(o1,...,05-1) of cardinality

‘S]/-,(O'l, cee ,O’j_l)‘ =/

such that for any triple of distinct numbers ¢,%¢,w in SY(01,...,05-1),
and for 1 < s <,

T-1T° deg 3, when B # 1,

77 G(BD . gW) . g >{ 3
( ) ‘ (/85 ﬂs 55 )‘ T—llT Ord BS Wheﬂ BS ~ 1.

PROOF. For brevity, put S} = Sj(02,...,0;-1). When r = 0, the
condition (7.7) is vacuous. Since S; has cardinality > D/TG/HT* 5 37—y
by (7.3), (7.6), there is certainly a subset of cardinality £.

Suppose r > 0. Set

(7.8) e =T"10T"
Note that

(7.9)  108re'/2T3TG/NT £ (g l/2P4+aT? o 1/2p5T° _ g
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since T' 2 4, and that
(7.10) 22T G/OT « gT2HAT? ST - 3" . p

by (7.6).

Let 3s € 7" be given. Then if 35 % 1, we see from the argument
around (10.21) of [4] that the number of e-bad ¢-tuples 1, ..., pe with
each y; in S} is less than e1/2¢3 D%, On the other hand when 3, ~ 1, then
by (5.8) the number of e-bbad (-tuples is less than 2¢'/2¢3D*. Summing
over s in 1 = s < r, we see that the number of ¢-tuples p1,..., e in S
which are e-bad or e-bbad for some [, is

< 2re203 D" = 54re'/?T3 DY < 1(D/T<5/4>T2)£
2
by (7.9). The number of ¢-tuples for which at least two elements are equal
is

< <§>D£1 < 2Dt < %(D/T(5/4)T2>e

by (7.10). Since [S}| = D/TG/MT? | the number of all possible (-tuples in
Sjis 2 (D/T(5/4)T2)Z. Therefore there is an ¢-tuple of distinct numbers
in &} which is not e-bad or e-bbad for any of By,..., 3. By the definition
of e-bad and e-bbad this means that for any three distinct numbers i, j, k,
we have for G5 % 1 that

GBI = 1) Bi))| > en(y)
= e(deg ) D™ () > e(deg B)/TE/DT" > 71T deg B,

(in analogy to an estimate below (10.23) in [4]), and using (7.5), (7.8),
whereas for 35 ~ 1 the opposite of (5.7) holds, so that

‘G(ﬂgﬂi) :5§u1) :ﬁgﬂk)” > cord 85 > 7—107° ord f..

We now set S/(02,...,05-1) = {p1,...,pe}. Then indeed any three
numbers ¢, ¢, w in S/(...) have (7.7). O

We will assume from now on that (7.6) holds. This can always be
achieved by enlarging K, if necessary.
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We define §” to be the set of n-tuples o = (01,...,0,) with oy = 1,
o9 € 8y, 03 € SY(02),...,0n € S)(01,...,0n-1). We will deal with the
equation (7.2) with & € §”. The number of these equations is |S”| =
=1 < (37"

The remainder of our arguments follows Section 11 of [4], with a few
changes as follows. Each equation (7.2) splits, with at most G(q) < G(T)
exceptions. If we carry this out for each o € 8", we get

(7.11) IS"|G(T) < (3T)"exp ((7T)*") < exp ((7T)°")

exceptions. This takes the place of (11.1) in [4].

As in (10.9) of [4], we have Z(o) = Z when o € S, hence certainly
when o € §”. Subsets Z(o,z) of Z are defined in terms of the equa-
tion (11.4) of [4]. We have |Z| < T, so that there are fewer than T
tuples i = (i1,...,4,) # (u1,...,up) in Z. Hence given oq,...,0p,_1,
there will be an n-tuple i = i(o1,...,0n-1,2) # (u1,...,u,) such that
i € Z(o,x) for at least £/T = 3 of the numbers o,, € S//(02,...,0,-1). Let
S (ogy...,0n—1,) consist of 3 such numbers o,. Continuing in this way,
we construct sets Si(x), S5(o2,2),...,8(02,...,0n_1,2), aset S*(x) and
i(z) such that i(z) € Z(o,z) when o € S*(x).

Define systems ¥ of 3-element sets as in [4]. When i € Z, define again
a certain class C'(i,X) of solutions. The number of classes C'(i, X) is less
than

(7.12) T3 =T(3T)%",

which replaces (11.7) of [4]. When studying solutions x in a given class
C(i, %), let j = j(i) be the number such that i = (i1,...,%;, ujt1,...,Up)
with i; # u;. In contrast to [4], we can no longer claim that j > 1. We
can only claim that j > 1 if a;, % o, .

The sets Z(oy,x), Z(oy,z), I(0,,x) are in the set Z of cardinality
< T. Therefore C(i,X) may be divided into

(7.13) 23T

subclasses C(i,%,Zy,Zy,Z,) (where (7.13) replaces the number in (11.10)
of [4]). Since each Z(i,z) is of cardinality < T', the estimate (11.11) of [4]
may be replaced by

(7.14) T(3T)3" 25T B(T)? < 247797 (37)3" < exp(5T* + 3"7T).



630 Wolfgang M. Schmidt : Zeros of linear recurrence sequences

Eventually, just as in [4], we arrive at

(B9 /B8 = (B /L) =1

when x, 2’ lie in the same class. So if |G(ﬁ§¢) . B ﬁéw))| = m, then
x =x’ (mod m). Further by (7.7),

{ T deg B, if B, % 1,
m > 3
T-UT ord B if Bs ~ 1.

When [, % 1, we obtain from (7.5) that

h(B™) = mh(Bs) > T~ J8TT > 67" = K(T).
When [, ~ 1, we note that m | ord fs, so that

ord(B™) = m ' ord 3, < TUT? < 6T = R(T) ™ .

But s is a quotient a;/c;, and depending on whether a; # «; or
a; = aj, we get h(af/af") > W(T) or ord(ef" /o) < A(T)~".
How many classes do we have? Adding (7.11) to (7.14) we get

exp ((7T)°T) + exp (57° + 3"T) < exp (77)°") = H(T)

classes. O
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