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On the diophantine equation (2n − 1)(3n − 1) = x2

By LÁSZLÓ SZALAY (Sopron)

Abstract. This paper determines all the solutions of the diophantine equations
(2n − 1)(3n − 1) = x2, (2n − 1)(5n − 1) = x2 and (2n − 1)((2k)n − 1) = x2 in positive
integers n and x. The proofs depend on the theory of quadratic residuals in the case of
the first two equations. For the third one we use a famous result of Ljunggren.

1. Introduction

In this paper we will study the title equation

(1) (2n − 1) (3n − 1) = x2

in positive integers n and x. We will prove that it has no solution, and
using the same method, the equation

(2) (2n − 1) (5n − 1) = x2

will also be investigated. This equation has only one solution: n = 1,
x = 2. We will also consider the equation

(3) (2n − 1)
((

2k
)n − 1

)
= x2

with k > 1 (k ∈ Z).
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Let A1, A2, R0, R1 be integers and R = R(A1, A2, R0, R1) be a second
order linear recurrence defined by

(4) Rn = A1Rn−1 + A2Rn−2 (n ≥ 2).

With integer initial values G0, G1, G2, G3 and integer coefficients A1, A2,
A3, A4, we also define a fourth order linear recursive sequence G by

(5) Gn = A1Gn−1 + A2Gn−2 + A3Gn−3 + A4Gn−4 (n ≥ 4).

Let the recurrence (5) be denoted by G(A1, A2, A3, A4, G0, G1, G2, G3).
The terms 2n − 1, 3n − 1, 5n − 1 and (2k)n − 1 satisfy the binary re-
currence relations R(2)(3,−2, 0, 1), R(3)(4,−3, 0, 2), R(5)(6,−5, 0, 4) and
R(2k)(2k + 1,−2k, 0, 2k − 1), respectively. The products (2n − 1) (3n − 1),
(2n− 1)(5n− 1) and (2n− 1)((2k)n− 1) also satisfy the fourth order linear
recursive relations G(3)(12,−47, 72,−36, 0, 2, 24, 182), G(5)(18,−97, 180,

−100, 0, 4, 72, 868) and G(2k)(3(2k +1),−(22k+1 +9 · 2k +2), 6 · 2k(2k +1),
22k+2, 0, 2k − 1, 3 · (22k − 1), 7 · (23k − 1)), respectively. Thus, to solve the
mixed exponential-polynomial diophantine equation (1) (or (2) or (3)) is
equivalent to the determination of all perfect squares in a fourth order
recurrence or in the products of the terms of two binary sequences. This
new interpretation provides the equations

G(3)
n = x2 or R(2)

n ·R(3)
n = x2,(6)

G(5)
n = x2 or R(2)

n ·R(5)
n = x2,(7)

and with k > 1

G(2k)
n = x2 or R(2)

n ·R(2k)
n = x2.(8)

In case of the fourth order recurrences similar results are known only
for some classes of Lehmer sequences of first an second kind. In [6] Mc-

Daniel examined the existence of perfect square terms of Lehmer se-
quences and gained interesting theorems.

Many authors investigated the squares and pure powers in binary
recurrences. Cohn [1] and Wyler [13], applying elementary methods,
proved independently that the only square in Fibonacci numbers are F0 =
0, F1 = F2 = 1 and F12 = 144. For Lucas numbers Cohn [2] showed
that if Ln = x2 then n = 1, x = 1 or n = 3, x = 2. Pethő [7] gave all
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pure powers in the Pell sequence. In [10], under some conditions, Riben-
boim and McDaniel showed that the square classes of the Lucas sequence
U(P, Q, 0, 1) contain at most 3 elements, except one case. Analogous re-
sults are established for the associate sequence V of U . In [11] the same
authors determined – under some conditions – all squares in the sequences
U and V .

There are more general results concerning pure powers in linear re-
currences. Shorey and Stewart [12] proved that the terms of a non-
degenerate recurrence sequence cannot be q-th powers for q sufficiently
large if the characteristic polynomial of the sequence has a unique zero of
largest absolute value. They, as well as Pethő [8], [9], gained a similar
theorem for binary recurrences. Unfortunately, this general result gives
no information about the low exponents, for example squares belonging to
linear recurrences.

In the sequel we denote by νp(k) the p-adic value of the integer k,
where p is a fixed rational prime number. As usual, φ(k) denotes the
Euler function, d(k) denotes the number of divisors function, and σ(k) the
sum of divisors function.

2. Theorems

The following theorems formulate precisely the statements mentioned
in the introduction. Some corollaries of the results are also described here.

Theorem 1. The equation

(9) (2n − 1)(3n − 1) = x2

has no solutions in positive integers n and x.

Theorem 2. The equation

(10) (2n − 1)(5n − 1) = x2

has the only solution n = 1, x = 2 in positive integers n and x.

Theorem 3. The equation

(11) (2n − 1)
(
(2k)n − 1

)
= x2

has the only solution k = 2, n = 3, x = 21 in positive integers k > 1, n
and x.

We have the following immediate consequences of Theorems 1 and 2.
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Corollary A. The equation 2 · σ (6n) = x2 has no solution, the equa-
tion σ (10n) = x2 has the only solution n = 0, x = 1.

Proof of Corollary A. We need to use the well-known result on the

summatory function: σ(k) =
∏

pi|k
p

ei+1
i −1

pi−1 , where νpi(k) = ei > 0. ¤

Corollary B. The equation
∑n

i,j=1 φ
(
2i · 3j

)
= x2 has no solution,

the equation
∑n

i,j=1 φ
(
2i · 5j

)
= x2 has only the solution n = 1, x = 2.

Proof of Corollary B. These results follow from the multiplicativity
of Euler’s φ function and from the equality pn − 1 = φ(pn) + φ(pn−1) +
· · ·+ φ(p), where p is a prime number. ¤

It is interesting to observe that if one replaces Euler’s φ function by
the number of divisors function then for any primes p and q the sum

(12)
n∑

i,j=1

d
(
pi · qj

)
=

n∑

i,j=1

(i + 1)(j + 1) =

(
n+1∑

k=2

k

)2

=
(

n(n + 3)
2

)2

is always a perfect square.

3. Preliminary lemmas

In our work we shall require Lemma 1, which we state without proof.
(For a proof see e.g. [3], page 39.) Let t > 1 be an arbitrary integer
and denote by (Z/tZ)? the multiplicative group of reduced residue classes
modulo t.

Lemma 1. Let α > 1 be a rational integer and p an odd prime num-
ber. If g is a primitive root of (Z/pZ)?

then

a) g is a primitive root of (Z/pαZ)?
if gp−1 6≡ 1 (mod p2), and

b) g(p + 1) is a primitive root of (Z/pαZ)?
if gp−1 ≡ 1 (mod p2).

Lemma 1 immediately implies the following results by the choice of
a) p = 3, g = 2 and g = 5;
b) p = 5, g = 2 and g = 3.

Corollary of Lemma 1. If α > 1 is a rational integer then

a) the numbers 2 and 5 are primitive roots of (Z/3αZ)?
, and

b) the numbers 2 and 3 are primitive roots of (Z/5αZ)?
.
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Lemma 2. Let α and k be positive integers with k 6≡ 0 (mod 5). If

n = k · 4 · 5α−1 then

(13) ν5 ((2n − 1)(3n − 1)) = 2α.

Proof of Lemma 2. Let us consider the congruences

(14) 2n ≡ 1 (mod 5α) and 3n ≡ 1 (mod 5α),

where α is a fixed positive integer and n is unknown. According to the
Corollary of Lemma 1b) and φ(5α) = 4 · 5α−1 we obtain the solutions
n = k · 4 · 5α−1 (k = 1, 2, . . . ) for both congruences. If k 6≡ 0 (mod 5) then

(15) 2n 6≡ 1 (mod 5α+1) and 3n 6≡ 1 (mod 5α+1).

So ν5(2n − 1) = α = ν5(3n − 1), which proves Lemma 2. ¤

Lemma 3. Let α and k be positive integers with k 6≡ 0 (mod 3). If

n = k · 2 · 3α−1 then

(16) ν3 ((2n − 1)(5n − 1)) = 2α.

The proof of Lemma 3 is very similar to the previous one.

4. Proof of the theorems

4.1 Proof of Theorem 1

Suppose that the pair (n, x) is a solution of equation (9). Since 2 | (3n−1)
but 2 - (2n− 1) for every positive integer n, it follows that 2 | x, 4 | x2 and
4 | (3n−1). Consequently n is an even number, but in this case 8 | (3n−1)
so 4 | x, 16 | x2 and 16 | (3n − 1). From the last relation, in case n is
even, it follows that n is divisible by 4 and can uniqely be written in the
form n = k · 4 · 5α−1, where 1 ≤ α ∈ Z and k ∈ Z , k 6≡ 0 (mod 5). Then,
applying Lemma 2, we transform (9) into the form

(17)
2n − 1

5α

3n − 1
5α

= x2
1,
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where x1 = x
5α and the prime 5 divides neither the left nor the right hand

side of (17). The Legendre symbol
(

x2
1
5

)
= 1 because of gcd(x1, 5) = 1.

On the other hand

(18)

(
2n−1
5α

3n−1
5α

5

)
= A ·B,

introducing the notation A and B for the Legendre symbols
(

(2n−1)/5α

5

)

and
(

(3n−1)/5α

5

)
, respectively. We shall show that the calculation of A and

B leads to a contradiction because the left side of (17) is not a quadratic
residue modulo 5. More exactly, we shall prove that A =

(
3k
5

)
, B =

(
k
5

)
,

so AB =
(

3
5

)
= −1. This means that the equation (2n − 1)(3n − 1) = x2

has no solution in positive integers n and x. Now turn to the calculation
of A and B.

Let R = α − 1 and first let k = 1 (i.e. n = 4 · 5R). We are going to

compute the residue of the expressions 24·5R−1
5R+1 and 34·5R−1

5R+1 after dividing
them by 5.

a) If R = 0 then 24−1
5 = 3 ≡ 3 (mod 5), and 34−1

5 = 16 ≡ 1 (mod 5).
b) If R = 1 then

24·5 − 1
52

=
(24 − 1)

5

(
1 + 24 + · · ·+ (

24
)4

)

5
=

(24 − 1)
5

Q1

5
(19)

and

34·5 − 1
52

=
(34 − 1)

5

(
1 + 34 + · · ·+ (

34
)4

)

5
=

(34 − 1)
5

Q2

5
.(20)

Since Q1 ≡ Q2 ≡ 5 (mod 52) therefore Q1
5 ≡ Q2

5 ≡ 1 (mod 5) and
24·5−1

52 ≡ 3 · 1 = 3 (mod 5), 34·5−1
52 ≡ 1 · 1 = 1 (mod 5).

c) If R > 1 then replace 24 by y in the first case and replace 34 by y
in the second case. Thus for both cases

y5R − 1
5R+1

=(21)

=
(y−1)(1+ y + . . . + y4)(1+ y5+ . . . + y4·5) · · · (1+ y5R−1

+ . . . + y4·5R−1
)

5R+1
.
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Observe that y5 ≡ 1 (mod 52), so each factor of the numerator is divisible

by 5, but none of them is divisible by 52, consequently y5R−1
5R+1 ≡ m · 1 · · · 1

(mod 5), where m = 3 if y = 24 and m = 1 if y = 34.

These results make it possible to calculate the general case, when k is

an arbitrary positive integer. Since y5R−1
5R+1 ≡ m (mod 5), therefore

(22) y5R ≡ 1 + m · 5R+1 (mod 5R+2),

so

(23)
(
y5R

)k

≡ (
1 + m · 5R+1

)k ≡ 1 + k ·m · 5R+1 (mod 5R+2),

which means that

(24)
yk·5R − 1

5R+1
≡ k ·m (mod 5).

Our result concerning A and B follows from the last congruence. ¤

4.2 Proof of Theorem 2

Suppose that (n, x) is a solution of equation (10).

a) First we assume that n is even. Then n can uniquely be written
in the form n = k · 2 · 3α−1, where 1 ≤ α ∈ Z and k ∈ Z, k 6≡ 0 (mod 3).
According to Lemma 3 we may transform (10) into the form

(25)
2n − 1

3α

5n − 1
3α

= x2
1,

where x1 = x
3α and gcd(x1, 3) = 1, gcd( 2n−1

3α , 3) = 1 and gcd( 5n−1
3α , 3) = 1.

To finish the proof of case a) we have to use step by step the same method
as above, in the proof of Theorem 1. We will show the insolubility of
equation (10) by evaluating the Legendre symbols of both sides of (10).

b) Let us continue the proof of Theorem 2 with the second case, when
n is an odd integer.

If n ≡ 3 (mod 4) then we may write

(26)
(
24k+3 − 1

) (
54k+3 − 1

)
= x2, (k ≥ 0)



8 László Szalay

and it is easy to see that 24k+3 − 1 ≡ 7 (mod 10) and 54k+3 − 1 ≡ 4
(mod 10), from which it follows, in our case, that the left side of (26) is
not a quadratic residue modulo 10.

Only the case n ≡ 1 (mod 4) remains. If 2 ≤ n then equation (10) is
equivalent to the equation

(27) (2n − 1)(5n−1 + · · ·+ 5 + 1) = x2
1,

where x1 = x
2 . The corresponding congruence modulo 4 is

(28) x2
1 ≡ 3(1 + · · ·+ 1) = 3n ≡ 3 (mod 4).

This is impossible, so we must finally check the case n = 1. It provides
the only solution of equation (10) since (21 − 1)(51 − 1) = 22, and this is
the assertion of Theorem 2. ¤

4.3 Proof of Theorem 3

Suppose that the triple (k, n, x) is a solution of equation (11), and let
y = 2n. We have the equality

(29) x2 = (y − 1)2(yk−1 + · · ·+ y + 1) = (y − 1)2
(

yk − 1
y − 1

)
.

Thus yk−1
y−1 must be a square. In [5] Ljunggren proved that

(30)
yk − 1
y − 1

= x2
1, (k > 2)

is impossible in integers y > 1 and x1, except when k = 4, y = 7, x1 = 20
and k = 5, y = 3, x1 = 11. But neither y = 7 nor y = 3 is a power of 2, so
the equation (11) is not soluble if k > 2. However, for k = 2 only n = 3
and x = 21 satisfy the equation

(31) (2n − 1)2(2n + 1) = x2

since 2n + 1 is a perfect square if and only if n = 3 (see e.g. [4]). This
completes the proof of Theorem 3. ¤
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