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Periodic properties of functions and coloured sets

By B. UHRIN (Pécs)

Dedicated to Professor K. Győry on his 60th birthday

Abstract. Let f : Rn → R1 be a non-negative bounded function vanishing out-
side of a bounded set. If f has got a finite range {0, c1, . . . , cm}, such that ci > 0 and
the sets Ai := {x ∈ Rn : f(x) = ci} are non-empty and bounded, i = 1, 2, . . . , m, then
we call f a coloured set and ci its colours. Let L ⊂ Rn be a point lattice of full di-
mension. In the paper the following question is studied: under what conditions can the
coloured set f be extended periodically (mod L) to the whole space Rn? For general
f some sufficient and [or] necessary conditions for its periodic extendability are proved.
Five conditions that are equivalent to the periodic extendability of a coloured set are
found. The results of the present paper both extend some of those proved in [20] for one
colour sets and refine some of those proved in [18], [19] for general real valued bounded
functions. The results of [18], [19], [20] seem to be interesting for at least three reasons.
Firstly, they yield substantial improvements of some basic results in the geometry of
numbers, e.g., the theorem of Minkowski–Blichfeldt–V. d. Corput, or the theorem of
Siegel–Bombieri. Secondly, in [20] a new connection of the results with partitions of
a bounded set in Rn has been discovered, which connection might contribute to new
developments in both fields (the theory of partitions and the geometry of numbers, re-
spectively). Thirdly, for the proofs, new results in the field of multi-dimensional Fourier
analysis also had to be proved.

1. Introduction

In what follows V means the volume (Lebesgue measure, shortly mea-
sure) in Rn,

∫ · dx stands for the integral and “a.e.” stands for almost
everywhere, respectively, with respect to the V .

Mathematics Subject Classification: 11H16, 05B10, 05A18, 42B05.
Key words and phrases: geometry of numbers, combinatorics, Fourier analysis.
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A + B := {a + b : a ∈ A, b ∈ B} is the algebraic (Minkowski) sum of
A,B ⊆ Rn, in particular A − B := A + (−B). θ ∈ Rn is the zero vector.
If for all x ∈ A + B there are unique a ∈ A and b ∈ B such that x = a + b,
then we shall write A+B as A⊕B (the direct algebraic sum of A and B).

| · | is either the cardinality of a set or the absolute value of a real or
complex number (the meaning will be clear from the context).

Put 〈y, z〉 :=
∑n

i=1 yizi for the usual scalar product in Rn.
Given n linearly independent vectors b1, . . . , bn ∈ Rn, the set

L :=

{
n∑

i=1

uibi : ui integers, i = 1, . . . , n

}

is the point-lattice generated by the basis (bi). The set P := {∑n
i=1 λibi :

0 ≤ λi < 1, i = 1, . . . , n} is the basic cell of L defined by the basis (bi) (as
one can easily see, P is in a one-to-one correspondence with the quotient
space Rn/L). The number d(L) := V (P ) is the determinant of L. P and
L also give a direct decomposition of Rn, Rn = P ⊕ L, i.e., any x ∈ Rn

can be written uniquely as

x = ϕ(x) + [x], ϕ(x) ∈ P, [x] ∈ L.

This defines two “canonical” projections ϕ : Rn → P, [ ] : Rn → L. The
definition of ϕ shows that for any y, z ∈ Rn we have

(1.0) ϕ(y) = ϕ(z) ⇔ y − z ∈ L.

For any set A ⊆ Rn write

ϕ(A) :=
⋃

x∈A

{ϕ(x)}, [A] :=
⋃

x∈A

{[x]}.

The set

L∗ :=

{
n∑

i=1

uib
∗
i : ui integers, i = 1, . . . , n

}

is the point lattice polar to L, where (b∗i ) is the system of vectors orthonor-
mal to the system (bi). As one can easily see, L∗ = {x ∈ Rn : 〈x, u〉 ∈ Z

∀u ∈ L}. On point-lattices consult the classical books [2], [3], [5], [9].
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One of the basic theorems on point lattices is the theorem of Min-
kowski–Blichfeldt–V. d. Corput (see, e.g., [5]): Let A ⊂ Rn be a bounded
measurable set of positive measure V (A). Then the condition

(1.1) (A−A) ∩ L = {θ}

implies

(1.2) V (P )− V (A) ≥ 0.

A refinement of this theorem is the so called Siegel–Bombieri formula,
Siegel [8], (for convex symmetric A) and Bombieri, [1], (for general A):

(1.1) implies that

(1.3) V (P )− V (A) =
1

V (A)

∑

θ 6=v∈L∗

∣∣∣∣
∫

A

e−2πi〈v,y〉dy

∣∣∣∣
2

,

where i in the latter integral stands for the imaginary unit.
An improvement of another type of (1.2) is a consequence of the follow-

ing inequality, proved in [11] (see also [12]): For any bounded measurable
A with positive measure we have

(1.4) |(A−A) ∩ L| ≥ 2
V (A)

V (ϕ(A))
− 1 ≥ 1.

Now, (1.1) and (1.4) imply

(1.5) V (P )− V (A) = V (P )− V (ϕ(A)).

As the quatities V (A),
∫

A
· dy and V (ϕ(A)) are invariant upon replacing

the set A by a set of measure zero, the results (1.2)÷ (1.5) still hold, if we
take any set A′ ⊂ A s.t. V (A′) = V (A) and substitute (A′−A′)∩L instead
of (A−A)∩L. The open kernel Ao of A, i.e., an open subset of A such that
V (Ao) = V (A), is (when it exists) an example of A′. [ In fact, Siegel [8]
proved (1.3) for A := 1

2K under this weaker assumption Ko ∩ L = {θ},
where K is a convex body such that K = −K. ] This invariance is not
true for the condition (1.1), i.e., the conditions (1.2), (1.3) and (1.5) are
far from being sufficient for (1.1). This (as well as Siegel’s original result)
supports the feeling that the above results might be further improved.
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And indeed, substantial improvements of the above results have been
proved recently in [20]. As it is shown there, (1.3) is a simple conse-
quence of (1.5), hence the property (1.5), i.e., V (A) = V (ϕ(A)), is the clue
for (1.3), on one hand. On the other hand, a deeper analysis of the set
(A − A) ∩ L shows that the condition (1.5) is equivalent to the following
one:

(1.6) L̂(A) := {u ∈ L : V (A ∩ (A + u)) > 0} = {θ},

moreover, that the condition (1.5) is in fact also equivalent to (1.3), so
the three conditions (1.3), (1.5) and (1.6) are equivalent (see, [20], Theo-
rem 2.10). The above set L̂(A) is a natural subset of the set (A−A) ∩ L,
because, as it can easily be seen, for any set A ⊂ Rn we have

(1.7) L(A) := (A−A) ∩ L = {u ∈ L : A ∩ (A + u) 6= ∅}.

It is clear that the set L̂(A) is invariant upon changing A by a set of
measure zero.

An even more interesting feature of [20] is that for all the results (e.g.,
[20], the Theorem 2.10 mentioned above) a new notion introduced in [20]
is responsible: the so called inner aperodicity (w.r.t. L) of A. Namely,
[20], Theorem 2.10 says that a fourth condition, the almost everywhere
inner aperiodicity of A, is equivalent to (1.3), (1.5) and (1.6). The second
crucial discovery of [20] is that this inner aperiodicity is only a special case
of a more general concept of partitions of bounded subsets of Rn (see [20],
Theorem 3.2).

It is clear that all the above results proved for a set A ⊂ Rn (e.g., all
results of [20]) can be formulated in terms of the characteristic function
χA of A. Now, a natural question arises: what can we say, when instead
of χA we take an arbitrary bounded real-valued function f defined on Rn?
The papers [18], [19] show that many results are true for this more general
function. For this, the concept of inner aperiodicity had to be refined
taking into account the values of the function, and also a new notion had
to be introduced: the so called periodic extendability (w.r.t. L) of f , (this
property is automatically true for any characteristic function).

We have to note that the idea of extending a result for sets to func-
tions is not new in the geometry of numbers. For example, the identity
(1.3) is in fact a consequence of a more general identity (1.12) due to
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Bombieri (see below). Neither are the investigations on periodic properties
of a function w.r.t. a point-lattice new: multi-dimensional Fourier analysis
is dealing with such questions. However, we feel that our approach prin-
cipially differs from the usual ones. Here is a short explanation, why we
think so.

First, two known notions. For any real valued function defined and
bounded on Rn the set supp(f) := {x ∈ Rn : f(x) 6= 0} is usually called
the support of f .

In the literature f is called periodic (mod L), shortly L-periodic, if

(1.8) f(x) = f(x + u), x ∈ Rn, u ∈ L.

It is clear that if supp(f) is bounded, then f cannot be L-periodic,
on one hand. On the other hand, any such function defines an L-periodic
function f̄ as follows:

(1.9) f̄(x) :=
∑

u∈L

f(x + u), x ∈ Rn.

The function f̄ plays an interesting role both in multi-dimensional Fourier
analysis and in the geometry of numbers.

Namely, if f is Lebesgue-measurable (shortly measurable) and has
bounded support, then the Fourier expansion of f̄ is equal to

(1.10)
∑

v∈L∗
f̂(v) e2πi〈v,x〉, x ∈ Rn,

where

(1.11) f̂(z) :=
1

d(L)

∫

Rn

f(y)e−2πi〈y,z〉dy, z ∈ Rn.

This statement is in fact essentially equivalent to the Poisson summation
formula (see, e.g., [10], p. 251, Theorem 2.4).

As to the role of f̄ in the geometry of numbers, let us recall an identity
involving f̄ which is due to Bombieri [1]: if f is bounded, measurable,
non-negative and has bounded support, then

(1.12)
∫

Rn

f(x)f̄(x)dx = d(L) ·
∑

v∈L∗
|f̂(v)|2,
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where f̂ is the function (1.11).
The latter identity is an important tool for some improvements of ba-

sic theorems in the geometry of numbers (see, [5], pp. 128–131). Among
other things, applying (1.12) to the charecteristic function of a bounded
measurable set A and using (1.7) we get the formula (1.3) at once. Sur-
prisingly enough, it seems that the identity (1.7) (i.e., the simple fact that
the set (A − A) ∩ L is equal to the right hand side set of (1.7) ) has not
been recognized for a long time. This simple identity was used first in [13],
implying many new results and in fact this identity led us to the definition
(1.6) of L̂(A).

Let us note that (1.12) is a simple consequence of the classical Parseval
formula and of another identity

(1.13)
∫

Rn

g(x)dx =
∫

P

(∑

u∈L

g(y + u)
)
dy,

where g is any complex-valued function g defined on Rn and integrable
there.

The latter identity holds in a much more general setting for functions
defined on any topological group G and its discrete subgroup Γ s.t. the
quotient group G/Γ is compact, see e.g. [22].

Two more L-periodic functions generated by f have been introduced
in [12]; those functions, together with f̄ , also are quite useful in the geom-
etry of numbers, see [12] or [5], pp. 128–131.

In the results just mentioned (as well as in all other results concerning
the periodicity of a function) different L-periodic functions generated by f ,
rather than the periodic structure of f were important. The idea to under-
stand and describe the inner periodic structure of f itself first appeared
in the papers [18], [19], [20], where many results on the latter periodic
structure have been proved already. The present paper may be considered
as a further development of the results of the above three papers.

The paper is divided into three more sections. In Section 2, after
defining precisely two periodic properties of a function (its periodic ex-
tendability and periodic part, respectively), the connections between these
and with the basic problem in the geometry of numbers are investigated.
In Section 3 some results proved in [20] for one colour sets (especially those
which are related to partitions of sets) are extended to general coloured
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sets. The results of Sections 2 and 3 refine those proved for general
bounded functions f in [18], [19]. The results and methods of Sections
2 and 3 are elementary and combinatorial in nature. In the papers [18],
[19], [20] many analytic type results also are proved, where all concepts
used are taken “almost everywhere”. Section 4 contains a short account
of those analytic results, showing some basic ideas and hinting some posi-
bilities for further improvements.

2. Two periodic properties of a function

Remember all notations and definitions from the Section 1. In this
section, if not stated otherwise, L ⊂ Rn is any point-lattice of dimen-
sion n and f is any function mentioned in the Abstract. The periodic
extendability of a function can be precised as follows:

Definiton 2.1. We call f [almost] extendable to an L-periodic function
(shortly [almost] L-extendable), if there is a function g : Rn → R1 which
is L-periodic (in the classical sense, see (1.8)) and such that

(2.1) f(x) = g(x), [a.e.] x ∈ supp(f).

Our first theorem is a local (or inner) characterization of periodic
extendability.

Theorem 2.2 ([18], [19]). The coloured set f is L-extendable if and

only if

(2.2)
f(x) = f(x + u)

∀ u ∈ L(supp(f)) and ∀ x ∈ supp(f) ∩ (supp(f)− u).

Proof ([18], [19]). Denote for short A := supp(f).
Assume that (2.2) is not true, i.e., there are θ 6= v ∈ L(A) and

y ∈ A∩(A−v) such that f(y) 6= f(y+v). Now, let h be an L-extension of f ,
i.e., an L-periodic function such that f(x) = h(x), x ∈ A. It is clear that
y + v ∈ A, hence h(y + v) = f(y + v), consequently f(y) = h(y) 6= h(y + v)
that contradicts the L-periodicity of h. This proves one direction of the
theorem.
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To prove the converse direction, assume that (2.2) is true and define
the function g : Rn → R1 as follows:

(2.3) g(x) :=





f(x), x ∈ A,

f(y), x /∈ A, ∃ y ∈ A s.t. ϕ(x) = ϕ(y),

0, x /∈ A, ϕ(x) /∈ ϕ(A).

x ∈ Rn.

This function is well defined, because

(∗) {y, z ∈ A and ϕ(y) = ϕ(z)} ⇒ f(y) = f(z).

Indeed, (1.0) implies that y = z + v for some v ∈ L. The definition
(1.7) of L(A) and the fact that y, z ∈ A in turn imply that v ∈ L(A) and
z ∈ A ∩ (A − v). Finally, property (2.2) implies f(z) = f(z + v) = f(y),
so (∗) is true.

To prove that g is L-periodic, first let x ∈ A. For any u ∈ L we have
ϕ(x) = ϕ(x+u), hence, if x+u /∈ A then we have g(x+u) = f(x) = g(x),
and if x + u ∈ A then property (2.2) implies g(x) = f(x) = f(x + u) =
g(x + u).

Secondly, let x /∈ A. Then, for any u ∈ L we have either x + u ∈ A or
x + u /∈ A.

In the first case g(x) = f(x + u) = g(x + u). In the second case
g(x + u) = f(y) for some y ∈ A with ϕ(x + u) = ϕ(y) and g(x) = f(z) for
some z ∈ A with ϕ(x) = ϕ(z). But ϕ(x + u) = ϕ(x) = ϕ(y) = ϕ(z), hence
by (∗) f(y) = f(z), yielding g(x) = f(z) = f(y) = g(x + u).

By this the theorem is proved. ¤

Theorem 2.2 and its proof show two interesting things:
– We see that one direction of the theorem is nearly a triviality, but

the other direction is not so simple, moreover, (2.3) gives a construction
for extending f to the whole space when condition (2.2) is true.

– Another interesting thing is that condition (2.2) is automatically
satisfied if f is such that

(2.4) L(supp(f)) = {θ},

i.e. we have
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Corollary 2.3. If the coloured set f satisfies (2.4) then it is L-extend-
able.

This corollary suggests the following question: is there some other
periodicity property of the function f , which, together with its L-extend-
ability, would imply the condition (2.4)?

The answer is yes, as it is shown in [18], [19], [20]. A special notion
has been introduced in the latter papers (called in [19] an L-periodic part
of f , in [20] an L-periodic part of a set or in [18] the set of pL-points
of supp(f)), and it has been proved that the needed above property is
the lack of L-periodic parts of f (of the set), or equivalently the lack of
pL-points in supp(f).

Definition 2.4 (see [20]). Let A ⊂ Rn be any bounded set. We call
the set D ⊆ P an L-periodic part of A if

(2.5)

{ |(A−D) ∩ L| ≥ 2 and

D + u ⊆ A, ∀ u ∈ (A−D) ∩ L.

Definition 2.5 (see [18]). Let f be any coloured set. We call D ⊆ P
an L-periodic part of f if

(2.6)

{ |(supp(f)−D) ∩ L| ≥ 2 and

f(x + u) = f(x + v) 6= 0, x ∈ D, u, v ∈ (supp(f)−D) ∩ L.

One can easily see that for one-colour sets the Definitions 2.4 and 2.5
are equivalent (i.e., give the same sets D).

An L-periodic part of a function has the following quite interesting
and useful property.

Assertion 2.6. Let f be a function and D its L-periodic part. Then

(2.7) (supp(f)−D) ∩ L = (supp(f)− x) ∩ L, ∀x ∈ D.

Proof. The definition of D shows that

(2.8) D + u ⊆ supp(f), ∀ u ∈ (supp(f)−D) ∩ L,

and this implies (2.7). ¤
Condition (2.5) has the following equivalent form:
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Assertion 2.7. Let A be any bounded set. Then (2.5) is equivalent to

(2.9)

{ |(A−D) ∩ L| ≥ 2 and

(A−D) ∩ L = (A− x) ∩ L ∀x ∈ D.

Proof. Applying Assertion 2.6 to the one-colour set f := χA we see
that (2.5) implies (2.9). To prove the converse implication, assume that
(2.5) is not true. If |(A − D) ∩ L| ≤ 1, then (2.9) cannot be true either.
So let |(A − D) ∩ L| ≥ 2, and assume that there is u ∈ (A − D) ∩ L s.t.
D+u 6⊆ A. This implies that there is y ∈ D s.t. y+u 6∈ A hence u 6∈ A−y,
implying that (A−D) ∩ L \ (A− y) ∩ L 6= ∅, i.e., (2.9) is not true. ¤

Property (2.9) suggests the following notation: For any bounded set
A ⊂ Rn denote

(2.10)
P̂(A) := {D ⊆ P : |(A−D) ∩ L| ≥ 2 and

(A−D) ∩ L = (A− x) ∩ L ∀x ∈ D}

The family P̂(A) has got the following interesting property.

Assertion 2.8. Let D, E ∈ P̂(A), D 6= E. Then either D ∩ E = ∅ or
there is F ∈ P̂(A) such that D, E ⊆ F and (A− F ) ∩ L = (A−D) ∩ L =
(A− E) ∩ L.

Proof. Denote by G and H the maximal (w.r.t. set inclusion) mem-
bers of P̂(A) containing D and E, respectively. We claim that either
G ∩H = ∅ or G = H. Indeed, assume G ∩H 6= ∅ and G \H 6= ∅. Take
x ∈ G ∩H, y ∈ G \H. Then, by the definition of sets in P̂(A), we have
(A−G)∩L = (A−H)∩L = (A− x)∩L and (A−G)∩L = (A− y)∩L.
These imply that (A−H)∩L = (A−z)∩L holds for all z ∈ H∪{y}, which
contradicts the maximality of H. Similarly we come to a contradiction if
we assume that G ∩H 6= ∅ and H \G 6= ∅. We see that either D ∩ E = ∅
or D,E ⊆ F := G = H. In the second case by the definition of F we
have (A− F ) ∩ L = (A− y) ∩ L = (A− x) ∩ L, ∀ x ∈ D, ∀ y ∈ E, hence
(A− F ) ∩ L = (A−D) ∩ L = (A− E) ∩ L. ¤

It is clear that in general properties (2.7) and |(supp(f)−D)∩L| ≥ 2
together do not imply that D is a periodic part of f , i.e., the family
P̂(supp(f)) does not coincide with the family of all periodic parts of f .
One more condition for a D ∈ P̂(supp(f)) to be a periodic part of f should
be satisfied, namely, we have
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Assertion 2.9. Let f be any coloured set. The set D ⊆ P is an L-peri-
odic part of f if and only if

(2.11)

{
D ∈ P̂(supp(f)) and

f(x + u) = f(x + v), x ∈ D, u, v ∈ (supp(f)−D) ∩ L.

Proof. If the set D ⊂ P is an L-periodic part of f , then the second
part of (2.11) is clear and by Assertion 2.6 condition (2.7) holds, hence D ∈
P̂(supp(f)). Conversely, let D ∈ P̂(supp(f)). Then using Assertion 2.7
with A := supp(f) we get that (2.5) is true with A := supp(f). But this
implies that

f(x + u) 6= 0, x ∈ D, u ∈ (supp(f)−D) ∩ L,

hence condition (2.11) implies (2.6). ¤
It can happen that f has no periodic parts but P̂(supp(f)) 6= ∅. As

we shall see, this will have an interesting consequence: in this case f is
not periodically L-extendable. The latter statement is a simple corollary
of the following

Theorem 2.10. f is extendable to an L-periodic function and has no

L-periodic parts if and only if condition (2.4) is satisfied.

Proof. Assume first that f has got an L-periodic part D ⊆ P . This
implies that there are x ∈ D and u, v ∈ L such that u 6= v and x +
u, x + v ∈ supp(f). This means that θ 6= u − v ∈ supp(f) − supp(f),
contradicting (2.4).

Secondly, assume that f cannot be extended to any periodic function.
This implies that f̄ , being a periodic function, cannot be an extension of
f , hence there is x ∈ supp(f) with f(x) 6= f̄(x). This yields

∑

θ 6=u∈L

f(x + u) 6= 0,

consequently there is u ∈ L, u 6= θ, so that x+u ∈ supp(f). This, together
with x ∈ supp(f), implies θ 6= u ∈ supp(f)− supp(f), cotradicting (2.4).

These prove one direction of the theorem.
To prove the converse direction, observe first that

(2.12) L(P ) = {θ}.
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Assume (2.4) is not true, i.e., there is θ 6= u = x − z ∈ L with x, z ∈
supp(f). Using the projections ϕ and [·] defined in Section 1, this implies
u− [x] + [z] = ϕ(x)− ϕ(z) ∈ L which is by (2.12) possible only if ϕ(x) =
ϕ(z). The last two equalities together with u 6= θ also imply that [x] 6= [z].
Denote y = ϕ(x) = ϕ(z). We have x = y + [x], z = y + [z] ∈ supp(f).
Now, if f(x) = f(z), then either D := {y} is a periodic part of f or there
are u, v ∈ (supp(f)− y)∩L such that f(u+ y) 6= f(v + y). If f(x) 6= f(z),
then f(x) = f(z + u) 6= f(z), where z ∈ supp(f). In both cases we see
that f cannot be extended to any periodic function.

By this the converse direction and the whole theorem are proved. ¤

Corollary 2.11. Assume P̂(supp(f)) 6= ∅ and that f has no L-periodic

parts. Then f cannot be extended to an L-periodic function.

Proof. If f could be extended to an L-periodic function, then by
Theorem 2.10 condition (2.4) is true. But P̂(supp(f)) 6= ∅ implies that
there is x ∈ P s.t. |(supp(f)−x)∩L| ≥ 2, consequently there are u, v ∈ L,
u 6= v, and a, b ∈ supp(f) such that u = a− x and v = b− x. This implies
θ 6= a− b ∈ L, contradicting (2.4). ¤

It is interesting to “check” both theorems for one-colour sets f , the
constant functions, i.e., f(x) = c, x ∈ A ⊂ Rn, f(x) = 0, x ∈ Rn \A. For
these functions Theorem 2.2 is a triviality, because g(x) = c, x ∈ Rn, is
trivially an L-periodic extension of f and f trivially satisfies the condition
(2.2). This is in a sharp contrast with Theorem 2.10 , where now the
first part of the condition (“f is extendable to an L-periodic function”) is
trivially satisfied, consequently it is the second part (“f has no L-periodic
parts”) that is equivalent to (2.4) and this is not a triviality, on one hand.
On the other hand, as one indeed expects, the more special f is, the
more sophisticated results can be proved. These deeper results for sets
(∼ characteristic functions of sets) have been proved in [20] and, as it is
shown in the next section, similar results are true for coloured sets.

3. L-extendability of coloured sets and set partitions

In this section L is as in Section 2 and reminds the definition of a
coloured set in Abstract.

We call the family B := {Bk}p
k=1 of bounded sets Bk ⊂ Rn a partition

of the set B ⊂ Rn if B =
⋃p

k=1 Bk and Bj ∩Bk = ∅ for all 1 ≤ j < k ≤ p.
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In [20] two special families {Bk}p
k=1, and {Bk + uk}p

k=1, have been
introduced for any bounded A ⊂ Rn and L, where the Bk and uk are

(3.1) Bk := (A− uk) ∩ P, uk ∈ [A], k = 1, . . . , p, p :=
∣∣[A]

∣∣.

[By the way, the definition of Bk in [20], (see, [20], (3.11)) contains a
misprint, (A− uk) ∩ L is correctly (A− uk) ∩ P .]

One can easily see that for the first family we have ϕ(A) =
⋃p

k=1 Bk.
One of the results proved in [20] is that the set

⋃p
k=1(Bk + uk) has no

L-periodic parts (as defined by (2.5)) if and only if the family {Bk}p
k=1 is

a partition of ϕ(A).

The following two theorems show that a similar connection between
periodic properties and partitions is true also in our more complex coloured
case.

Definition 3.1. Let f be a coloured set and {Ai}m
i=1 its level sets. Let

{u1, . . . , um} be an arbitrary set of m different points of L. Then we call
the set

(3.1) A(f) :=
m⋃

i=1

(ϕ(Ai) + ui)

an L-spread of f .

The family {Ai}m
i=1 is a partition of supp(f). It is clear that

ϕ(A(f)) = ϕ(supp(f)) =
m⋃

i=1

ϕ(Ai),

so the family of sets ϕ(Ai)⊆ϕ(supp(f)) might be a partition of ϕ(supp(f)).
The question is what conditions assure that it is a partition. The answer
is given by

Theorem 3.2. Let f be a coloured set and {Ai}m
i=1 its level sets. Then

condition (2.2) of Theorem 2.2 holds if and only if the family {ϕ(Ai)}m
i=1

is a partition of ϕ(supp(f)).

Proof. Assume ϕ(Ai) ∩ ϕ(Aj) 6= ∅ for some i 6= j. This implies
that there is z ∈ ϕ(Ai) ∩ ϕ(Aj), consequently there are x ∈ Ai, y ∈ Aj ,
such that z = ϕ(x) = ϕ(y). Clearly x 6= y and condition (1.0) shows that
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θ 6= u := y − x ∈ L, hence u ∈ L(supp(f)), x ∈ supp(f) ∩ (supp(f) − u),
implying that ci = f(x) 6= cj = f(y) = f(u+x), i.e., condition (2.2) is not
true.

Assume now that condition (2.2) is not true, i.e., that there are u ∈
L(supp(f) and x ∈ supp(f) ∩ (supp(f) − u) such that f(x) 6= f(x + u).
These imply that f(x) = ci 6= f(y) = cj for some i 6= j, ϕ(x) = ϕ(y)
(because y := x + u) and x ∈ Ai, y ∈ Aj . Hence, denoting z := ϕ(x) =
ϕ(y), we have z ∈ ϕ(Ai) ∩ ϕ(Aj), so the family {ϕ(Ai)}m

i=1 cannot be a
partition of ϕ(supp(f)). ¤

Theorem 3.3. Let f be a coloured set and A(f) an L-spread of f .

Then the one-colour set A(f) has no L-periodic parts if and only if the

family {ϕ(Ai)}m
i=1 is a partition of ϕ(supp(f)).

Proof. Applying Theorem 2.10 to the one-colour set A(f), we see
that A(f) has no periodic parts if and only if

(3.2) L(A(f)) = {θ}.

Now it is enough to prove that the family {ϕ(Ai)}m
i=1 is a partition of

ϕ(supp(f)) if and only if (3.2) is true. Denote for short Bi := ϕ(Ai),
i = 1, . . . , m, and let u1 . . . , um ∈ L be the family defining A(f).

Assume Bk ∩Bl 6= ∅ for some 1 ≤ k < l ≤ m, and let y ∈ Bk ∩Bl. It
is clear that Bk = (A(f) − uk) ∩ P , 1 ≤ k ≤ m, hence y ∈ (A(f) − uk) ∩
(A(B)−ul)∩P , yielding y = a−uk = b−ul, a, b ∈ A(f), in contradiction
to (3.2), because uk 6= ul.

Conversely, assume (3.2) is not true, i.e., there are a ∈ Bk + uk,
b ∈ Bl + ul, θ 6= u ∈ L, s.t. a− b = u.

As Bk, Bl ⊆ P , we see that there are xk, xl ∈ P such that a = xk +uk,
b = xl + ul, consequently xk − xl = u + ul − uk. By (2.12) this implies
that u + ul − uk = θ, hence xk = xl and u = uk − ul 6= θ, yielding that
k 6= l and a − uk = b − ul ∈ Bk ∩ Bl, i.e., {Bi}m

i=1 is not a partition of
ϕ(supp(f)). ¤

The next theorem collects the results proved up to now and proves
two more relations.
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Theorem 3.4. Let f be a coloured set, Ai, i = 1, . . . , m, its level

sets and A(f) an L-spread of f . Then the following six conditions are

equivalent:

(a) f is L-extendable;

(b) A(f) has no L-periodic parts;

(c) {ϕ(Ai)}m
i=1 is a partition of ϕ(supp(f));

(d) condition (2.2) is true;

(e) L(A(f)) = {θ};
(f) (Ai −Aj) ∩ L = ∅, ∀ 1 ≤ i < j ≤ m.

If f is L-extendable then

(g) L(supp(f)) =
⋃m

i=1(Ai −Ai) ∩ L.

Proof. Theorem 2.2 shows that (a) is equivalent to (d). By Theo-
rem 3.2, (c) is equivalent to (d). The equivalence of (b) and (e) is assured
by Theorem 2.10 applied to the one-colour set A(f). Theorem 3.3 gives
the equivalence of (b) and (c).

We prove now the equivalence of (d) and (f). Denote for short A :=
supp(f) =

⋃m
i=1 Ai. Assume first that (f) is not true, i.e., for some i < j

there is u ∈ (Ai − Aj) ∩ L. It is clear that u 6= θ and that there are
x ∈ Ai, y ∈ Aj , s.t. y = x + u. This implies that cj = f(y) = f(x + u) 6=
ci = f(x), which contradicts the condition (2.2), i.e. (d), is not true.

To prove the contrary, assume (2.2), i.e. (d), is not true. So there are
θ 6= u ∈ (A−A)∩L and x ∈ A∩ (A−u) such that f(x) 6= f(x+u). These
imply that x ∈ Ai, x + u ∈ Aj for some i 6= j, hence x ∈ Ai ∩ (Aj − u),
contradicting (f).

As to the proof of (g), it is a simple consequence of condition (f),
i.e., (f) implies (g). (Let us note that in general condition (g) does not
imply (f).) ¤

4. Some analytic results and remarks

Let us give a brief account of some analytic results proved in [18], [19],
[20]. As we have already noted in Section 1, some results are independent
of changing the sets by sets of measure zero. The two theorems below
reflect this independence.

In this section L is as in Section 2 and f is a non-negative bounded
measurable function with bounded support.
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Theorem 4.1 ([18], [19]). Let f be such that V (supp(f)) > 0. Then

∫

Rn

f2(x)dx ≤a 1
d(L)

∑

v∈L∗

∫

Rn

∫

Rn

cos(2π〈v, x−t〉)min{f2(x), f2(t)}dxdt

≤b 1
d(L)

∑

v∈L∗

∫

Rn

∫

Rn

cos(2π〈v, x− t〉)f(x)f(t) dxdt.(4.1)

≤a is equality if and only if f is almost L-extendable and f has no

L-periodic parts of positive measure.

≤b is equality if and only if f is almost L-extendable.

The proof of Theorem 3.9 is based on the following.

Lemma 4.2 ([18], [19]). The following two identities hold:

∑

u∈L

∫

Rn

f(x)f(x + u)dx(4.2)

=
1

d(L)

∑

v∈L∗

∫

Rn

∫

Rn

cos(2π〈v, x− t〉)f(x)f(t)dxdt

and

∑

u∈L

∫

Rn

min{f(x), f(x + u)}dx(4.3)

=
1

d(L)

∑

v∈L∗

∫

Rn

∫

Rn

cos(2π〈v, x− t〉)min{f(x), f(t)}dxdt.

The identity (4.2) is in fact a consequence of Bombieri’s identity
(1.12), because the right hand side of (1.12) can, after some calculations,
be transformed to that of (4.2). Nevertheless, in [18], [19] an independent
proof is given (which is not so complicated, it is a relatively simple conse-
quence of the generalized Parseval formula and the identity (1.13)). This
is in a sharp contrast with the identity (4.3), the proof of which is very
complicated, see [18], [19]. The proof of (4.3) uses also the generalized
Parseval formula and the identity (1.13), but in the course of the proof a
series of (sometimes tricky) precise transformations and calculations were
needed. One of the basic tricks in the proof of (4.3) was to transform the
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question into a similar one for hypographs of f in the space Rn+1. More
exactly, the hypograph of a non-negative function f is

(4.4) hyp(f) := { (x, ξ) ∈ Rn ×R1 : 0 ≤ ξ ≤ f(x), x ∈ supp(f)}.

After this the following quite interesting identity was needed:

Lemma 4.3 ([18], [19]). For any (x, 0) ∈ Rn+1 = Rn ×R1 we have

(4.5)

V̄ (hyp(f) ∩ (hyp(f)− (x, 0)))

=
∫

supp(f)∩(supp(f)−x)

min{f(y), f(y + x)}dy,

where V̄ is the Lebesgue measure in Rn+1.

The second main trick was to define a new (n+1)-dimensional lattice
W ⊂ Rn+1 (an extension of L) and to work with hyp(f) and W . After
a series of transformations one arrives at the very core of the proof, the
following well-known identity (see, e.g., [4]): for −1 ≤ η ≤ +1 we have

(4.6)
∑

k≥1

cos(2πkη)
k2

=
π2

6
− π2|η|+ π2η2.

Let us close the paper with three remarks.

Remark 1. An unexpected, totally new consequence of the two nested
inequalities (4.1) has been discovered recently. Roughly speaking, after
fixing the left hand side of (4.1,≤a) ( ∼ L2-norm of f), the expression
on the right hand side of (4.1,≤b) ( ∼ l2-norm of f̂ restricted to L∗, see
the right hand side of (1.12)) is to be minimized over all f having a fixed
L2-norm. Theorem 4.1 solves this minimization problem in the sense the
it gives an exact characterization of the solution (in terms of L-periodic
properties of f). This minimization problem is studied and solved in [21].

Remark 2. In fact, the left hand sides of (4.2) and (4.3) are special
cases of a “continuous” family of expressions. Namely, let a, b, α, λ be real
numbers such that a, b ≥ 0, 0 < λ < 1 and −∞ < α < ∞, α 6= 0. Then
we define M

(λ)
α (a, b) to be equal to zero if one of a, b is zero and to be the

number (λaα + (1− λ)bα)1/α otherwise. Taking limits in α one arrives at
three more numbers: M

(λ)
−∞(a, b) = min{a, b}; M

(λ)
+∞(a, b) = max{a, b} if
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a, b > 0 and = 0 if a ·b = 0; M
(λ)
0 (a, b) = aλ ·b(1−λ). (These numbers might

be called “extended means” of a, b. On “usual” means (λaα+(1−λ)bα)1/α,
−∞ ≤ α ≤ +∞, see, e.g., [6].)

The properties of usual means (see [6]) show that M
(λ)
α (a, b) is for posi-

tive a, b, a 6= b, a strictly increasing continuous function of α on [−∞, +∞].
Now, we have

Theorem 4.4 ([18], [19]). Let −∞ ≤ α ≤ β ≤ +∞ and assume

V (supp(f)) > 0. Then

∫

Rn

f(x)dx ≤1
∑

u∈L

∫

Rn

M (λ)
α (f(x), f(x + u))dx(4.7)

≤2
∑

u∈L

∫

Rn

M
(λ)
β (f(x), f(x + u))dx.

≤1 is equality if and only if f is almost extendable to an L-periodic

function and f has no periodic parts of positive measure.

For α < β, ≤2 is equality if and only if f is almost extendable to an

L-periodic function.

It turned out that the identities (4.2), (4.3) also extend to this more
general situation, i.e., a general identity is true, obtained by taking the
means M

(λ)
α (f(x), f(x + u)) and M

(λ)
α (f(x), f(t)) instead of f(x)f(x + u)

and f(x)f(t) in (4.2). The proofs are not quite simple, a paper on these
more general Fourier analytic identities is in preparation.

Remark 3. All results proved in this paper can be extended (e.g. using
an extension of Fourier techniques proposed in [14]) to the case when L is
any discrete subgroup of Rn (∼ point lattice of any dimension). In fact,
in the papers [18], [19] L is a point lattice of arbitrary dimension. In this
case some more tricks are needed for the proofs, see [14], [18], [19]. This is
true for the basic result of [11] mentioned in Section 1 (say, (1.4)) as well,
see, e.g. [15]. Moreover, the basic result (1.4) holds not only for any L, but
also in any Abelian locally compact topological group G for any so called
“sufficiently large” discrete subgroup Γ of G (see [17] for more details).
This suggests a very interesting question: to what extent can the results
proved for (Rn, L), e.g. those proved in the present paper, be extended to
(G, Γ)? As our techniques work in many situations also for general G, Γ,
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one has a feeling that some of the results might be extended to these more
general structures.

An interesting “extension of the geometry of numbers” has been in-
troduced and studied in [16]: one takes instead of L an arbitary closed
subgroup of Rn. It is sure that some basic theorems of the geometry of
numbers can, to some extent, be extended to this more general situation,
[16]. What about the “periodic w.r.t. the closed subgroup” structure of a
set or function?
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