
Publ. Math. Debrecen

57 / 1-2 (2000), 85–89

On a problem of Erdős–Turán

By LAURENŢIU PANAITOPOL (Bucharest)

Abstract. We find a class of real functions f having the property that the in-
equality f(pn+1)− 2f(pn) + f(pn−1) > 0 holds for infinitely many positive integers n,
and f(pn−1)− 2f(pn) + f(pn−1) < 0 holds for infinitely many n.

One interesting question about the properties of the sequence (pn)n≥1

of prime numbers is:
Does there exist a positive integer n0 such that this sequence is convex

or concave for all n > n0?
The answer is negative and the proof of this result is given in the

paper [1] by P. Erdős and P. Turán. They established that:
For infinitely many n one has

pn+1 − 2pn + pn−1 > 0,

and for infinitely many n:

pn+1 − 2pn + pn−1 < 0.

C. Pomerance proved in [2], that there are infinitely many n for
which:

2pn < pn−i + pn+i for all i, 1 ≤ i ≤ n− 1.

In [3] Erdős proved that if

k ≥ 3, a1 + a2 + · · ·+ ak = 0, ak 6= 0 and
(k − 1)a1 + (k − 2)a2 + · · ·+ ak−1 = 0,
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86 Laurenţiu Panaitopol

then the sequence xn = a1pn + a2pn−1 + · · · + akpn+k−1 does not keep a
constant sign.

Moreover, for fixed k 6= 0, pk
n+1−2pk

n+pk
n−1 > 0 for infinitely many n

and, also, pk
n+1 − 2pk

n + pk
n−1 < 0 for infinitely many n.

This means that for f(x) = xk, k 6= 0 the sequence (f(pn))n≥1 is
neither convex nor concave.

We shall say that a function f : [af ,∞) → R has property (P) if: For
infinitely many n one has

f(pn+1)− 2f(pn) + f(pn−1) > 0,

and for infinitely many n:

f(pn+1)− 2f(pn) + f(pn−1) < 0.

To find necessary and sufficient conditions for f to have property (P) can
be a difficult task.

Let f(x) = ax. In case a = 2 one can prove immediately that the
sequence is convex, so f does not have the (P) property. In case a = 1.2, to
prove that f has the (P) property is the same as to prove that there exists
an infinity of primes p for which p+2 too is prime. Consequently, this would
amount to solving one of the greatest open problems in number theory.
This example shows that to find a complete answer to our question is a
very difficult task indeed. We shall restrict ourselves to finding a sufficient
condition and for this purpose we shall consider a class of functions useful
in this direction.

For every f : [af ,∞) → (0,∞), f ∈ C1 define φ : [af ,∞) → R by

φ(x) =
xf ′(x)
f(x)

.

Let F = {f : [af ,∞) → (0,∞), f ∈ C1, limx→∞ φ(x) = k ∈ R\{0}}.
One can prove that in the neighborhood of ∞ the functions of F

behave somehow similarly to axn, because for n > k one can prove that
limx→∞

f(x)
xn = 0, and for n < k, limx→∞

|f(x)|
xn = ∞.

One can also notice that for real α, β, α 6= 0 one has f ∈ F if and
only if fα(x) logβ x ∈ F .
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The main result of our paper is

Theorem 1. If f ∈ F , then f has the (P) property. Before proving
the theorem we shall need some preliminaries. One knows that

pn ∼ n log n;(1)

lim inf
n→∞

pn+1 − pn

log pn
< 0.46665 (see [4]);(2)

lim sup
n→∞

pn+1 − pn

log pn
= ∞ (see [5]).(3)

On the basis of the relations (2) or (3) and of Lemma 3, we now prove
our theorem.

Lemma 1. Let (an)n≥1, (bn)n≥1 be sequences of positive integers,
limn→∞ bn = ∞. If limn→∞ an

bn
= c > 0 then limn→∞

pan

pbn
= c.

Proof. Let yn = an

bn
so limn→∞ yn = c. Taking into account (1) it

follows that

lim
n→∞

pan

pbn

= lim
n→∞

an

bn
· log an

log bn
= c lim

n→∞

(
1 +

log yn

log bn

)
= c.

Put F (n) = f(pn). In case f ∈ F and lim
x→∞

φ(x) = k, we have

Lemma 2. Under the conditions of Lemma 1, one has

lim
n→∞

F (an)
F (bn)

= c.

Proof. One has

f(x) = f(x0) exp
∫ x

x0

φ(t)
t

dt = f(x0) exp
∫ log x

log x0

φ(eu)du.

F (an)
F (bn)

= exp
∫ log an

log bn

φ(eu)du = exp((log pan − log pbn)φ(θn)),

where min(log pan , log pbn) < θn < max(log pan , log pbn) hence

limn→∞ φ(θn) = k. It follows that limn→∞
F (an)
F (bn) = exp k log

(
pan

pbn

)
= ck.

Under the conditions of the previous lemmas and with the same no-
tations one has
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Lemma 3. If the sequence (F (n))n≥1 is convex, then

F (n + 1)− F (n) ∼ k
F (n)

n
.

Proof. If the sequence (F (n))n≥1 is convex it follows that for
m > n > p:

(4)
F (m)− F (n)

m− n
≥ F (n + 1)− F (n) ≥ F (n)− F (p)

n− p
.

For fixed 1 > δ > 0, put m = [(1 + δ)n] and p = [(1− δ)n]. It follows that
m− n ∼ δn, n− p ∼ δn.

Using Lemma 2 one obtains

F (m) ∼ F (n)(1 + δ)k and F (p) ∼ F (n)(1− δ)k,

hence
F (m)− F (n)

m− n
∼ F (n)((1 + δ)k − 1)

nδ
.

In the same way F (n)−F (p)
n−p ∼ F (n)(1−(1−δ)k)

nδ . Taking into account that

limδ→0
(1+δ)−1

δ = limδ→0
1−(1−δ)k

δ = k and (4), the proof is finished.

Proof of Theorem 1. Let (F (n))n≥1 be convex. One has F (n+1)−
F (n) = f(pn+1)− f(pn) = (pn+1 − pn)f ′(θn), pn < θn < pn+1, hence

F (n + 1)− F (n) = (pn+1 − pn) · f(θn)
θn

φ(θn) ∼ k
(pn+1 − pn)f(pn)

pn

= k
pn+1 − pn

log pn
· F (n) log pn

pn
∼ k · (pn+1 − pn)

log pn
· F (n)

n
.

Using Lemma 3, it follows that

(5)
pn+1 − pn

log pn
∼ 1.

The same conclusion (5) is implied by the hypothesis of concavity of
the sequence (F (n))n≥1. In both cases we obtain (5), which manifestly
contradicts (2) and (3).
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Remark. The function f(x) = xk with k 6= 0, f(x) = P (x)
Q(x) , where P

and Q are polynomial functions of different degrees, as well as f(x) = x
log x

are examples of functions for which the sequence (f(pn))n≥1 is neither
convex nor concave.
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