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Oscillatory properties of equations of mathematical
physics with time-dependent coefficients

By LEOPOLD HERRMANN (Praha) and MILOSLAV FIALKA (Zĺın)

Abstract. A condition ensuring that all solutions of certain partial differential
equations with time-dependent coefficients are globally oscillatory is given.

The behaviour of various systems with distributed parameters
(strings, beams, membranes, plates, etc.) is described by an equation of
the type

(1)
utt + 2α0(t)ut − 2α1(t)∆ut + 2α2(t)∆2ut + β0(t)u

−β1(t)∆u + β2(t)∆2u = 0,

where u = u(t, x), t ∈ J0 = [t0,∞) for some t0 ∈ R, x ∈ Ω, Ω ⊂ Rn is a
bounded domain with sufficiently regular boundary ∂Ω, ∆2 is the second
power of the Laplacian, and αi ∈ W 1,∞(J0), βi ∈ L∞(J0) for i = 0, 1, 2.

The equation is supposed to be complemented by the boundary con-
dition

(2) u = 0 on ∂Ω

and, moreover, if |α2(t)|+ |β2(t)| 6≡ 0, then

(3) ∆u = 0 on ∂Ω.
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By a solution we mean any weak solution satisfying

d2

dt2
(u(t), w) + 2α0(t)

d

dt
(u(t), w) + 2α1(t)

d

dt
(u(t),∆w)

+ 2α2(t)
d

dt
(u(t), ∆2w) + β0(t)(u(t), w)

+ β1(t)(u(t), ∆w) + β2(t)(u(t),∆2w) = 0

for any w ∈ W 2,2(Ω)∩Ẇ 1,2(Ω) in case (2) and, moreover, ∆w ∈ W 2,2(Ω)∩
Ẇ 1,2(Ω) in case (3), respectively in the sense of distributions on J0. (Of
course, (·, ·) is the scalar product in L2(Ω).)

The coefficients αi and βi physically related to various kinds of damp-
ing are assumed to satisfy certain conditions (the enumeration of which is
not the purpose of this paper) to ensure both the existence of solutions
and the uniqueness of the corresponding initial-boundary value problem
or at least the following (unique continuation) property: if u is a solution
on J0 × Ω, T ≥ t0, ε > 0, then

(4) u = 0 on (T, T + ε)× Ω =⇒ u ≡ 0 on J0 × Ω.

Oscillatory properties of solutions of differential equations have been stud-
ied by many authors from various points of view (see e.g. [1]–[9]). In The-
orem 1 we give a suitable condition ensuring that any solution of the
differential equation (1) satisfying the boundary condition (2) (and (3),
respectively) has, roughly speaking, a zero in any domain J × Ω where
J ⊂ J0 is an interval the length of which is sufficiently large and this
length can be chosen independently of J .

This property is more precisely expressed by the following definition
(see [1], [2], [5], [9]): A measurable function u:J0 × Ω → R is said to be
globally oscillatory (about zero) if there exists (the so-called oscillatory
time) Θ > 0 such that for any interval J ⊂ J0 the length |J | of which is
greater than Θ we have either u ≡ 0 (u = 0 a.e.) on J0×Ω or simultaneously

meas {(t, x) ∈ J × Ω | u(t, x) > 0} > 0

and

meas {(t, x) ∈ J × Ω | u(t, x) < 0} > 0.
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In other words, u: J0 × Ω → R is globally oscillatory if and only if there
exists Θ > 0 such that

u ≥ 0 (or u ≤ 0) on J × Ω, J ⊂ J0 =⇒
{ either u ≡ 0 on J0 × Ω,

or |J | ≤ Θ.

The proof of Theorem 1 relies on the well-known fact from the theory
of elliptic equations that the eigenvalues of the operator (−∆) with the
homogeneous Dirichlet boundary condition u = 0 on ∂Ω form an infinite
sequence (λk)∞k=1 and can be ordered according to increasing magnitude
so that

λ1 < λ2 < · · · < λk < · · · → ∞ as k →∞.

The first eigenvalue λ1 is positive and the corresponding eigenfunction e1

can be chosen to be positive on Ω. Hence we have

(5) (∆ + λ1) e1 = 0, λ1 > 0, e1 = 0 on ∂Ω, e1 > 0 on Ω.

Moreover, λ1 is a simple eigenvalue, i.e. e1 spans the null space ker(∆+λ1).

Theorem 1. Let

(6) infesst∈J0

(
β0(t) + λ1β1(t) + λ2

1β2(t)− dγ

dt
(t)− γ2(t)

)
≥ ω2 > 0,

where

γ(t) = α0(t) + λ1α1(t) + λ2
1α2(t).

Then any solution of the problem given by (1) and (2) (and (3), respec-

tively) is globally oscillatory and the oscillatory time is

(7) Θ =
π

ω
.

Proof. Let us make the projection of the equation on ker(∆ + λ1)
and define

u1(t) =
∫

Ω

u(t, x)e1(x) dx.

We obtain the ordinary differential equation (where · = d/dt)

ü1(t) + 2 γ(t) u̇1(t) +
(
β0(t) + λ1 β1(t) + λ2

1 β2(t)
)

u1(t) = 0, t ∈ J0.
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Let us assume u ≥ 0 (or u ≤ 0) on J ×Ω. Owing to (5), and the positivity
of e1 on Ω, we get u1 ≥ 0 (or u1 ≤ 0) on J . The results of [8] (Section 8)
together with the assumption (6) give

|J | > π

ω
=⇒ u1 ≡ 0.

Using again (5), and the positivity of e1, we obtain u ≡ 0 on J×Ω. Finally,
the uniqueness property (4) yields

u ≡ 0 on J0 × Ω,

and this completes the proof. ¤

Special cases

1. Dissipative wave equations

Let α0 = a, α1 = b, β0 = c, β1 = 1, α2 = β2 = 0. Then equation (1)
assumes the form

(1’) utt −∆ u + 2 a(t)ut − 2 b(t) ∆ ut + c(t)u = 0.

The condition (6) reads now

(6’) supesst∈J0

(
d

dt
(a(t) + λ1 b(t)) + (a(t) + λ1 b(t))2 − c(t)

)
< λ1.

In particular, if a(t) = a = nonnegative const., b(t) = b = nonnegative
const., c(t) ≡ 0, then

a + λ1b <
√

λ1

is a condition ensuring that any solution of the equation

utt −∆ u + 2 a ut − 2 b∆ ut = 0

with the homogeneous Dirichlet boundary condition (2) is globally oscil-
latory. We have

ω =
√

λ1 − (a + λ1b)2.

For b = 0 we get
a <

√
λ1,
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the well-known criterion for the telegraph equation

utt −∆ u + 2aut = 0

to have all solutions satisfying (2) globally oscillatory.

2. Dissipative beam equations

Let n = 1, Ω = (0, `), α0 = a, α1 = d, α2 = b, β0 = c, β1 = p, β2 = 1,
infesst∈J0 p(t) ≥ p0 ≥ 0. The corresponding equation is

utt + uxxxx − p(t)uxx + 2 a(t) ut + 2 b(t) utxxxx − 2 d(t)utxx + c(t)u = 0,

and the boundary conditions are

u = uxx = 0 for x = 0, `.

Condition (6) may be written in the form

(6”) supesst∈J0

(
dγ

dt
(t) + γ2(t)− c(t)

)
< λ2

1 + λ1p0

where
γ(t) = a(t) + λ1 d(t) + λ2

1 b(t).
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