On a problem of Erdős-Turán

By LAURENTुIU PANAITOPOL (Bucharest)

Abstract

We find a class of real functions f having the property that the inequality $f\left(p_{n+1}\right)-2 f\left(p_{n}\right)+f\left(p_{n-1}\right)>0$ holds for infinitely many positive integers n, and $f\left(p_{n-1}\right)-2 f\left(p_{n}\right)+f\left(p_{n-1}\right)<0$ holds for infinitely many n.

One interesting question about the properties of the sequence $\left(p_{n}\right)_{n \geq 1}$ of prime numbers is:

Does there exist a positive integer n_{0} such that this sequence is convex or concave for all $n>n_{0}$?

The answer is negative and the proof of this result is given in the paper [1] by P. Erdős and P. Turán. They established that:

For infinitely many n one has

$$
p_{n+1}-2 p_{n}+p_{n-1}>0,
$$

and for infinitely many n :

$$
p_{n+1}-2 p_{n}+p_{n-1}<0
$$

C. Pomerance proved in [2], that there are infinitely many n for which:

$$
2 p_{n}<p_{n-i}+p_{n+i} \quad \text { for all } i, 1 \leq i \leq n-1 .
$$

In [3] ERDŐS proved that if

$$
\begin{gathered}
k \geq 3, a_{1}+a_{2}+\cdots+a_{k}=0, a_{k} \neq 0 \quad \text { and } \\
\quad(k-1) a_{1}+(k-2) a_{2}+\cdots+a_{k-1}=0,
\end{gathered}
$$

then the sequence $x_{n}=a_{1} p_{n}+a_{2} p_{n-1}+\cdots+a_{k} p_{n+k-1}$ does not keep a constant sign.

Moreover, for fixed $k \neq 0, p_{n+1}^{k}-2 p_{n}^{k}+p_{n-1}^{k}>0$ for infinitely many n and, also, $p_{n+1}^{k}-2 p_{n}^{k}+p_{n-1}^{k}<0$ for infinitely many n.

This means that for $f(x)=x^{k}, k \neq 0$ the sequence $\left(f\left(p_{n}\right)\right)_{n \geq 1}$ is neither convex nor concave.

We shall say that a function $f:\left[a_{f}, \infty\right) \rightarrow \mathbb{R}$ has property (P) if: For infinitely many n one has

$$
f\left(p_{n+1}\right)-2 f\left(p_{n}\right)+f\left(p_{n-1}\right)>0,
$$

and for infinitely many n :

$$
f\left(p_{n+1}\right)-2 f\left(p_{n}\right)+f\left(p_{n-1}\right)<0 .
$$

To find necessary and sufficient conditions for f to have property (P) can be a difficult task.

Let $f(x)=a^{x}$. In case $a=2$ one can prove immediately that the sequence is convex, so f does not have the (P) property. In case $a=1.2$, to prove that f has the (P) property is the same as to prove that there exists an infinity of primes p for which $p+2$ too is prime. Consequently, this would amount to solving one of the greatest open problems in number theory. This example shows that to find a complete answer to our question is a very difficult task indeed. We shall restrict ourselves to finding a sufficient condition and for this purpose we shall consider a class of functions useful in this direction.

For every $f:\left[a_{f}, \infty\right) \rightarrow(0, \infty), f \in C^{1}$ define $\phi:\left[a_{f}, \infty\right) \rightarrow \mathbb{R}$ by

$$
\phi(x)=\frac{x f^{\prime}(x)}{f(x)} .
$$

Let $F=\left\{f:\left[a_{f}, \infty\right) \rightarrow(0, \infty), f \in C^{1}, \lim _{x \rightarrow \infty} \phi(x)=k \in \mathbb{R} \backslash\{0\}\right\}$.
One can prove that in the neighborhood of ∞ the functions of F behave somehow similarly to $a x^{n}$, because for $n>k$ one can prove that $\lim _{x \rightarrow \infty} \frac{f(x)}{x^{n}}=0$, and for $n<k, \lim _{x \rightarrow \infty} \frac{|f(x)|}{x^{n}}=\infty$.

One can also notice that for real $\alpha, \beta, \alpha \neq 0$ one has $f \in F$ if and only if $f^{\alpha}(x) \log ^{\beta} x \in F$.

The main result of our paper is
Theorem 1. If $f \in F$, then f has the (P) property. Before proving the theorem we shall need some preliminaries. One knows that

$$
\begin{gather*}
p_{n} \sim n \log n ; \tag{1}\\
\liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\log p_{n}}<0.46665 \quad(\text { see }[4]) ; \tag{2}\\
\limsup _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\log p_{n}}=\infty \quad(\text { see }[5]) . \tag{3}
\end{gather*}
$$

On the basis of the relations (2) or (3) and of Lemma 3, we now prove our theorem.

Lemma 1. Let $\left(a_{n}\right)_{n \geq 1},\left(b_{n}\right)_{n \geq 1}$ be sequences of positive integers, $\lim _{n \rightarrow \infty} b_{n}=\infty$. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c>0$ then $\lim _{n \rightarrow \infty} \frac{p_{a_{n}}}{p_{b_{n}}}=c$.

Proof. Let $y_{n}=\frac{a_{n}}{b_{n}}$ so $\lim _{n \rightarrow \infty} y_{n}=c$. Taking into account (1) it follows that

$$
\lim _{n \rightarrow \infty} \frac{p_{a_{n}}}{p_{b_{n}}}=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} \cdot \frac{\log a_{n}}{\log b_{n}}=c \lim _{n \rightarrow \infty}\left(1+\frac{\log y_{n}}{\log b_{n}}\right)=c .
$$

Put $F(n)=f\left(p_{n}\right)$. In case $f \in F$ and $\lim _{x \rightarrow \infty} \phi(x)=k$, we have
Lemma 2. Under the conditions of Lemma 1, one has

$$
\lim _{n \rightarrow \infty} \frac{F\left(a_{n}\right)}{F\left(b_{n}\right)}=c .
$$

Proof. One has

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right) \exp \int_{x_{0}}^{x} \frac{\phi(t)}{t} d t=f\left(x_{0}\right) \exp \int_{\log x_{0}}^{\log x} \phi\left(e^{u}\right) d u \\
\frac{F\left(a_{n}\right)}{F\left(b_{n}\right)} & =\exp \int_{\log b_{n}}^{\log a_{n}} \phi\left(e^{u}\right) d u=\exp \left(\left(\log p_{a_{n}}-\log p_{b_{n}}\right) \phi\left(\theta_{n}\right)\right),
\end{aligned}
$$

where $\min \left(\log p_{a_{n}}, \log p_{b_{n}}\right)<\theta_{n}<\max \left(\log p_{a_{n}}, \log p_{b_{n}}\right)$ hence
$\lim _{n \rightarrow \infty} \phi\left(\theta_{n}\right)=k$. It follows that $\lim _{n \rightarrow \infty} \frac{F\left(a_{n}\right)}{F\left(b_{n}\right)}=\exp k \log \left(\frac{p_{a_{n}}}{p_{b_{n}}}\right)=c^{k}$.
Under the conditions of the previous lemmas and with the same notations one has

Lemma 3. If the sequence $(F(n))_{n \geq 1}$ is convex, then

$$
F(n+1)-F(n) \sim k \frac{F(n)}{n}
$$

Proof. If the sequence $(F(n))_{n \geq 1}$ is convex it follows that for $m>n>p$:

$$
\begin{equation*}
\frac{F(m)-F(n)}{m-n} \geq F(n+1)-F(n) \geq \frac{F(n)-F(p)}{n-p} \tag{4}
\end{equation*}
$$

For fixed $1>\delta>0$, put $m=[(1+\delta) n]$ and $p=[(1-\delta) n]$. It follows that $m-n \sim \delta n, n-p \sim \delta n$.

Using Lemma 2 one obtains

$$
F(m) \sim F(n)(1+\delta)^{k} \quad \text { and } \quad F(p) \sim F(n)(1-\delta)^{k}
$$

hence

$$
\frac{F(m)-F(n)}{m-n} \sim \frac{F(n)\left((1+\delta)^{k}-1\right)}{n \delta}
$$

In the same way $\frac{F(n)-F(p)}{n-p} \sim \frac{F(n)\left(1-(1-\delta)^{k}\right)}{n \delta}$. Taking into account that $\lim _{\delta \rightarrow 0} \frac{(1+\delta)-1}{\delta}=\lim _{\delta \rightarrow 0} \frac{1-(1-\delta)^{k}}{\delta}=k$ and (4), the proof is finished.

Proof of Theorem 1. Let $(F(n))_{n \geq 1}$ be convex. One has $F(n+1)-$ $F(n)=f\left(p_{n+1}\right)-f\left(p_{n}\right)=\left(p_{n+1}-p_{n}\right) f^{\prime}\left(\theta_{n}\right), p_{n}<\theta_{n}<p_{n+1}$, hence

$$
\begin{aligned}
F(n+1)-F(n) & =\left(p_{n+1}-p_{n}\right) \cdot \frac{f\left(\theta_{n}\right)}{\theta_{n}} \phi\left(\theta_{n}\right) \sim k \frac{\left(p_{n+1}-p_{n}\right) f\left(p_{n}\right)}{p_{n}} \\
& =k \frac{p_{n+1}-p_{n}}{\log p_{n}} \cdot \frac{F(n) \log p_{n}}{p_{n}} \sim k \cdot \frac{\left(p_{n+1}-p_{n}\right)}{\log p_{n}} \cdot \frac{F(n)}{n} .
\end{aligned}
$$

Using Lemma 3, it follows that

$$
\begin{equation*}
\frac{p_{n+1}-p_{n}}{\log p_{n}} \sim 1 \tag{5}
\end{equation*}
$$

The same conclusion (5) is implied by the hypothesis of concavity of the sequence $(F(n))_{n \geq 1}$. In both cases we obtain (5), which manifestly contradicts (2) and (3).

Remark. The function $f(x)=x^{k}$ with $k \neq 0, f(x)=\frac{P(x)}{Q(x)}$, where P and Q are polynomial functions of different degrees, as well as $f(x)=\frac{x}{\log x}$ are examples of functions for which the sequence $\left(f\left(p_{n}\right)\right)_{n \geq 1}$ is neither convex nor concave.

Acknowledgement. The author is very much indebted to Prof. I. RuZSA who made valuable suggestions for improving the paper and simplifying the proofs.

References

[1] P. Erdős and P. Turán, On some new question on the distribution of prime numbers, Bulletin Amer. Math. Soc. Vol. 54 (1948), 371-378.
[2] C. Pomerance, The prime number graph, Math. Comp. 33 (1979), 399-408.
[3] P. Erdős, Some problems on consecutive prime numbers, Mathematica 19 (1972), 91-95.
[4] P. Erdős and H. Davenport, Small differences between prime numbers, Proc. Royal Soc. Ser. A, 253 (1966), 1-18.
[5] P. Erdős, Problems and results on the difference of the consecutive primes, Publ. Math. Debrecen 1 (1949), 3-37.

LAURENŢIU PANAITOPOL
FACULTY OF MATHEMATICS
UNIVERSITY OF BUCHAREST
14 ACADEMIEI ST.
RO-70109 BUCHAREST
ROMANIA
E-mail: pan@al.math.unibuc.ro
(Received October 26, 1998; revised April 28, 1999)

