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Randers spaces with the h-curvature tensor H
dependent on position alone

By S. BÁCSÓ (Debrecen) and M. MATSUMOTO (Kyoto)

Abstract. We give an example of Finsler space having the Berwald h-curvature
tensor H which is independent of the direction arguments yi [3].

1. Introduction

In our previous paper [3] we were concerned with various sets of special
kinds of Finsler spaces. Among them we pay attention to the two sets

B(n) . . . n-dim. Berwald spaces,

Hx(n) . . . n-dim. spaces having the Berwald h-curvature tensor H

dependent on the position alone.

The inclusion relation B(n) ⊂ Hx(n) is obvious, but any example of a
Finsler space belonging to Hx(n) but not to B(n) has not been given in
the paper.

The purpose of the present paper is to give an example of such a
Finsler space, a Randers space Fn = (Mn, L = α + β). Its metric L

consists of a Riemannian metric α (α2 = aij(x)yiyj) and a differential
one-form β = bi(x)yi.

The Riemannian space Rn = (Mn, α) is said to be associated with Fn.
Let γj

i
k(x) be the Christoffel symbols of Rn. Then we have the Levi-

Civita connection γ = {γj
i
k} in Rn and the induced Finsler connection
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Fγ = {γj
i
k, γ0

i
j , 0} in Fn. (Throughout the paper the subscript 0 denotes

the transvection by yi.) The h- and v-covariant differentiations in Fγ are
denoted by (; , ·) respectively. Let us use the following symbols:

rij =
1
2
(bi;j + bj;i), r2 =

1
2
r00, sij =

1
2
(bi;j − bj;i),

yi = airy
r, bi = airbr, si

j = airsrj , si = brs
r
i.

We are interested in Randers spaces from the standpoint of not only ap-
plications but also pure geometry [1, 1.4]. For instance it is a remarkable
result [4], [7] that a Randers space is a Berwald space, if and only if bi;j = 0.
Next a Randers space is a Douglas space which has been introduced by
the authors [2], if and only if bi;j − bj;i = 0, that is, β is a closed form.

We shall adopt here Randers spaces to give an example of Finsler
spaces belonging to the set Hx(n). The quantities Gi(x, y) appearing in
the equations d2xi/ds2 + 2Gi(x, dx/ds) = 0 of geodesic in the Randers
space Fn are written as [7]

(1.1) 2Gi = γ0
i

0 + 2Bi

where the tensor Bi(x, y) is of the form

LBi = B3
i + αB2

i,(1.2)

B2
i = βsi

0 − s0y
i, B3

i = α2si
0 + r2y

i.(1.2a)

In the following the subscripts a = 2, . . . , 9 denote that the entity is a
homogeneous polynomial in yi of degree a; Ba

i, a = 2, 3, of (1.2a) are
homogeneous polynomials in yi of degree two and three respectively.

2. The h-curvature tensor of a Randers space

We deal with a Randers space Fn = (Mn, L = α + β) equipped
with the Berwald connection BΓ = {Gi

j , Gj
i
k, 0}, and denote by H =

(Hi
h
jk) and R1 = (Rh

jk) the h-curvature tensor and the (v)h-torsion
tensor respectively. Then we have well-known relations

(2.1) (i) Rh
jk = H0

h
jk, (ii) Hi

h
jk = Rh

jk·i.
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R1 is defined by

(2.2) Rh
jk = ∂kGh

j − ∂jG
h

k −Gj
h
rG

r
k + Gk

h
rG

r
j .

Further we shall take notice of the relation [5, (18.23)]

(2.3) Rh
jk =

1
3
(Rh

0k·j −Rh
0j·k),

for the later use. Then, to find the tensor H, we first construct Rh
0k and

then use (2.3) and (ii) of (2.1).
It follows from (2.2) that

Rh
0k = 2∂kGh − yj∂jG

h
k −Gh

rG
r
k + 2Gk

h
rG

r.

Then, using (1.1) and the h-covariant differentiation (; ) in Fγ, we obtain

(2.4) Rh
0k =

a

R0
h

0k + 2Bh
;k −Bh

k;0 + 2Bk
h
rB

r −Bh
rB

r
k,

where
a

R is the curvature tensor of Rn and we put Bh
k = Bh·k and Bk

h
r =

Bh
k·r.

In the following we shall quote extensively from the paper [6] the
procedure in order to obtain Rh

0k of the Randers space belonging to the
set Hx(n).

First, from (1.2) we have

L2αBi
j = C4

i
j + αC3

i
j ,(2.5)

{
C3

i
j = α2B2

i ·j + βB3
i ·j −B3

ibj ,

C4
i
j = α2(βB2

i ·j + B3
i ·j) + B2

i(βyj − α2bj)−B3
iyj ,

(2.5a)

L3α3Bj
i
k = D6

i
jk + αD5

i
jk,(2.6)





D5
i
jk = α2(βC3

i
j·k + C4

i
j·k)− 2α2C3

i
jbk − 3C4

i
jyk,

D6
i
jk = α2(α2C3

i
j·k + βC4

i
j·k)− 2α2C3

i
jyk

−C4
i
j(βyk + 2α2bk).

(2.6a)
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Then we have

L4α2Bi
rB

r
j = E8

i
j + αE7

i
j ,(2.7)

{
E7

i
j = C4

i
rC3

r
j + C3

i
rC4

r
j ,

E8
i
j = C4

i
rC4

r
j + α2C3

i
rC3

r
j ,

(2.7a)

L3αBi
rB

r = F7
i + αF6

i,(2.8)

F6
i = C3

i
rB3

r + C4
i
rB2

r, F7
i = C4

i
rB3

r + α2C3
i
rB2

r,(2.8a)

L4α3Bj
i
rB

r = G9
i
j + αG8

i
j ,(2.9)

{
G8

i
j = D5

i
jrB3

r + D6
i
jrB2

r,

G9
i
j = D6

i
jrB3

r + α2D5
i
jrB2

r.
(2.9a)

Next we get

L2Bi
;j = H4

i
j + αH3

i
j ,(2.10)

{
H3

i
j = βB2

i
;j + B3

i
;j −B2

i(r0j + s0j),

H4
i
j = α2B2

i
;j + βB3

i
;j −B3

i(r0j + s0j),
(2.10a)

L3αBi
j;0 = I6

i
j + αI5

i
j ,(2.11)

{
I5

i
j = βC3

i
j;0 + C4

i
j;0 − 4r2C3

i
j ,

I6
i
j = α2C3

i
j;0 + βC4

i
j;0 − 4r2C4

i
j .

(2.11a)

Substituting (2.10), (2.11), (2.9) and (2.7) in (2.4), we get Rh
0k in the

form

L4α3(Rh
0k −

a

R0
h

0k) = 2L2α3(H4
h
k + αH3

h
k)(2.12)

−Lα2(I6
h
k + αI5

h
k) + 2(G9

h
k + αG8

h
k)− α(E8

h
k + αE7

h
k).

Since we have (Bi
rB

r)·j = Bj
i
rB

r + Bi
rB

r
j , (2.8), (2.9) and (2.7) yield
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the relation

(2.13)





G8
i
j + E8

i
j = α2(βF6

i·j + F7
i·j)− 3α2F6

ibj − 4F7
iyi,

G9
i
j + α2E7

i
j = α2(α2F6

i·j + βF7
i·j)− 3α2F6

iyi

− F7
i(βyj + 3α2bj).

3. The condition for Randers spaces
to belong to Hx(n)

It is observed that (2.12) is obtained from (2.1) of the paper [6] by
the

(3.1) change: (K,
a

R) −→ (0,
a

R−R).

If we deal with the Randers space Fn belonging to Hx(n), then (i) of (2.1)
gives

Rh
0k −

a

R0
h

0k = (Hr
h
sk(x)−

a

Rr
h

sk(x))yrys,

homogeneous polynomials in yi of degree two. Consequently the discus-
sions in §2–4 of [6] can be applied without modification. The conclusion
in [6] is that

Lemma 3. Randers spaces of dimension more than two and of con-

stant curvature K are classified as follows

(I) RCG-space: rij = 2c(aij − bibj), sij = 0, K + c2 = 0,

(II) RCT-space: rij = 0, si = 0, c = 0, sij;k = K(aikbj − ajkbi).

On these conditions the remarkable form of
a

R was given by (5.3)
with (5.4) of [6].

By the change (3.1) we then have the conclusion as follows:
A Randers space Fn, n > 2, belongs to the set Hx(n), if and only if

(I) G-type: rij = sij = 0,
(II) T-type: rij = 0, si = 0, sij;k = 0.

In any case we have c = 0 and rij = 0, and hence (5.3) with (5.4)
of [6] leads to

Rh
0k =

a

R0
h

0k − (srsr)yhyk − 3sh
0s0k + sh

rs
r
0yk(3.2)

− α2sh
rs

r
k + yhs0rs

r
k + {(srsr)α2 − s0rs

r
0}δh

k.



190 S. Bácsó and M. Matsumoto

We have bi;j = 0 for Fn of G-type, and consequently Fn is a Berwald space
where Gj

i
k = γj

i
k(x) and the h-curvature tensor H obviously coincides

with the Riemannian
a

R.
On the other hand, for Fn of T-type we have

rij = 0 : bi;j = sij (skew-symmetric),

si = 0 : si = brbr;i =
1
2
(arsbrbs);i = 0.

The former shows that bi is a Killing vector in Rn, and the latter indi-
cates that the length of bi is constant in Rn. Therefore bi is the so-called
translation. Further sij;k = 0 together with

si;j = (brbr;i);j = br
;jbr;i + brbr;i;j = sr

jsri + brsri;j ,

leads to sr
jsri = 0. Therefore (3.2) is reduced to

(3.3) Rh
0k =

a

R0
h

0k − 3sh
0s0k.

Then (3.3) gives

Rh
0k·j =

a

Rj
h

0k +
a

R0
h

jk − 3(sh
js0k + sh

0sjk),

and (2.3) yields

Rh
jk =

1
3

(
a

Rj
h

0k −
a

Rk
h

0j + 2
a

R0
h

jk

)
− sh

js0k + sh
ks0j − 2sh

0sjk.

On account of the well-known identities satisfied by
a

Rhijk we have

a

Rjh0k −
a

Rkh0j = −
a

Rhj0k −
a

Rkh0j =
a

Rjk0h =
a

R0hjk.

Thus we get

Rh
jk =

a

R0
h

jk − sh
js0k + sh

ks0j − 2sh
0sjk,

and finally (ii) of (2.1) gives

(3.4) Hi
h
jk =

a

Ri
h

jk − sh
jsik + sh

ksij − 2sh
isjk, sij = bi;j .
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Theorem 1. A Randers space Fn, n > 2, has the h-curvature ten-
sor H of the Berwald connection which depends on the position alone, if
and only if (I) bi;j = 0, Fn being a Berwald space, or (II) bi is a translation
in the associated Riemannian space, that is, bi;j + bj;i = 0 and brbr;i = 0,
and that satisfies bi;j;k = 0.

In the case (II) we have Gi = γ0
i

0/2 + αbi
;0 and the tensor H is

written in the form (3.4).

4. The two-dimensional case

A Randers space of dimension two is an exceptional case in [6], because
“Lemma 1” (p. 256) needs the restriction n > 2. However the condition (II)
of Theorem 1 may be applicable to the case n = 2. Thus this last section
is devoted to the consideration of a two-dimensional Randers space F 2

satisfying

(4.1) bi;j + bj;i = 2rij = 0, si = 0, sij;k = 0.

Thus (1.2a) gives

B2
i = βsi

0, B3
i = α2si

0, B2
i
;j = si

0s0j , B3
i
;j = 0,

B2
i·j = si

0bj + βsi
j , B3

i·j = 2si
0yj + α2si

j .

Then (2.5a) yields

C3
i
j = 2β(si

0yj + α2si
j), C4

i
j = (α2 + β2)(si

0yj + α2si
j).

Next (2.10a) gives H3 = H4 = 0 and β;0 = 0 leads to C3;0 = C4;0 = 0.
Thus (2.11a) gives I5 = I6 = 0. Further we have F6 = F7 = 0 from (2.8a)
and hence (2.13) leads to G8 = −E8 and G9 = −α2E7. (2.7a) gives

E8
i
j = α2(α4 + 6α2β2 + β4)si

0s0j ,

E7
i
j = 4α2β(α2 + β2)si

0s0j .

Therefore (2.12) is written as L4α3(Rh
0k−

a

R0
h

0k) = −3L4α3sh
0s0k which

is nothing but (3.3).
Consequently we have

Theorem 2. Let F 2 be a Randers space of dimension two. If F 2

satisfies bi;j + bj;i = 0, brbr;i = 0 and bi;j;k = 0, then the h-curvature
tensor H of the Berwald connection depends on the position alone, written
in the form (3.4).
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