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Intersection theorems for Finsler manifolds

By LÁSZLÓ KOZMA (Debrecen) and RADU PETER (Cluj-Napoca)

Abstract. In the paper we prove the following theorems generalizing T. Fran-
kel’s results on Riemannian manifolds [2].

Theorem A. If V and W are two compact totally geodesic submanifolds of a real
complete connected Finsler manifold M of positive sectional curvature, and dim V +
dim W ≥ dim M , then V ∩W 6= ∅.

Theorem B. If V and W are two compact complex analytic submanifolds of a
Kähler Finsler manifold M of positive holomorphic bisectional curvature and vanishing
(1, 1)-torsion, and dim V + dim W ≥ dimCM , then V ∩W 6= ∅.

1. Introduction

In 1961 T. Frankel [2] proved that two compact, totally geodesic
submanifolds V and W of dimension r and s, respectively, of an n-dimen-
sional complete connected Riemannian manifold with positive sectional
curvature always have a nonempty intersection provided r + s ≥ n. Also,
if Mn is a complete connected Kählerian manifold of positive sectional
curvature, and V and W are two compact complex submanifolds then
V ∩W 6= ∅ provided r + s ≥ n.

These results have been extended by A. Gray [3] to the case of nearly
Kähler spaces, by S. Marchiafava [4] to the case of a quaternionic Kähler
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194 László Kozma and Radu Peter

manifolds, by L. Ornea [5] to the case of locally conformal Kähler man-
ifolds, and by T.Q. Binh, L. Ornea and L. Tamássy [6] to the case of
Sasakian manifolds with k-positive bisectional curvature.

The purpose of this paper is to generalize Frankel’s theorems to the
case of Finsler and Kähler–Finsler manifolds, resp.

Our base reference on Finsler geometry is [1]. At the beginning of the
sections we shortly repeat the necessary notions and relations (for details
see [1]). Then, we prove the analogons of the cited results of Frankel, first
for the real case, and in Section 2, for the complex case.

2. The real case

Let M be a real manifold M of dimension n, and (TM, π, M) the
tangent bundle of M . The vertical bundle of the manifold M is the vector
bundle π:V → TM given by V = ker dπ ⊂ T (TM). (xi) will denote
local coordinates on an open subset U of M , and (xi, yi) the induced
coordinates on π−1(U) ⊂ TM . The radial vertical vector field ι is locally
given by ι(x, y) = ya ∂

∂ya .
A Finsler metric on M is a function F : TM → R+ satisfying the

following properties:

1. F 2 is smooth on M̃ , where M̃ = TM \ {0},
2. F (u) > 0 for all u ∈ M̃ ,

3. F (λu) = |λ|F (u) for all u ∈ TM , λ ∈ R,

4. For any p ∈ M the indicatrix Ip = {u ∈ TpM | F (u) < 1} is strongly
convex.

A manifold M endowed with a Finsler metric F is called a Finsler
manifold (M,F ).

From the condition 4 it follows the quantities gij(x, y) = 1
2

∂2F 2(x,y)
∂yi∂yj

form a positive definite matrix, so a Riemannian metric 〈 , 〉 can be intro-
duced in the vertical bundle (V, π, TM).

On a Finsler manifold there does not exist, in general, a linear metrical
connection. The analogue of the Levi–Civita connection lives just in the
vertical bundle, however, there are several ones. In this paper we use
the Cartan connection, which is a good vertical connection in V, i.e. an
R-linear map

∇v:X(M̃)× X(V) → X(V),
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having the usual properties of a covariant derivations, metrical with respect
to g, and ‘good’ in the sense that the bundle map Λ:TM̃ → V defined by
Λ(Z) = ∇v

Zι is a bundle isomorphism when ∇v restricted to V. The latter
property induces the horizontal subspaces Hu = kerΛ for all u ∈ M̃ , which
are direct summands of the vertical subspaces Vu = Ker(dπ)u:

τfM = H⊕ V.

For a tangent vector field X on M we have its vertical lift XV and its
horizontal lift XH to M̃ .

Θ:V → H denotes the horizontal map associated to the horizontal
bundle H. Using Θ, first we get the radial horizontal vector field χ = Θ◦ ι.
In our case σ̇H = χ(σ̇). Secondly we can extend the covariant derivation
∇v of the vertical bundle to the whole tangent bundle of M̃ : Denoting it
with ∇, for horizontal vector fields H ∈ X(H) we let

∇ZH = Θ(∇v
Z(Θ−1(H))) ∀Z ∈ XM̃.

An arbitrary vector field Y ∈ XM̃ is decomposed into vertical and hori-
zontal parts:

∇ZY = ∇ZY V +∇ZY H .

Thus ∇:XM̃ ×XM̃ → XM̃ is a linear connection on M̃ induced by a good
vertical connections. Its torsion and curvature Ω are defined as usual.
Specially the sectional curvature of ∇ at a tangent vector u ∈ M̃ is given
as follows:

Ru(H,K) = 〈Ω(χ(u),H)K, χ(u)〉u
for any H, K ∈ Hu. In [1] this is called the horizontal flag curvature.

Theorem A. If V and W are two compact totally geodesic subman-

ifolds of a real complete connected Finsler manifold (M, F ) of positive

sectional curvature, and dim V + dim W ≥ dim M , then V ∩W 6= ∅.

Proof. We assume that V and W do not intersect each other. Then
there is a shortest geodesic σ(t) from V to W with the endpoints σ(a) ∈ V ,
σ(b) ∈ W , for V and W are compact.
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All quantities from the tangent level are now horizontally lifted to the
second tangent level TTM along the tangent curve σ̇ of the geodesic σ.
Its reason is that the Cartan connection lives there and we want to use
the parallel translation of this linear connection. The horizontal lift from
Tσ(a)M and Tσ(b)M to Hσ̇(a) and Hσ̇(b), resp. will be simply denoted by
the superscript H.

Since σ is the shortest geodesic from V to W it strikes V and W

orthogonally by the Gauss lemma: σ̇H(a) ⊥ TH
σ(a)V and σ̇H(b) ⊥ TH

σ(b)W .

Let P ⊂ Hσ̇(b)M̃ be the parallel translated of TH
σ(a)V with respect to

the Cartan connection along σ̇ to the point σ̇(b). The parallel translation of
the Cartan connection maps horizontal vectors into horizontal ones, σ̇H(a)
into σ̇H(b), and it is angle-preserving and dimension-preserving. Therefore
P ⊥ σ̇H(b) and, so dim(P + TH

σ(b)(W )) ≤ dim M − 1. Then

dim
(
P ∩ TH

σ(b)W
)

= dim P + dim TH
σ(b)W − dim

(
P + TH

σ(b)W
)

≥ dim V + dim W − (dimM − 1) ≥ 1.

Thus there is a vector wH ∈ P ∩ TH
σ(b)W with 〈wH , wH〉 = 1. Clearly wH

must be the parallel translated along σ̇ of some vH∈TH
p V with 〈vH, vH〉=1.

Let UH be the unit tangent horizontal vector field along σ̇ obtained by
parallel translation of vH . Consider the variation Σ : (−ε, ε)× [a, b] → M

of σ with transversal vector field X = dπ(UH). Then, by the second
variation formula (cf. [1], p. 38) we have

d2`Σ
ds2

(0) =
〈∇UH UH , TH

〉
σ̇

∣∣b
a

+
∫ b

a

[∥∥∇T H UH
∥∥2

σ̇
− 〈

Ω
(
TH , UH

)
UH , TH

〉
σ̇
−

∣∣∣ ∂

∂t

〈
UH , TH

〉
σ̇

∣∣∣
2
]

dt,

where T and U are the tangential and transversal vector fields, resp., of
the variation Σ. UH is parallel along σ̇ and TH ◦ σ̇ = σ̇H , so ∇T H UH |σ̇ =
∇σ̇H UH = 0. Thus the first term of the integrand vanishes. So does the
last term, for UH ⊥ TH holds along σ̇. The term before the integral can be
omitted, since we have chosen such variation where all transversal curves
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are geodesics, therefore ∇UH UH = 0. Summarizing we have

d2`Σ
ds2

(0) = −
∫ b

a

〈
Ω

(
TH , UH

)
UH , TH

〉
σ̇

dt = −
∫ b

a

Rσ̇

(
UH , UH

)
dt < 0,

which contradicts the minimality of σ. ¤

3. The complex case

From [1] we recall some basic notions and formulae for complex Finsler
manifolds.

Let M be a complex manifold of dimCM = n. Then the complexifi-
cation TCM of the real tangent bundle is decomposed as

TCM = T 1,0M ⊕ T 0,1M,

where T 1,0M is the holomorphic tangent bundle over M , and T 1,0M is the
conjugate of T 0,1M . As is well known T 1,0M is also a complex manifold
of dimC T 1,0M = 2n, and the projection πT :T 0,1M → M is holomorphic.
T 1,0M and T 0,1M are the eigenspaces of the complex structure J belonging
to the eigenvalues i and −i, respectively.

A complex Finsler metric on a complex manifold M is a continuous
function F : T 1,0M → R satisfying

• G := F 2 is smooth on M̃

• F (v) > 0 for all v ∈ M̃

• F (ζv) = |ζ|F (v) for all v ∈ T 1,0M and ζ ∈ C.

F is called strongly pseudoconvex if the Levi matrix (Gαβ) is positive

definite on M̃ where Gαβ = ∂G2

∂vα∂vβ .
There exists a unique good complex vertical connection which makes

the Hermitian structure (Gαβ) on V parallel. It can be extended via the

horizontal map to a complex linear connection on M̃ . This is called the
complex Chern–Finsler connection ∇.

The geodesics σ are characterized by the equation ([1], p. 101):

∇
T H+T H TH = 0,
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where T = σ̇. The torsions θ, and τ of ∇ are defined as follows:

θ(X,Y ) = ∇XY −∇Y X − [X, Y ]

τ(X, Y ) = ∇XY −∇Y X − [X, Y ],

the curvature Ω are defined as usual. The holomorphic bisectional curva-
ture is given as follows

R(T,U) =
〈
Ω(TH + TH , UH + UH)UH , TH

〉
∀ T, U ∈ T 1,0M.

It is easy to derive that in the case of the Chern–Finsler connection this
takes the form

R(T,U) =
〈
Ω(TH , UH)UH , TH

〉
−

〈
Ω(UH , TH)UH , TH

〉
.

A strongly pseudoconvex Finsler metric F is called Kähler if its (2, 0)-
torsion θ satisfies

θ(H, χ) = 0 ∀H ∈ H.

The horizontal (1, 1)-torsion is defined by

τH(X, Y ) = Θ(τ(X, Y ))

where Θ is the horizontal map. The symmetric product 〈〈 ·, ·〉〉:H×H → C
is locally given by

〈〈H, K〉〉v = Gαβ(v)HαHβ ∀H,K ∈ Hv, v ∈ M̃.

It is clearly globally well defined and satisfies 〈〈H, χ〉〉 = 0 for all H ∈ H.
In the proof of our second theorem the second variation formula will

play a crucial role. Let F : T 1,0M → R be a Kähler Finsler metric on a
complex manifold M . Take a geodesic σ0: [a, b] → M with F (σ̇0) = 1,
and a regular variation Σ: (−ε, ε)× [a, b] → M of σ0. Then it is known [1]
(p. 102) that

d2`Σ
ds2

(0) = Re
〈
∇

UH+UH UH , TH
〉

σ̇0

|ba

+
∫ b

a

{∥∥∥∇T H+T H UH
∥∥∥

2

σ̇0

−
∣∣∣ ∂

∂t
Re

〈
UH , TH

〉
σ̇0

∣∣∣
2
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− Re
[〈

Ω(TH , UH)UH , TH
〉

σ̇0

−
〈
Ω(UH , TH)UH , TH

〉
σ̇0

+
〈〈

τH(UH , TH), UH
〉〉

σ̇0

−
〈〈

τH(TH , UH), UH
〉〉

σ̇0

]}
dt.

Theorem B. If V and W are two compact complex analytic sub-

manifolds of a Kähler Finsler manifold (M,F ) of positive holomorphic

bisectional curvature and vanishing horizontal (1, 1)-torsion, and dim V +
dim W ≥ dimCM , then V ∩W 6= ∅.

Proof. We use here Frankel’s method again. Suppose that V ∩W=∅.
Then, there exists a minimazing geodesic σ: [a, b] → M with σ(a) ∈ V ,
σ(b) ∈ W , σ is orthogonal to V and W in σ(a) and σ(b), resp.

We construct a regular variation Σ: (−ε, ε) × [a, b] → M of σ such
that ∇

T H+T H UH = 0. Let P ⊂ Hσ̇(b)T
1,0M be the parallel translated

of TH
σ(a)(V ) with respect to the Chern–Finsler connection along σ̇ to the

point σ̇(b). Considering the horizontal lifts to M̃ along σ̇, analogously to
the real case we get

dim
(
P ∩ (TH

σ(b)W )
)

= dim P + dim(TH
σ(b)W )− dim

(
P + (TH

σ(b)W )
)

≥ dim V + dim W − (dimCM − 1) ≥ 1.

So we can choose a non-vanishing vector UH ∈ P ∩ (TH
σ(b)W ). Its

parallel translated along σ̇ will be denoted by UH, too. Since UH is or-
thogonal to σ̇ at the endpoint σ̇(b), it remains orthogonal along the entire
curve σ̇(t) by the metrical property of the Chern–Finsler connection. We
consider the regular variation of σ with transversal vector field U .

In this case the second variation formula reduces to the following form:

d2`Σ
ds2

(0) = Re
〈
∇

UH+UH UH , TH
〉

σ̇

∣∣∣
b

a

+
∫ b

a

{∥∥∥∇T H+T H UH
∥∥∥

2

σ̇
−

∣∣∣ ∂

∂t
Re

〈
UH , TH

〉
σ̇

∣∣∣
2

− Re [Rσ̇(T, U)]
}

dt,

since the horizontal (1, 1)-torsion τH vanishes.
The first term of the integrand vanishes, for UH is parallel along σ,

and therefore, by the hypothesis on the holomorphic bisectional curvature
the remaining two terms of the integrand will be negative except the first
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one at most. We consider also the variation belonging to the transversal
vector field JUH , and prove that the initial terms belonging to UH , and
JUH cannot be positive at the same time. This will give the contradiction.

Therefore we calculate ∇
JUH+JUH JUH .

∇
JUH+JUH JUH = J∇

JUH+JUH UH = J
(∇JUH UH +∇

JUH UH
)
.

Using the torsion we have

∇JUH UH = ∇UH JUH +
[
JUH , UH

]
+ θ

(
JUH , UH

)
.

The last term θ(JUH , UH) vanishes because F is a Kähler Finsler metric,
and UH is a radial vector field. Since the horizontal (1, 1)-torsion is zero,

∇
JUH UH = ∇UH JUH − [UH , JUH ]

= J
[
∇

UH UH + [UH , UH ]
]
− [UH , JUH ]

= J∇
UH UH + J [UH , UH ]− [UH , JUH ].

It follows now

∇
JUH+JUH JUH

J
(
∇UH JUH + [JUH , UH ] + J∇

UH UH + J [UH , UH ]− [UH , JUH ]
)

= −∇
UH+UH UH + J [JUH , UH ]− J [UH , UH ]− [UH , JUH ].

Now V and W are complex submanifolds, UH is a horizontal lift, and
tangent to TH

σ(a)V and TH
σ(b)W at σ̇(a) and σ̇(b), respectively. Since the

horizontal space is a complex linear space, and we use the Chern Finsler
connection, all Lie brackets above are horizontal vectors, and are orthog-
onal to TH at σ(a) and σ(b). So

Re
〈
∇

JUH+JUH JUH , TH
〉

= −Re
〈
∇

UH+UH UH , TH
〉

.
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