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On a representation of the projective connections
of Finsler manifolds

By TSUTOMU OKADA* (Kyoto)

Dedicated to Professor Lajos Tamdssy on his 70th birthday

The idea of introducing a single affine connection on the associated
manifold involving one additional dimension, corresponding to the family
of the projectively related affine connections on an original manifold, is
due to T.Y. THOMAS [1]. Since then, many authors, for instance J.H.C.
WHITEHEAD [2], and K. YANO [3], discussed and developed this theme.
Later, S. KoBayasHl and T. NAGANO [4] studied it from a modern view-
point by means of the fiber bundle. In the present paper I am going to
establish the foundations of the projective theory of Finsler manifolds on
the basis of our theory [4], [5] of the non-affine connection by use of fiber
bundles. That is, I shall try to represent the Berwald connection of an
n-dimensional Finsler manifold M"™ as a non-affine connection of the rela-
tive line bundle LM"™*!, which is called a “projective connection”. To this
purpose, it is necessary to base my theory on various kinds of connections
of some bundles on M.

Since the connection on LM constructed from a Berwald connection
of M is invariant by the projective change of the Berwald connection, all its
torsion and curvature tensors are also invariant by this projective change.
We see that the famous generalized Weyl and Douglas tensors are included
as part of the components of these tensors. Moreover, we obtain that the
constructed connection is linear (affine) and affinely flat if and only if the
Berwald connection is projectively flat. Finally, I am going to show that
the paths of a constructed connection with affine parameter correspond to
the geodesics of the original Finsler manifold with projective parameter.
These global results are explicitly expressed by means of the canonical
coordinates.

*This paper was presented at the Conference on Finsler Geometry and its
Application to Physics and Control Theory, August 26-31, 1991, Debrecen, Hungary.
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0. Introduction

We introduce some notations (see Fig. 1):
M : an n-dimensional differentiable manifold.

(F (M), M,pp) : the frame bundle of M.

(T'(M), M, pr) : the tangent bundle of M.

(LM, M, py) : the relative line bundle of M, or the associated bundle
of FI(M) with standard fiber R : i.e. LM = (F(M) x R)/ ~, where the
equivalence ~ means (z,r) ~ (zg, —wlog|g| + r) for (z,r) € F(M) x R,
g € GL(n,R), |g| = the absolute value of the determinant g, w = a
constant real number, (in §5 we put w = —1/(n + 1)).

(F(LM),LM,ppy,) : the frame bundle of LM.

(T'(LM), LM, pryr) : the tangent bundle of LM.

(T'(LM) x F(M), T(LM),prrr) : the induced bundle
(prprr) 1F(M) of bundle F(M) by prLprr.

(T'(LM) x F(LM), T(LM), prrrr) : the induced bundle

71 YF(LM) of bundle F(LM) by prr.

Let {U, (")} be a local coordinate neighborhood system on M, and

the following be its canonical coordinate systems on the corresponding
bundles:

{pr~'U, (93 )} on F(M),

{pT 1U7 ( 7y )} on T(M)

{pL='U, (2*,2°)} on L(M),

{(prTL)_lU (xi7x07yi7y0)} on T(LM)7

{(pLprL)~'U, (z% w%)} on F(LM)

{(pLprrpror) U, (2, 2°, 4", 40, 2" i)} on T(LM) x F(M),

{(prTLpTLFL) 1U, (z%,y*, w%)} on T(LM) x F(LM),
where 7,7 =1,2,... ,n;a,b=1,2,... 'n

For instance, a coordinate transformation on (prprrprrr) tUN
(prprrprrir) tU # ¢ in T(LM) x F(M) is expressed as

x =x'(z7), x°=w log|ox/0x|+ °,
i _ axi j *’x* gz j 0
Y =aals ¥ =W g oxw ¥ HY
. 8Xz k
ZZ amk 4 ja

where |0x/0z| = the absolute value of the determinant [g—g], 1,5, k,m =
1,2,....,n

The “projective connection” of the Finsler manifold M is represented
as a regular “pair-connection [5]” without (h)hv-torsion of the manifold
LM, which is defined by a pair of horizontal distributions on T(LM) x
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F(LM) (See 3). On the way to do it, we shall use a “tetra-connection” in
T(LM) x F(M) (See 1).

1. Tetra-connection in the bundle T'(LM) x F(M)

The total space of the induced bundle (prprr) 1 F(M)isaset {(Y, Z);
YeT(LM),Z € F(M), pLprr(Y) = pr(Z)}, so we write it as T'(LM) x
F(M), and its right translations R,;, ¢ € GL(n,R), mean R, (Y,Z) =
(Y,R,Z). On this bundle we shall consider four invariant distributions by
the right translations.

Definition. A tetra-connection in the bundle T'(LM) x F(M) is a col-
lection {I'", "0 v 0} of four distributions such that

(a) the tangent space (T'(LM) x F(M)), at p € T(LM) x F(M) is
the direct sum of I'", T"9 T'? T%0 and of the tangent space F), of the fiber
through p: i.e. (T(LM) x F(M)), =T", +T"0, + T, + T, + F,,

(b) prrr(TY +T"0) is the tangent space of the fiber through prrr(p)
in the tangent bundle T(LM), and T (pz)prrr(I'*?) = 0, where T(py) is
the tangential map of py,

(c) T(pr)prLr(T"?) =0,

(d) each of the four distributions is right invariant: i.e.

Rthp = thga Rgrhop = Fhopga

v v v0 v0
Rng:Fpgv RgF p=1"pg-

The h-basic, h0O-basic, v-basic and v0-basic vector fields of this connec-

tion and the fundamental vector fields, which span respectively I'*, T'"0 TV,
% and F),, are defined as follows:

Let ZL M — LM, lTL LM — T(LM), ZTLF : T(LM) — T(LM) X
F(M) be the horizontal lifts with respect to this connection, then

Hy =lppplriln(Zey) for (Y,Z) € T(LM) x F(M), where {e;} are
the basis of the standard fiber R™ of the tangent bundle T'(M) and Z €
F(M) means the principal map Z : R" — T'(M).

H = lrpplrr(Ze), where {e} is the base of the standard fiber R of
the associated bundle (line bundle) LM with respect to the frame bundle
F(M) and Z,Z € F(M), means the tangential map of the principal map
Z:R— LM,r — wlog|Z|+r ="

Vy = lprpl¥l(Zey), where IV : LM — T(LM) is the vertical lift of
the tangent bundle T'(LM).

V = lTLFl”(Ze).
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L;7 = Ly(g917), where {g;’/} are the basis of the Lie algebra of
GL(n,R) and L,,P = (Y,Z) € T(LM) x F(M), means the tangential
map of the left translation L, : GL(n,R) — T(LM) x F(M), g — R,P =
(Y,R,Z).

In terms of canonical coordinates, they are expressed by

H:%—Elk zkm%,

V; =29, <% —Hjaiyo —Cklj z%%) 5
V= 8%0—0’,6 ka%,

L¥y =276 kﬁiz,z’

where 7,7, k, l,m, [, J, K =1,2,... n.
Let iy for fixed Z € F(M) be the tangential map of iz : T(LM) —
T(LM) x F(M),Y — (Y, Z), then

x H = ileL(Ze) = 8/8330,
* VJ = izlvlL(Z€J> = ZjJ (3/8y7 — Hj 6/8]./0),
«V =iygl"(Ze) = 0/0y°

are also special h0-basic, v-basic and v0-basic vector fields without torsions
FE and C respectively.
The structure equations are written as

[L71, Hi] =07k Hy,  [L7r, +H] =0, [L71, #Vg] =67k + Vi,
[L71, V] =0, [L', L*k] =6 LY — 61 L7k,
and the torsion and curvature tensors are given by
[Hp, H;) =T/5;Hx + Ry« H+ Ry« Vay+ RrosxV

+ RMp Ly,

[Hy,+H] = OH;« H+ ONM; « Vi + ONp « V + 0F M LEy,,
[Hp,xV;] = Hipx H+ Py« Vi + Pryx V + P, L5y,
[Hp,+V] = OH;p« H+ONM; « Vi + N« V + oFM LE,y,,
[

Vi, «H|] = OH %V,
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¥V, «H] = 0,

[(«V5,*V | = (Hrg — Hyp) %V,

«V, +V;] = ©H; % V.

There we have
5y = 22727 5 T, Rry = 2'127;Ty,
RMy =229 "M R™;, - | ©Hp =270 H;,
where

T% = F* — Fi%,
Rij = 6,H; — 6;H,,
R™; = §;N™ — 6;N™;,
R;% = 0;N; — 6;N; + Hyn R;™;,
Ry = 6; 5™ — 6:;Fy — BBy + B F
O H; =00H;, ©N™; = dyN™;, ©N; = OgN; + H,,OgoN™";,
© F™ = 0o Fx"™,
Hy; = 6;H,,
P = 0;N™ — F;™,,
Pjj = —6;H; + 6;N; + Hy,0;N™;,
P,y = ;™
& H; = 9oH;, ©N™; = OoN™;, 6N; = doN; + HpdoN™;,
& B = 0F:™;

using some abbreviated notations

0 0 0 0
%= a7~ Migen ~ N igym ~ Nigye
: 0 0

" e

do = 8/02°, do = 0/0y°.

The invariance of the tetra-connection with respect to z° and 3 is
defined by [*H, H;| = 0 and [*V, H;] = 0 respectively, or OH; = OGNM; =
@N[ = @FKM] = (0 and @H] = @NM] = @Nl = @FKMI = 0.

On the bundle T(LM) x F(M) there exist globally a relative scalar
v(P) = 2° —w]log |27, a contravariant vector v!(P) = 274y’ and a scalar
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Y (P) = y° + Hyy™ for P = (2%,2% y%, 40, 2%) € T(LM) x F(M). Their

covariant derivatives are

vir = Hyp -y = 2'1(—H; + wF,,™),

V= ey =1,
Y1 =x*Vp-y=0,
%:*V-’VZO,

Vg =Hyo' =27 (=N + Foliy™),
yii=+H 4 =0,

vy =*Vy -yt =68,

V=%V . 4T =0,

V= Hy -2 =275 (=N; + (8;Hp)y" — HL.N";),
V= xH -7 = OHg~",

V0 =V 4% = Hg ",

A0 =%V .20 =14+ HyuyM.

The tetra-connection is said to be regular when v;; = 0, vy =0
and ’YO;J = 0, or Hz = memi, sz = mzjym’ Nj = (5]Hk)yk — H]CNk]
Therefore, let { F) kij} be a given Berwald connection, then it may uniquely

be regarded as an z°-, y%-invariant and regular tetra-connection without
torsion F and C. (Details come later.)

2. Berwald tetra-connection

A manifold M with a metric ds = L(x?,dx?) is said to be a Finsler
manifold. Its geodesics are given by

dy’ S ) o daxt
QGZ ] J — k 1 (A —
pr (7, y") =ky', y o

where k = (d%s/dt?)/(ds/dt) and G*(z¢,y") are positively homogeneous of
degree 2 with respect to (y°). Then G;% = (92°G")/(9y’dy*) are said to be
the coefficients of the Berwald connection.

We shall consider the Berwald connection as a special tetra-connection
determined uniquely by the six axioms:

(a) It is h-metrical, or the h-covariant derivatives of the fundamental
function F = 1L(z%,y%)? all vanish: F;; = 0.
Here the function F is regarded as an z°-, y°-invariant scalar positively




18 Tsutomu Okada

homogeneous of degree 2 with respect to (y) on the bundle T(LM) x
(b) It is regular: i.e.
(b1) =0, (b2) ;=0 (b3) 7% =0

(¢) The (h)h-torsion tensor T;¥; = 0.
(d) The (v)ho-torsion tensor P ; = 0.
In terms of canonical coordinates these axioms are written as

oF  OF
() =g - 8—ykN’3- =0,
(b1) i =—H; +wF,™; =0,
(b2) %5 = =N+ Fnljy™ =0,
(b3) 7%, = —Nj + (6;Hi)y" — HyN"; =0,
(c) TF=F%-FE* =0,
(d) PF =0oN%/oy — F}% =0,

Differentiating (a) by ¢’ and contracting by y*, we see by use of (a), (b2),
(c) and (d) that
0*’F .  OF here 0*F
- ot = : where g1, = ——.
OxtOyI Y i ik Oyl Oyk
Therefore we have
. ([ O*F . OF
Nki v kg . oyt — ) =2 k
vy=9 (axzaya Y 8x3> &

and differentiating the last equations by y™ and using (b2), (c¢) and (d)
we obtain

Then (d) implies
Ff = ON%,, /0y' = 0°G Joy'oy™ = G/,

Moreover from (bl) and (b3) we see

Hi = memZ == memZ and
N; = (= - N™ZZE ) gk g N = T G
! ( OxJ ! 8ym> Y % T oym

where H = Hpy* = wN™,, = wG™,,.
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Let “T” be spaned by the {H} and ¢ * 'V by the {*V;} determined
above, then the tetra-connection {¢T", +T'"0 G« Y0} is called Berwald
tetra-connection, which is an x0-, y0O-invariant regular tetra-connection
without torsion £ and C' and positively homogeneous of degree o with
respect to (y°).

In this case, since it is 20-, y0-invariant and Tikj =0, Pz-kj =0,P; =0
and R% = 0, the bracket equations are written as

[H;,Hj) = Ryy+ H+ Ri™; Vi + Rg™M; 5 L%y,
[Hy,+Vy) = Hpyx H + Px™p; L%,

the others all vanish, where

5= g ~ N gy
R k. _ aNk[z m aNkl]

I g oym’
R™j = 2 v — I E G,
oo OH_ 0PGK,

Yoy T oytyl)

m, 3m

pom _ OB G

oyl Oykoyioys

The relations R]J = wRKKU, H]J = wPKK” and R[KJ =
Ryr%779M hold. Their essential Bianchi’s equations are given by
Saim{Br"iyr =0,
St gk + RP5P™kp} = 0,
Riy™i; = Rk,
quij:k: = quik;j - qujk;i,
where S(;;r) denotes the cyclic permutation of 7, j, k and summation, and
OR/™;; N7, OR™;;
Oxk oyP
— R BV + RP E™,
R™ij = OR™5/ 0y

R"j5k =

— Ry FiPe — R Fi
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3. Pair-connection in the bundle T(LM) x F(LM)

Definition. A pair-connection in the bundle T(LM) x F(LM) —
T(LM) is a collection {I'", T} of two distributions such that
(a) the tangent space (T'(LM) x F(LM))q at Q € T(LM) x F(LM)
is the direct sum of I'*, TV and the tangent space G of the fiber through
Q:
(T(LM) x F(LM))q =T" +T"g + Gq,

(b) prrrr(I?) is tangential to the fiber through prrrr(Q) of the
tangent bundle T'(LM),

(c) each of the two distributions is right invariant: i.e. if R,, a €
GL(n + 1,R), is the right translation of the induced bundle T'(LM) x
F(LM), then Rath = FhQa, RQFUQ = fVUQa-

The h-basic, v-basic and fundamental vector fields are expressed in
terms of canonical coordinates (z%,y%, w%) as follows:

_ 0 _, 0 _ 0
Hj=w" — Nb — — Fbwt, ——
4 wA(@a:a oyb d ot awbc)’
7 __ _.a 3 ~ b d a
VA—wA(aya Cdawc@wbc),
LBy = w465, 0 ,

owY,

where A, B,a,b,c,d =1,2,... ,n,0.

When 754 = w4 (—N% + F.%y°) = 0 and v5 4 = 684 + CcBar©
= 684 hold for v = w~Byyb, it is said that the pair-connection is regular.

We see that #V4 = w% aga are also special v-basic vector fields with-
out torsion C, and we have V4 = #V4 — CpBaLP5.

The structure equations are written as

[LP4,Hc} = 65cHa,
[LPa, #Ve] = 65c#Va,
[LP4, LPc] = 6%cLP 4 — 6P4 L%,
and the torsion and curvature tensors are given by
[Ha,Hp] = TA°gHo+RaPp#Vp + RePapLlp,
[Ha, #VB] = Pa°p#Ve + PcPapLCp,
[#Va, #Vp] =0,
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where these tensors are written as
Ta%p = w'aw’pw 9. T,5%, To% = F,% — F)“%,
Ra% = waw’sw ' RS,  Ru% = 0uN% — 6,N%,
RePap = wow swpw  PyR
Rcdab = ngcda - Sachb - Fedapceb + Fedecea;
Pa% = waw’sw 9 P%,  P% = 0,N% — FyS,
PcPup = wiawpuwow PPy, Py = pF.4,
using some abbreviated notations

0 —p O

ga = - Nba_
Ox® oyb’

D, = 0/8y°.

4. The induced pair-connection in T(LM) x F(LM).

A map ¢y : T(LM) x F(M) — T(LM) x F(LM) is defined as
Y, Z) = (Y,(lg(Z),T(Lz)(0/0r))), where lg is the lift T (M) — T(LM)
with respect to the distribution prrprrr (I +T79), or Iy : 2% (0/0z") —
27(0/0x" — H;0/0x°), and T(Lz) is the tangent map of the principal map
Lz : R — LM; r — wloglz| +r = 2% or T(Lz) : T(R) — T(LM);
d/0r — 9/0x°.

By the expression in canonical coordinates we have

¢H : (xiﬂxoayiayﬂwzij) - (xi7x07yi;y07wab)7

a\ __ Zij 0

i __ i T 0, _ 1 0 _
wj—zj,wo—(),wj——Hizj,wo—l,

where

or

,7=1,2,... ,n;a,b=1,2,... ,n,0.
The map ¢y is a bundle map such that

(a) prorL¢H =PrLF, (b) 9uRy = Ry(g)bm,

where f: GL(n,R) — GL(n + 1,R); (¢%) — (g(;j (1))
Now, we shall induce by ¢ from a tetra-connection {T'*, "0, TV, "0}
a pair-connection {I'*,T%} on the bundle T(LM) x F(LM). Tt is to be

noticed that ¢ is dependent of T'.
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The basic vector fields (Ha,Va) of the induced pair-connection are
given from the basic vector fields (H;, H,V;, V) of a tetra-connection by
¢y as follows:

Hr = ¢u(Hr), Ho = ¢u(H), Vi = ¢u(V1), Vo = ¢ua(V).

Therefore, in canonical coordinates at ¢y (Y, Z), the coefficients of the
induced pair-connection are obtained as

N'; = N, Ny =0, N% = Nj, N?% =0,
F% = F}% + EHy, Fy' =0, Fj'g = E"j, Fy'o =0,
o, OH; OH,

F%=—-" = N2 — Ny — (F;"% + E"Hy)Hp,, Fo%% =0,
ik = ok kg oy (F;™ + E™;Hy,) 0k

) OH, _

;% = _8x0 — E™H,,, Fy% =0,

Ci =Cj% + CYHy, Cox =0, C;j'o=C%, Cy'o=0,

_ 6H _

Cj% = Yk —(C"™ + C™Hy)Hm, — Co% =0,

_ OH, _

Cil =20~ C™H,, Gy =0,
Jj o ay ) 00

In particular, when it is induced from a Berwald tetra-connection, we
have (“H 4,%V4) whose coefficients are as follows:

Fi'=Fj%,  F%=0, F'%\=0,  F'o=0,
FY = gf —N™, gI{i — F"%H,, = 88—];]’“ = Ni;j,
Fy% =0, F% =0, Fyl =0,

Ci% =0, Co'%x =0, Ci'o=0, Co'o =0,
Cijk = ij, éook =0, Ojoo =0, COOO =0.

Notice that this pair-connection is regular.

5. Projective connection of a Finsler manifold

In this section, by use of the bundles we get a new interpretation on
the representation of the projective connection of a Finsler manifold. From
the Berwald tetra-connection, which is essentially an ordinary Berwald

connection G, we shall construct a pair-connection (PI'", #I'V), which is
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invariant by any projective change of the Berwald connection. Throughout
this section, we put w = —1/(n + 1).

Now we take a (1,2) type tensor “A = (Y Ap“c) on T(LM) x F(LM)
depending on the Berwald connection G as follows:
“A= y'H;,(0/0x" — H;0/02°) ® da? @ da*
+0%,(0/0z" — H;0/02°) @ (da® + H,,dz™) @ dz*
+6"(0/0x" — N;0/02°) ® da? @ (da® + Hyda')
+K;1(0/02°) @ do? @ da® + (9/02°) @ (da® + Hppde™) @ (da® + Hida'),

where Hjj, = BeTOyF Kjp = == (nRj mk + Ri"mj + By LyP ).

That is to say
A1k (o (P)) =7 (P)H 1k (P), “A'k ="k, “A;" 0 =06";, “A’ 0 =0,
“A,% (¢ (P)) =Kk (P), A% =0, “A4,%=0, A% =1.
Then we put
pE[A — GI:IA _GABCA (’YB#VC‘f’EBC) .

The pair-connection (PT", #I'?), where PT" is the distribution spaned by
{PH 4}, is called the projective connection of the Finsler manifold M. We

see that PH 4 = wia ( O —PNlugor — debawdc%z), where

RED
pNji:Nji+5ji(y0+H)+yjHi, pNjozyj,
PN% = N; — HH; + Kpiy™, PN% =y’
PRV = Byi + Hid% + Hid%y + o/ Hyi, PR = 07,
PR o = 0%, PFyo =0,
PFe% = Ni + Kpi — HHy; — Hp H;, PR’ =0,
PEL0 =0, PFy0 = 1.

Proposition 1. In the projective connection, the relations
(1) YBa=PH4s 7" =0 (ie. regular),
(2) the (h)h — torsion tensor *Tap = 0,

(3) the(v)hv — torsion tensor P PcP4 = 0,

(4)

4 vB|A=5BA for v = 0/0x°,
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hold, where the notation |4 denotes the covariant derivative by PH,.

PROOF. It is shown immediately that (1) PNb = PE.by°,
(3) PEL, = 9PN, /Oyc. (2) follows from the equations K, — Ky; =
—wR, ks Nij — Njg = wRp™jk. (4) as v = 0, v° = 1, therefore

Ub;a - pFOba - 5ba-

Theorem 1. The projective connection PI'"(G) is invariant with re-
spect to the projective change of the Berwald connection G, that is to say,
let PT"(G) correspond to G* = Gi+yib(z¥, y*), where bjkayk) is positively
homogeneous of degree 1 with respect to (y*), then PT"(G) = PT"(G).

PRrROOF. It is obvious that f¢ = GZ +y'H, where H = wG™,,, is
invariant by the projective change of G*, therefore f*; = 0f*/0y’ = G +
6% H +y'Hj and fi,'; = 0f%/0y" = Gy + 6% H; + 0% Hy 4+ y' Hjj, = PFyY
are also invariant. To show that the coefficients P F% are projectively
invariant, we calculate the invariants

TR = Apn{0f;%/02" — F™0F%/0y™ — £ fm'%}
= R;"% +6"j(Nir. — Nit) + 6% (Ny; — HiH, — HHj;)
— 84(Nij — HjHy, — HHjy,) +y'0(Nuy, — Nia) /0y’
TKjk =1/(n* = 1) (n Ry + T R™j)
= Kji + Nj — HjH, — HHjj, = PF;%,
where Aj;;; denotes the interchange of 4, j and subtraction, and
Ny = 0Hy /02" — G™(0Hy/Oy™) — HyGy™,  Hy = wG ™.
The next theorem is a immediate result of Theorem 1.

Theorem 2. The curvature tensors PRABcp and PPsBcp of the pro-
jective pair-connection (PT", #TV) in T(LM) x F(LM) are also invariant
by the projective change of the Berwald connection G.

By some calculations we have the curvature tensors:

p Rjikl = Wjikl (Weyl’s generalized projective curvature tensor),

PR;% = Kjk — Kjise — Ho W™ — Him W "ay”,
the other components all vanish, where

Wi = Rj' — 8% (K — Kuii,) — 0% Ky + 01K — y' (K — Kii )
= R;% — w3 Ry ™11 + wy' R k1
+w/(n — D){6%(nR;™mi + Ri™mj + Y R ™15
=61 R;" ik + R + Y R "hpis) },
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and
PP = D;% (Douglas’ tensor),
PP;% = —1/(n — 1) D5 — Him D™,

the other components all vanish, where

D% = G + 0" Hyy + 6% Hjy + 84 Hjp + v Hjp
= 3G +y'H) /0y’ 0y* 0y’

Lemma. The following identities hold:

(1) Wjikl = — jilk, Wjikl —l—Wlijk —I—Wkilj = 0, hence, all Wjikl = 0 when
n=2.

(2) W™ =0, so W;"m =0, Wy, = 0.

(3) Witsm = —(n — 2)(Kjks1 — Kjisk) + Ri'm D™ — Ri% D™kt
+{(n — 1) HjsWp'i — Hipe Wty + Hi Wity YyP.

(3) is obtained by a long calculation.

Proposition 2. Some properties are satisfied as follows:

(a) the projective connection (PT", #I'?) determined here is normal, i.e.
pRACCB = 0, SO pRACBC = 0, pRcCAB =0.

(b) the vector v = 9/0xz" is affine in this projective connection, or v |c
=PRp?pcv? —PPglcpvP|gv®, v pjc = PPe?pcv®.

Proor. (a) follows immediately by Lemma (2). (b) is implied by
PRp%c =0, PPplcpy? = 0 and PPy = 0.

The results of calculating PRp A-p and PPgA-p and the Lemma lead
us to

Proposition 3. (a) The projective pair-connection (PT", #I'?) is lin-
ear, i.e. PPgcp = 0, if and only if the Douglas tensor Djikl =0.
(b) The projective pair-connection is linear and affinely flat, i.e.
PRg?cp =0 and PPg?cp = 0, if and only if
(1) the Weyl tensor W;%; = 0 and the Douglas tensor D;%; = 0 when
n > 3.
(2) Kjr;1 — Kji;x = 0 and the Douglas tensor D;%; = 0 when n = 2.
PROOF. In showing (b), let us notice that if n # 2 the equations
Kk — Kji;r = 0 follow from W% = 0 and D;%; = 0 by Lemma (3), if
n = 2 then the Weyl tensor always satisfies W;*%; = 0.

Considering together Proposition 3 with the classical results in [7] we
see
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Theorem 3. A Berwald connection G on M is projectively flat if
and only if the associated projective pair-connection (PT'", #I'¥) is linear
(affine) and affinely flat.

Finally we obtain

Theorem 4. The geodesics of a Finsler manifold (M, L) are the pro-
jections of the paths of LM with respect to the projective connection
associated with the Berwald connection.

That is to say, the path equations

d?z® _dxb dx°

72 +pr“0E o =0, a,b,c=1,2,...,n,0,
with regard to the projective connection PT'* and with the affine parameter
t, are rewritten as the geodesic equations on a Finsler manifold (M, L) with
the projective parameter s

A%zt : - dad 2 - drd\ dxF
_— ¢ J = = — m J _—
+2G <ac, ds) 0, {s,t} n—lRm k(x, dt) e

ds?

2
where {s,t} = (%/%> -3 (%/%) (Schwarz’s derivative), and 4, j, k,
m=12,...,n.

PrRoOOF. The path equations

d*x! p i dz? dx* dz® dz’
T2 + jk + — Y
dt dt dt dt dt

, 2
d? 20 PO dxd dxk (d:):0> _0

a2 TR dt
become
LY INPY (g K
dt? dt a7
d [ dz° dz® 2 dad dx*
(=4 H >~ .H Kg——2"_ —0.
dt(dtJr )+<dt+ )+J’“dt a Y

Here, putting s = [exp [-2(z° + [Hdt)] dt, we get the result of Theo-
rem 4.
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