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On a theorem of H. Daboussi

By K.-H. INDLEKOFER (Paderborn) and I. KATAI (Budapest)

Abstract. The main result is a generalization of Daboussi’s theorem: If f is a
uniformly summable multiplicative function with a void Bohr—Fourier spectrum, and if

g is a ¢g-multiplicative function with |g(n)| = 1 for all n, then we have
S fmg(n) = o) (z— o).
n<zx

1. Introduction

Let e(a) = exp(2mia).

Let N, Z, R, C be the set of natural numbers, integers, real and
complex numbers, respectively.

Furthermore, let Ng = NU {0}.

Let ¢ > 2 and let n = > ¢;(n)¢’ be the g-ary expansion of n € Ny
with digits €;(n) € A = {0,1,...,¢ — 1}. A function g : Ny — C is called
g-multiplicative if g(0) = 1, and

g(n) = H 9(g5(n)g’).

Let M, be the class of g-multiplicative functions with modulus 1: i.e.
g € My, if g is g-multiplicative and |g(n)| =1 (n € Np).
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Similarly, f : Ny — R is called g-additive if f(0) = 0, and

Fn) =3 Fles(m)a?)

=0

<

A sequence z,, (n = 1,2,...) of real numbers is said uniformly dis-
tributed mod 1, if

Jim {0 < M| {2} € (0 B} = 6 -,

for all 0 < a < § < 1, where {y} denotes the fractional part of y.
A classical theorem of H. Weyl asserts that x,, is uniformly distributed
mod 1 if and only if for every k € Z,

M
1
MZe(lmn)HO as M — oo.

n=1
A function f: N — C is called uniformly summable, if

1

C(K) :=sup — n)—0 as K — oo.
(K)=sp o 3 1)
|f(n)|>K

The notion of uniformly summable arithmetical functions was intro-
duced and studied by K.-H. INDLEKOFER in [11]. The space of uniformly
summable arithmetical functions can be considered as the closure of the
1 space.

Let f be a uniformly summable function. We say that a € R belongs
to its Bohr—Fourier spectrum, if

1
lim sup — > 0.

r—oo L

> f(n)e(=na)

n<zx

This notion originally was introduced for the space of almost periodic
(arithmetical) functions and later extended to wider spaces.

According to a nice theorem of H. DABOUSSI [1], if f is a multiplicative
function, |f(n)| < 1, then

(1.1) zt Z f(n)e(na) — 0 (x — o0)

n<z
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for each irrational o
There are several generalizations of this theorem. (See e.g. [2-9].)

Let 7 be that class of arithmetical functions ¢, for which for each
K > 0 there exist suitable prime numbers p; < ps < --- < pgr such that

R
1/p; > K, and
=1

(12) =3 eltim) — tpm) = 0 (z— 00)

for every i # j.
In our paper [7] we proved

Theorem A. Let f be an arbitrary uniformly summable multiplica-
tive function, t € 7. Then

limi S f(n)e(t(n)) = 0.

n<x

In a recent paper [10] we proved the following theorem which we quote
now as

Lemma 1. Let 1 <a <b (a,b) =1 (ab,q) =1, g € M,.
If

lim
T— 00

>0,

23" glam)g(on)

n<x

then there exists such an r € N for which
= —reg? -
Z ZRe l—e|——)g(cg) | < 0.
, b—a
7=0 ceA
Hence, and from Theorem A we deduce

Theorem 1. Assume that f is a uniformly summable multiplicative
function, g € M,, and that

> 0.

> fn)g(n)

n<x

) 1
lim sup —
x X
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r

Then g(n) can be written as g(n) = e (%) h(n) with a suitable rational
number 5 and with a function h € /\7lq for which

(1.4) Z ZRe(l — h(cq’)) < o0

7j=0 ceA

holds.
If the Bohr—Fourier spectrum of f is empty, then

=3 Fmgln) — 0

for each g € M,.

Remark. Since e(an) € M, for each a € R, Theorem 1 contains the
theorem of Daboussi.

2. Proof of Theorem 1

Let us write g(n) as e(t(n)) where t(cg’) € (—3, %], and is extended
as a g-additive function. For x € R let ||z|| the distance of x to the closest

integer.
If p1 # pa primes, (p1p2,q) = 1, then either (1.2) holds, or by Lemma 1
there exists an integer r = r(p1, p2), |r| < |p2 — p1], such that

>y

j=1 ceA

2

req?
el < 0.

P2 — D1

— t(cq’)

It is clear that no more than one rational number £ may exist in [0, 1] for
which

(2.1) i >

j=1 ceA

2

k. :
chj —t(eg’)|| < oo.

Thus, either (1.2) holds for each prime pairs p1,ps > q, p1 # pa, or (2.1)
holds. Then (1.4) holds with k(n) := e (—%n) g(n).
Assume that

1
(2.2) lim sup —

z—oo L

> 0.

S fme <I;n> h(n)

n<x
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Let R > 1 be an arbitrary integer,

R oo
:Hh(sj(n)qj), sr(n) = H h(e;j(n)q’)

j=R+1

Let A(n) be defined as a g-additive function, where A(cq') is defined
as the fractional part of t(cq') — %cql.

Let
| BEN-1

Mg N :—f Z ZA cq

= ceA

R+N 1

LY )

j=R c€A

Er.N = e(Mp.n). Since |1 —e(n)| < ¢1]n|, we have

Z |1_£RN5R <CqR Z MRN) .

n<qR+N l/<q

We shall prove that the right hand side is less than coq* TV D%y N Ifwe

consider A\(vq'*)—Mp y as a random variable defined on v€{0,1,..., ¢V 1},
then it is the sum of the independent random variables ; ({ = 0,..., N—1),
where

P(m = Mcg"™™) —my) =1/q (c€A), ZA R,
CEA

Thus the right hand side is less than cog* ™ times Y D?n; < C2D%{7 N
Here ¢ is an absolute constant.
Since D%’N — 0, if R — oo, N > 1, the inequality

1| fe () et

n<zx

(2.3) lim sup —

r—oo L

>0

holds, if R is large enough.
Let us fix an R for which (2.3) holds. The function hg(n) is periodic
mod ¢V, therefore it can be expanded in a finite Fourier series:

qR—l in
= Z dje <]R> .
=0 9



150 K.-H. Indlekofer and 1. Katai

o (4 )

n<x

Then

. 1
lim sup —
r—oo L

for some j € {0,...,¢% —1}.

The theorem is proved.

3. Further remarks

From a theorem of Delange we know that for g € M, the mean value
1
7 Z g(n)
n<x
tends to zero if and only if either
> gleg?) =0
cEA

for some j, or
5 3 Re(l - gler?)) = .
j=0 ceA

Hence, by using Weyl’s criterion, the following assertion which we state
now as Lemma 2 follows easily:

Lemma 2. A g-additive function ¢ : Ny — R is uniformly distributed
mod 1 if and only if either for every k € N, there exists such a j for which

> elkp(eg’)) =0,

ceA
or
(3.1) > lle(ed)|? = oo.
=0 ceA

Hence we obtain
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Lemma 3. For a g-additive function ¢ the sequence p(nq®) (n € Ng)
is uniformly distributed mod 1 for every R € Ny, if and only if the sum

e o]

(3.2) >0 lipled)I?

j=0 ceA
is divergent.

PrOOF. The divergence of (3.2) implies the uniform distribution
mod 1 of ¢(ng®) for every R € Nj.
Assume that (3.2) is convergent. Since [|¢(cq’)|| — 0 (j — o0), there-
fore
> elp(eg’)) =0
cEA
cannot hold if 7 > R, R is large enough.
For such an R ¢(ng®) (n € Ny) due to Lemma 2 cannot be uniformly
distributed mod 1. 0

From Theorem 1 we obtain immediately

Theorem 2. Assume that ¢ is g-additive and ¢(nq'?) is uniformly
distributed mod 1 for every R € Ng. Then for each additive function
F(n), the sequence

F(n) +¢(ng"™) (neN)

is uniformly distributed mod 1 for every R € Nj.
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