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1. Conjecture on a hyperelliptic equation

For integers a > 0, b > 0 and k 6= 0, we recall Pillai’s equation

axm − byn = k(1.1)

in integers x > 1, y > 1, m > 1, n > 1 with mn ≥ 6.

Pillai [10] conjectured that (1.1) has only finitely many solutions. Now
we formulate a conjecture which implies Pillai’s Conjecture and a theo-
rem of Schinzel and Tijdeman [12] that for a polynomial with integer
coefficients and at least two distinct roots, there are only finitely many
perfect powers in its values at integral points. For this, we introduce some
notation. Let α be a rational number written as a

b in its reduced form.
We define

H(α) = max(|a|, |b|).
We observe that

H(α−1) = H(α) for α 6= 0

and

(1.2) (H(α))−1 ≤ |α| ≤ H(α) for α 6= 0.
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Let f(X) be a polynomial of degree n with rational coefficients such
that it has at least two distinct roots and f(0) 6= 0. Let L be the number
of non-zero coefficients of f . For non-zero rational numbers

b1, . . . , bL

with
n1 > · · · > nL, n1 = n, nL = 0,

let
f(X) = b1X

n1 + · · ·+ bL−1X
nL−1 + bL.

Let H be a number satisfying

H ≥ max
1≤i≤L

H(bi).

The right hand side of the above inequality is called the height of f . All
the results mentioned in this paper are effective and all the constants
appearing in this paper are effectively computable. Now we are ready to
state our conjecture.

Conjecture 1.1. Let m ≥ 2, and let x and y with |y| > 1 be integers

satisfying

(1.3) f(x) = ym.

There exists a number C depending only on L and H such that either

m ≤ C

or

ym − f(x) = ym − b1x
n1 − · · · − bL−1x

nL−1 − bL

has a proper subsum which vanishes.

The assumptions that f has at least two distinct roots and f(0) 6= 0
are necessary in Conjecture 1.1. For observing this, we take

f(X) = Xm, f(2) = 2m for m = 2, 3, . . .
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and

f(X) = 4Xm+1 − 19Xm, f(5) = 5m for m = 2, 3, . . .

If we consider

f(X) = Xm + X − 3, f(3) = 3m for m = 2, 3, . . .

we see that the possibility of the proper subsum vanishing in Conjecture 1.1
is not ruled out. For positive integers µ, ν with µ > ν and λ = (µm−νm)2,
x = µm + νm, the polynomial f(X) = (X2 − λ)/4 satisfies f(x) = (µν)m

for m ≥ 2. Thus the dependence of C on H in the Conjecture is necessary.
For an integer x > 1, we consider

f(X) = (x− 1)(Xm−1 + · · ·+ X) + x, f(x) = xm for m = 3, 4, . . .

in order to observe that the dependence of C on L in the Conjecture is
also necessary.

2. Consequences of Conjecture 1.1

Pillai’s Conjecture has been confirmed (see [16, Chapter 12]) if at least
one of the four variables in (1.1) is fixed. This is also the case if m = n in
(1.1). We show

Corollary 2.1. Conjecture 1.1 implies Pillai’s Conjecture.

Proof. Suppose that (1.1) is satisfied and Conjecture 1.1 is valid.
There is no loss of generality in assuming that gcd(a, b, k) = 1. We rewrite
(1.1) as

yn =
a

b
xm − k

b
.

Thus we take
f(X) =

a

b
Xm − k

b

in Conjecture 1.1. We observe that f(0) 6= 0 since k is non-zero and f(X)
has at least two distinct roots since m ≥ 2. Further

L = 2, H = max(|a|, |b|, |k|)

and
f(x) = yn.
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It is clear that

0 = yn − f(x) = yn − a

b
xm +

k

b

has no proper subsum which vanishes. Hence we conclude from Conjec-
ture 1.1 that n is bounded by a number depending only on a, b and k.
Similarly, we derive that m is bounded by a number depending only on a,
b and k. Now we apply a theorem of Baker [1] on integral solutions of
hyperelliptic equations to (1.1) and we conclude Pillai’s Conjecture since
mn ≥ 6. ¤

As stated in Section 1, Schinzel and Tijdeman [12] proved

Theorem 2.2. Let f(X) be a polynomial with rational coefficients

and at least two distinct roots. If m, x and y with m ≥ 2 and |y| > 1 are

integers satisfying (1.3), then m is bounded by a number depending only

on f .

Corollary 2.3. Conjecture 1.1 implies Theorem 2.2 unless f(0) = 0
and f has at most two distinct roots.

In fact, we show that Conjecture 1.1 implies that if m, x and y with
m ≥ 2 and |y| > 1 are integers satisfying (1.3), then m is bounded by a
number depending only on the height of f and the number of non-zero
coefficients of f .

Proof. We assume Conjecture 1.1. First we consider the case that
f(0) 6= 0. Let m, x and y with m ≥ 2 and |y| > 1 be integers satisfying
(1.3). We observe that H depends only on f and L ≤ n = deg f . Therefore
we see that the constant C appearing in Conjecture 1.1 depends only on f .
Further we apply Conjecture 1.1 to suppose that ym − f(x) has a proper
subsum which vanishes. Then we see from (1.3) that its complement is a
proper subsum which also vanishes. Thus

am1x
m1 + · · ·+ amtx

mt = 0,

where m1 > m2 > · · · > mt; am1 , . . . , amt are coefficients of f and
am1 · · · amt 6= 0. Then

am1x
m1 = −am2x

m2 − am3x
m3 − · · · − amtx

mt .
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Dividing both the sides by xm1−1, we have

am1x = −am2x
−(m1−m2)+1 − am3x

−(m1−m3)+1 − · · ·

Thus we see from (1.2) that

|am1x| ≤ H(1 +
1
|x| +

1
|x|2 + · · · ) ≤ 2H if |x| > 1.

On the other hand, we observe from (1.2) that

|am1x| ≥ H−1|x|.

Hence |x| ≤ 2H2. Consequently, we see from (1.3) that |y|m is bounded
by a number depending only on f and this is also the case with m since
|y| > 1.

Next, we turn to the case f(0) = 0. Then we may suppose that f

has at least two distinct non-zero roots. We write f(X) = Xrg(X) where
g(0) 6= 0 and g has at least two distinct non-zero roots. Then we see
from (1.3) that there exists a polynomial g1(X) with at least two distinct
non-zero roots and with rational coefficients whose heights are bounded by
a number depending only on the height of f , such that g1(x) is an m-th
power of a positive integer greater than 1. Now we apply the previous case
to complete the proof of Corollary 2.3. ¤

3. Generalised a b c Conjecture and Conjecture 1.1

We state the Generalised a b c Conjecture from Darmon and Gran-

ville [4, p. 533].

Generalised a b c Conjecture. Let N ≥ 3 and x1, . . . , xN be non-

zero integers satisfying

x1 + · · ·+ xN = 0, gcd(x1, . . . , xN ) = 1

and let no proper subsum of x1 + · · · + xN vanishes. Then there exist

numbers C1 and C2 depending only on N such that

max
1≤i≤N

|xi| ≤ C1

( ∏
p

p | (x1 · · ·xN )

)C2

.
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Corollary 3.1. The Generalised a b c Conjecture implies Conjec-

ture 1.1.

Proof. The proof of Corollary 3.1 depends on Theorem 2.2. We
denote by C3, . . . , C7 numbers depending only on L and H. We suppose
(1.3). By Theorem 2.2, we may assume that n = deg f ≥ C3 with C3

sufficiently large. Further we may suppose that no proper subsum of

ym − f(x) = ym − b1x
n1 − · · · − bL−1x

nL−1 − bL = 0

vanishes. Now we clear out the denominators of the rational numbers bi

in the above relation and then we divide both sides by the greatest com-
mon divisor of the terms. We observe that the greatest common divisor
is bounded since a0 is non-zero. Now we apply the Generalised a b c

Conjecture to conclude that

|y|m ≤ C4 (|yx|)C5 .

Further we see from (1.3) that

|x|n ≤ C6|y|m.

By taking C3 > 2C5, we get

|x|2C5 ≤ |x|n ≤ C6|y|m.

Consequently

|y|m/2
< C4C

1/2
6 |y|C5

which implies that m ≤ C7 since |y| > 1. This completes the proof of
Corollary 3.1. ¤

4. Problems on an equation of Nagell–Ljunggren

We consider the following equation:

(4.1)
xm − 1
x− 1

= yq in integers x > 1, y > 1, m > 2, q ≥ 2.
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By writing yq = (yq/p)p, there is no loss of generality in assuming that q

is prime in (4.1). We observe that

(4.2)
35 − 1
3− 1

= 112,
74 − 1
7− 1

= 202,
183 − 1
18− 1

= 73.

The initial contributions on (4.1) are due to Nagell–Ljunggren and there-
fore, we call (4.1) the equation of Nagell–Ljunggren. Ljunggren [8] proved
that (4.1) with q = 2 has no solution other than the ones given by (4.2).
Therefore, we suppose from now on that q > 2 in (4.1). Further it follows
from the results of Nagell [9] and Ljunggren [8] that (4.1) implies

m ≡ 5 (mod 6) if q = 3 and 3 - m, 4 - m

unless (x, y,m, q) = (18, 7, 3, 3). For a survey on (4.1), we refer to Shorey

and Tijdeman [16, Chapter 12] and Shorey [15, Section 4].
Let ν > 1 be an integer. Let P (ν) denote the greatest prime factor

of ν. We write ω(ν) and Q(ν) for the number of distinct prime divisors
of ν and the greatest square-free factor of ν, respectively. We recall that
ϕ(ν) is the number of positive integers less than ν and coprime to ν. We
start with the following factorisation on (4.1) given by Shorey [13].

Lemma 4.1. Assume (4.1). Let D be a positive divisor of m such

that

gcd(D, m/D) = gcd(D, ϕ(Q(m/D))) = 1.

Then
(xD)m/D − 1

xD − 1
= yq

1,
xD − 1
x− 1

= yq
2

for positive integers y1 and y2.

Our final aim is to prove on (4.1) the following

Conjecture 4.2. Equation (4.1) has no solution other than the ones

given by (4.2).

A weaker version of Conjecture 4.2 states

Conjecture 4.3. Equation (4.1) has only finitely many solutions.

Let m = PA1
1 · · ·PAs

s where P1 < · · · < Ps are prime numbers and
A1, . . . , As are positive integers. We apply Lemma 4.1 successively with
D = PAs

s , . . . , D = PA2
2 to derive
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Corollary 4.4. It suffices to prove Conjecture 4.3 for ω(m) = 1.

Thus the case ω(m) = 1 is the most difficult part of Conjecture 4.3.
But we do not know an answer even to the following simpler question.

Conjecture 4.6. Equation (4.1) with ω(m) ≥ 2 has only finitely many
solutions.

Another conjecture lying between Conjectures 4.3 and 4.6 states

Conjecture 4.5. Equation (4.1) has only finitely many solutions when-
ever x is a perfect power.

Conjecture 4.2 implies Conjecture 4.3 which gives Conjecture 4.5.
Now we show

Corollary 4.7. Conjecture 4.5 implies Conjecture 4.6.

Proof. Assume (4.1) and Conjecture 4.5. Let m = PA1
1 · · ·PAs

s as
above with s ≥ 2. Then we apply Lemma 4.1 with D = PAs

s to suppose
that m = 2D and

xD + 1 = yq
1.

This is Catalan’s equation and Tijdeman [17] proved that it has only
finitely many solutions. This completes the proof of Corollary 4.7. ¤

There has been progress on Conjecture 4.5 recently. Saradha and
Shorey [11] confirmed the conjecture when x is a square. In fact they
proved that (4.1) has no solution whenever x = z2 with z ≥ 32 and z ∈
{2, 3, 4, 8, 9, 16, 25, 27}. Further Bennett [2] and Bugeaud, Mignotte,
Roy and Shorey [3], independently, covered the remaining cases. Thus
(4.1) has no solution if x is a square. Further Hirata-Kohno and Sho-
rey [6] confirmed the conjecture when x = zµ where µ is a fixed odd
prime and q > 2(µ − 1)(2µ − 3). By taking µ = 3 in the preceding
result, we see that (4.1) with x = z3 and q /∈ {5, 7, 11} has only finitely
many solutions. For a survey of results on Conjecture 4.5, we refer to
Shorey [15, Section 4].

5. Results on Conjecture 4.6

A weaker version of Conjecture 4.6, namely that (4.1) with ω(m) >
q − 2 has only finitely many solutions, has been given by Shorey [13],
[14]. The proof depends on the results of Shorey [13, [14] that (4.1) has
only finitely many solutions if either m ≡ 1 (mod q) or x is a q-th power.
These results have been improved as follows:
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Lemma 5.1. Equation (4.1) has no solution whenever x is a q-th

power.

Lemma 5.2. Equation (4.1) with m ≡ 1 (mod q) has no solution.

Lemma 5.1 is due to Le [7] and Lemma 5.2 is an immediate conse-
quence of a theorem of Bennett [2] saying that for a positive integer a,
the equation

(a + 1)xn − ayn = 1 has no solution in integers x > 1, y > 1, n ≥ 3.

We use the above lemmas in the proof of Shorey’s result saying that (4.1)
with ω(m) > q − 2 has only finitely many solutions, to show

Theorem 5.3. Equation (4.1) with ω(m) > q − 2 has no solution.

Proof. Suppose that (4.1) is satisfied. We write

m = qepa1
1 · · · par

r

where e ≥ 0, a1 > 0, . . . , ar > 0 and p1 < p2 < · · · < pr are prime
numbers different from q. For 1 ≤ µ ≤ ν ≤ r, we put

mµ,ν = paµ
µ · · · paν

ν .

By repeated application of Lemmas 4.1 and 5.2, we derive that none of
p1, . . . , pr is congruent to 1 (mod q). Then we apply Lemma 4.1 with
D = qe and Lemma 5.1 to conclude that e = 0. For 1 ≤ µ ≤ ν ≤ r, we
write D1 = m1,µ−1, D2 = mµ,ν and D3 = mν+1,r. We apply Lemma 4.1
with D = D3 and D = D2 to derive that XD2−1

X−1 with X = xD3 is a
q-th power. Then we conclude from Lemma 5.2 that none of mµ,ν with
1 ≤ µ ≤ ν ≤ r is congruent to 1 (mod q). Finally, we consider

m1,1 = pa1
1 , m1,2 = pa1

1 pa2
2 , . . . , m1,r = pa1

1 · · · par
r .

We know that none of these is congruent to 0, 1 (mod q). Further, for
1 ≤ µ < ν ≤ r we observe that m1,µ and m1,ν are incongruent (mod q),
otherwise

m1,ν

m1,µ
= mµ+1,ν ≡ 1 (mod q).

Hence ω(m) = r ≤ q − 2. This completes the proof of Theorem 5.3. ¤
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Now we consider (4.1) with the additional assumption

(5.1) gcd(m,ϕ(Q(m)) = 1.

Erdős [5] gave an asymptotic formula for the number of positive integers
satisfying (5.1). Thus there are infinitely many positive integers m sat-
isfying (5.1). The assumption ω(m) > q − 2 in the above results can be
relaxed in this case. Shorey [14] showed that (4.1) with (5.1) and

(5.2) 2ω(m) > q − 1

has only finitely many solutions. In fact, we have

Theorem 5.4. Equation (4.1) with (5.1) and (5.2) has no solution.

The proof depends on Lemmas 4.1, 5.2 and a result of Le [7]. The
derivation of Theorem 5.4 from these results is similar to that of Theo-
rem 5.3 from Lemmas 4.1, 5.1, 5.2 and we refer to Shorey [14] for details.

Acknowledgements. I thank N. Saradha, M. Waldschmidt and the
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[9] T. Nagell, Note sur l’équation indéterminée (xn − 1)/(x− 1) = yq , Norsk. Mat.
Tidsskr. 2 (1920), 75–78.



Some conjectures in the theory of exponential diophantine equations 641

[10] S. S. Pillai, On the equation 2x − 3y = 2X + 3Y , Bull. Calcutta Math. Soc. 37
(1945), 15–20.

[11] N. Saradha and T. N. Shorey, The equation xn−1
x−1

= yq with x square, Math.

Proc. Camb. Philos. Soc. 125 (1999), 1–19.

[12] A. Schinzel and R. Tijdeman, On the equation ym = P (x), Acta Arith. 31
(1976), 199–204.

[13] T. N. Shorey, Perfect powers in values of certain polynomials at integer points,
Math. Proc. Camb. Philos. Soc. 99 (1986), 195–207.

[14] T. N. Shorey, On the equation zq = (xn − 1)/(x − 1), Indag. Math. 48 (1986),
345–351.

[15] T. N. Shorey, Exponential diophantine equations involving products of consecu-
tive integers and related equations, Number Theory (R. P. Bambah, V. C. Dumir
and R. J. Hans-Grill, eds.), Hindustan Book Agency, 1999, 463–495.

[16] T. N. Shorey and R. Tijdeman, Exponential Diophantine equations, Cambridge
Tracts in Mathematics 87, Cambridge University Press, Cambridge, 1986.

[17] R. Tijdeman, On the equation of Catalan, Acta Arith. 29 (1976), 197–209.

T. N. SHOREY
SCHOOL OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH
HOMI BHABHA ROAD
MUMBAI 400 005
INDIA

(Received January 8, 1999; revised June 25, 1999)


