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A general Minkowski-type inequality
for two variable Gini means

By PETER CZINDER (Gyéngyés) and ZSOLT PALES (Debrecen)

Abstract. We study the following Minkowski-type inequality
(%) Sag,bo (@1 +y1, 22 +y2) < Say by (T1,22) + Sag.by (U1, Y2)
(37173727y17y2 € R+)7

where S, 3 is the two variable Gini mean defined by

1
a aN a-%
(u) ifa—bo,
ZCb+yb
Sap(@,y) = (a,b € R, z,y > 0).
al al
exp(W) fa—b=0
xa_'_ya

The case when ap = a1 = a2 and bg = by = b2 was investigated by LOSONCZI—
PALEs [LP96]. Generalizing their result, we give necessary and sufficient conditions
(concerning the parameters a;,b; € R) for the inequality above to hold. As a conse-
quence of this result, it turns out that any inequality of the form (x) is weakening of an
analogous inequality where all the participating means are equal to each other.

1. Introduction

Let a,b € R be two real numbers. The Gini mean [Gin38] of an
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n-vector x = (x1,...,%,) with coordinates in Ry = (0, 00) is defined by
1
A SR o e N :
-7 fa—b#0,
(ﬂf’{+~-+x%> Ho=t7

(:U% lnzy +---+2%Inx,
exp

> ifa—b=0.

Minkowski’s inequality for the special Gini mean with a—b = 1 was treated
by BECKENBACH [Bec50]. Concerning the general case

(2) Sa,b;n(x + }’) < Sa,b;n(x) + Sa,b;n(Y) (Xa y € R17 n= 27 37 s )a
DRESHER [Dre53] and also DANSKIN [Dan52] proved that the conditions
(3) 0 < min{a,b} <1 < max{a,b}

are sufficient for (2) to hold. Losonczi [Los71b] showed that the inequality
(2) is not only sufficient but it is also necessary for (3) to hold. He also
proved that the reverse inequality

(4) Sa,b;n(x + Y) 2 Sayb;"(x) + S%b%n(y) (Xv Yy € Ri7 n = 27 37 s )
holds if and only if
(5) min{a,b} <0 <max{a,b} <1

is satisfied. In [Los77], the inequalities (2), (4) were characterized in the
case, where the coordinates of the variables x,y vary only in a subinterval
(a, B) of Ry.

Another possibility to generalize (2) is that each appearance of S,
is replaced by a possibly different Gini mean, that is we ask for necessary
and sufficient conditions such that

(6) Sao,bo;n(x + Y) S Sa1,b1;n(x) + SaQ,bz;n(Y) (va € Rﬁa n= 273a B )

be valid. The result obtained by PALES [P4l82] states that (6) is valid on
the domain indicated if and only if

(1) a17a27b1762 > 07
(7) (i) max{1, ap, bp} < max{a;,b;}, (1=1,2),

(iii) min{ag, bp} < min{l,aq,b1,as,bs}.
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The reversed inequality
(8) Sao,bo;n(x + Y) > Sa1,b1;n(x) + SaQ,bz;n(Y) (Xa y € R™ y = 27 3a s )

was also characterized in [P4l82]. It holds if and only if

(i) 1 > a1,az,b1,b,
9) (i) min{0, ag, bp} > min{a;, b;}, (i=1,2),
(iii) max{ag, b} > max{0,ay,by,as,bs}.

Further methods and results were obtained by DAROCZY and LOSON-
cz1 [DL70], LosoNczl [Los71a], [Los71b], PALES [P4l83] for character-
izing inequalities (of quite general form) involving quasiarithmetic means
weighted by weightfunctions and by DAROCzY [Dar72a], [Dar72b], LOSON-
cz1 [Los73], DAROCZY and PALES [DP82] and PALEs [P4l88b] for more
general means (deviation and quasideviation means).

In these general results, however, one has to suppose that the inequal-
ities hold for all n = 2,3, .... Fixing the number of variables n in (2), (4),
(6), and (8), we obtain new problems to investigate. The first step in this
direction is of course studying the case n = 2 and inequalities (2) and (4).
This was done in the paper of LosoNczl and PALES [LP96]. For brevity
of notation, we use S, for Sg p,2 throughout the paper. Then the main
result of [LP96] can be formulated as follows.

Theorem 1 (Losonczi-Péles [LP96]). Let a,b € R. Then the inequal-
ity

(10) Sa,b(x + y) < Sa,b(x) + Sa,b(Y) (X7 y e Ri)
holds if and only if
(11) 0 <min{a,b} <1<a+0d

The main aim of the present paper is to characterize the situation
when the more general inequality

(12) Sa07bo (X + Y) < Sal,b1 (X) + Sa27b2 (Y) (X,y € R?&—)

holds. Our main result is contained in the following theorem.
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Theorem 2. Let ag,ay,az,by, by, by € R. Then (12) holds if and only if
(i) ai,a2,b1,b2 >0,
(13) (ii) max{1,ap + bp} < min{ay + by, as + ba},

(iii) min{ag, by} < min{l,aq,by,as,bs}.

The proof of the necessity of conditions (i)—(iii) of this result will
be obtained with the help of a sequence of lemmas. The proof of the
sufficiency is based on Theorem 1, since, as it will turn out, conditions
(i)—(iii) of Theorem 2 are necessary and sufficient for the existence of some
parameters a,b € R such that (10) is valid and

Sao.b0 < Sabs Sab < Say by Sab < Sas. by

hold. Thus any inequality of the form (12) is a weakening of inequality
(10) for some a,b € R.

Concerning the inequality
(14) Sa,b(x + y) > Sa,b(x) + Sa,b(Y) (X, ye R%—)

which is reversed to (10), there are only necessary (but not sufficient) and
sufficient (but not necessary) conditions presented in [LP96]. Therefore,
the investigation of the inequality reversed to (12) is left as an open prob-
lem.

It is interesting to note that the analogous problems, that is, the
Minkowski and reversed Minkowski inequalities for the so called Stolarski
means can be characterized completely (see LOosoNCczI-PALEs [LP98]).

The paper is organized as follows. In Section 2, we recall and ex-
tend the result on the comparison of two variable Gini means obtained by
PALES [Pal88a] (see also [P4l92]). In Section 3 we establish some asymp-
totic properties of Gini means that will be useful in proving the necessity
of the conditions for (12). In Section 4 we give the complete proof of The-
orem 2. Finally, we formulate a generalization of Theorem 2 which can be

proved exactly in the same way as Theorem 2.
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2. Comparison of two variable Gini means

The comparison problem of two variable Gini means on R was solved
by PALES [P4l88]. The main result of this paper reads as follows.

Theorem 3. Suppose that a,b,c,d € R, (a —b)(c —d) # 0. Then
(15) Sap(@,y) < Scalz,y) (v,y €Ry)
holds if and only if
(i) a+b<c+d,
min{a,b} < min{c,d}, if min{a,b,c,d} >0,
(16) max{a,b} < max{c,d}, if max{a,b,c,d} <0,

W o = o 1 — 1]
< b
a—b — c¢c—d

if min{a,b,c,d} <0

0 < max{a, b, c,d}.

This theorem does not offer conditions when (a — b)(c —d) = 0. In
order to cover this case as well, we extended Theorem 3 via the following
result.

Theorem 4. Suppose that a,b,c,d € R. Then (15) holds if and only if
(i) a+b<c+d,

min{a, b} < min{c,d}, if min{a,b,c,d} >0,

(17) i) max{a,b} < max{c,d}, if max{a,b,c,d} <0,
ii
w(a,b) < p(e,d) if min{a,b,c,d} <0
0 < max{a, b, c,d},
where ] — [0l
——, ifu#w,
Iu,(u’ U) = u—"v

sgn(u), Iif u=n.

PROOF. The case (a—b)(c—d) # 0 is discussed in [Pal88a] in details,
hence it suffices to consider the case (a —b)(c — d) = 0.

We will use the following auxiliary results:
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Lemma 1. For a,b € R, we have the identity

-1

(18) Sa,b(l‘ay) = [S—a,—b(x_lay_l)] (w,y € R+)

Lemma 2. The function u defined in the theorem admits the following
properties:

(i) p is continuous on R?\ {(0,0)}.

(ii) For any fixed real number v, the function u — p(u,v) is increasing
on R;

(i) For all u,v € R, =1 < p(u,v) < 1;

These results can immediately be obtained from the definitions of Gini
means and the function p.

Sufficiency. Assume first that a, b, ¢, d are nonnegative numbers such
that (17)(i) and
(19) min{a, b} < min{c,d}
hold. We have to show that (15) is valid. Define

1 1 2
(079 2:(1, bn ::b_‘_*, Cnp ::C_‘_*) dn :d+7
n n n

It is clear that a, # b, and ¢, # d, for n large enough. Furthermore, by
(16)(i) and (19),

an+b, < cp+d,, min{a,,b,} <min{c,,d,}, min{ay,by,cn,dy} > 0.

Therefore,
Sanybn (:L"y) S Scnydn (x7 y) (x’y € R+)'

The inequality (15) now follows by taking the limit n — oo and using the
continuity of Gini means with respect to their parameters.

Using Lemma 1, the sufficiency of the conditions of (17) for the case
a,b,c,d <0 can directly be obtained from the previous one.

Now consider the case min{a,b,c,d} < 0 < max{a,b,c,d}. Assume
that (17)(i) and p(a,b) < u(c,d) hold. Define
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By Lemma 2 and (17)(i),

:U'(GTH bn) = M(anv b) S ,u(aa b) S M(Ca d) S ,u(c7 dn) - :U'(CTH dn)

If n is large enough, then a,, # b,, ¢, # d, and we also have a, + b, <
¢n + dy,. Therefore we can apply Theorem 3 again and the argument can
similarly be completed as in the first case.

Thus the proof of the sufficiency is complete.

A simple consequence of the sufficiency is that S, is an increasing

function of its parameters, that is, we have

Lemma 3. Ifa,b;,bs € R, by < by, then

Sa,b1 (x7y) S Sa,b2 (xuy) (xvy S R+)

Necessity. We will again distinguish the same three cases. In all cases,
due to the symmetry, we can assume that ¢ < b and ¢ < d.

First, let all the parameters be nonnegative numbers. Assuming (15),
we have to show that (17)(i) and (19) hold. In the case a = b = 0 there is
nothing to prove. Thus we can suppose that b > 0. Define

1 .
a——, ifa>0, b, if a>0,
Ay, = n n 1= 1 ]
a=0, ifa=0, b——, ifa=0,
n
1
cp =, dy :=d+ —.
n

Applying Lemma 3 and (15), we get
Sanbn (T:y) < Sap(,y) < Sealr,y) < Se,p.a,(#,y),  (z,y €Ry),
and (a, — by)(c, — dy) # 0 for large n. So by Theorem 3, we obtain
an + b, < ¢, +d,, min{ay,,b,} < min{c,,d,}.

Performing the limit n — oo, we get (17).

The statement for the case a,b,c,d < 0 follows from the first case
with the application of Lemma 1.
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To complete the proof, we consider now the case min{a, b, c,d} < 0 <
max{a, b, c,d}. Define

Then, for large n, we have a,, # b, ¢ # d,,, and
min{ay,,b,c,d,} < 0 < max{a,,b,c,d,}.
Furthermore, by (15) and Lemma 3,
Sanv(@,y) < Sap(z,y) < Sealw,y) < Sea, (z,y) (z,y €Ry),
that is, by Theorem 3,
(20) an +b<c+d, and p(ap,b) < pu(cd,).

Taking the limit n — oo in the first inequality, we get a + b < ¢+ d, that
is (17)(i). The inequality

p(a,b) < pfe, d)

also follows from (20), by Lemma 2, if (a, b) # (0,0) and (¢, d) # (0,0). We
cannot have a = b = ¢ = d = 0, hence we have to consider only the cases
when either a =b=0,c<0<d,ora<0<b, c=d=0. For symmetry
reasons (e.g. using Lemma 1), it suffices to consider the first case. We
already have (17)(i). Thus, 0 < ¢+ d. On the other hand, 1(0,0) = 0,
hence u(a,b) < u(c,d) is equivalent to ¢ + d > 0. Therefore (17)(ii) also
holds.

The proof of the theorem is complete. O

3. Asymptotic properties of Gini means

In this section, we list a number of asymptotic properties (as the
variables tend to zero, or infinity) of Gini means. The first result is known
also for any homogeneous means (cf. [ALP87], [AP88], [BC87], [HN8&5]).
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Lemma 4. Assume that a,b € R. Then

lim (Sa,b(l'l + vy, x9 + y) — y) = 5071(.’,171,562) (l‘l, To € R+)

Yy—oo

ProOOF. Using the homogeneity of S, and replacing y by 1/t, we get

. o Sap(try + 1t +1) —1
yli}ngo (Sa,b($1+y,$2+y)—y)=t£%1+ LG r 2 )

0 T+
= o Sap(trr +1,tw2 +1)]i= = L 5 2 0

Lemma 5. Suppose that a, b are positive real numbers. Then

lim Sa,b(IElal'Z) =Y, (y € R+)
z1—0+
T2—Y

PROOF. The statement easily follows from the definition of Gini
means. O

Lemma 6. Assume that a,b > 1. Then

lim (Sa,b(:cl, xo+y) — y) =9 (11,22 € RY).

y—00
PrOOF. Using the homogeneity of S, and replacing y by 1/t, we get

. . Sap(tzy,tra+1)—1
Jim, (Suafenas +y) o) = fim 2R

Due to Lemma 5, the numerator on the right hand side goes to 0, hence
we can apply L’Hospital’s rule again to obtain the statement. O

4. Proof of the generalized Minkowski inequality
for Gini means

After these preparations, we are ready to prove Theorem 2. Because
of the symmetry, we can assume that

(21) ap < b, a; < by, az < ba.
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Sufficiency. Define
a := min{ay, as, 1}, b:=min{a; + by,as + b2} — a.

We are going to prove the following three statements.
(I) Sqp satisfies the Minkowski inequality (10),
(I1) Sag,b0 < Saps
(IIT) Sap < Sy, (i =1,2).
Once we have proved (I)—(III), we can obtain (15) in the following way:

Sao,bo (X + Y) < Sa,b(x + Y) < Sa,b(X) + Sa,b(Y) < Sal,b1 (X) + Saz,bz (y)

In order to prove (I), we have to verify that (11) holds. By the def-
inition of a and (13)(i), we get that 0 < a < 1. By (13)(ii), we also
have

min{a; + b1,a2 + b2} > 1> a.

Thus
b= min{a1 + b1,a0 + bz} —a >0,

whence 0 < min{a, b} < 1. Using again the definition of a, b, and (13)(ii),
we obtain

(22) a+b=min{a; + by,as + ba} > 1.

Therefore S, 5 satisfies the Minkowski inequality (10).

In order to prove (II), we distinguish two cases.
If ag < 0, then S, < Sa,p holds if and only if

0,bo
(23) ao+bo <a+b, plao,bo) < p(a,b).
The first inequality follows from (13)(ii):

ap + by < max{1l,aop + bp} < min{a; + by,as + b2} = a+b.

Due to (22), max{a,b} > 0. Therefore, we have that u(a,b) = 1. Thus,
by Lemma 2, the second inequality in (23) is obvious.
If ag > 0 then S, 5, < S, holds if and only if

(24) apg+byp <a+b, min{ag,bp} < min{a,b}.
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The proof of the first inequality coincides with that of the previous case.
To obtain the second inequality, we show that ag < a and ag < b. Since
then

min{ag, bp} = ap < min{a, b}.

By (13)(iii),

ap = min{ag, bo} < min{l,ay,b1,as,b2} = min{l,as,a2} = a.
In order to obtain ag < b we need to show that

ap < min{ay + by, as + bo} — min{ay, as, 1},
which is equivalent to the inequalities
ag + min{ay, az,1} < a; +b; (i=1,2).

On the other hand, by (13)(iii) and (21)

ag + min{aq,as,1} <ap+a; <a;+a; <a; +b; (i=1,2).

Thus we have proved (II).
To obtain (IIT), we have to show that

(25) a+b<a;+0b;, min{a,b} <min{a;,b;} (i=1,2).

The first inequality obviously follows from the definition of b. On the other
hand,

min{a, b} < a =min{ay,as,1} < a; = min{a;, b;} (i =1,2),
therefore the second inequality of (25) is also valid. Thus the proof of (III)
is also complete.

Necessity. Assume now that the Minkowski inequality (12) holds.
Substitute y; = yo = y in (12). We obtain that

(26) Sao b (T1 + Y, 02 +y) —y < Say by (v1,22) (21,72, € RY).
Taking the limit y — oo and using Lemma 4, we get

T+ T2
(27) 2
So1(z1,22) < Say by (T1,22) (21,22 € RYy).

S Sal,bl (x17x2), that is7
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Consequently, by Theorem 3, 0 + 1 < a; + b1, and analogously, 0 + 1 <
as + by, therefore

(28) 1< min{a1 + b1,a9 + bg}.

Using (21), we get that by,by > 0. If a; were negative, then (27) would
also yield that p(1,0) < p(aq,b1), that is, 1 < %. This inequality
however implies a; > 0. The contradiction obtained shows that a; > 0
and similarly as > 0. Thus (13)(i) is proved.

In order to prove (13)(ii), take the limit y — 0 for both sides of (26).
Then we get that

(29) Saobo (T1,22) < Say by (T1,22) (21,22 € RY).

Thus, by Theorem 4, the inequality ag + by < a; + b; holds. Analogously,
we can obtain ag + by < az + be. These inequalities together with (28)
vield (13)(ii).

To obtain (13)(iii), we show first that

(30) min{ap, bo} < min{aq, b1, az,bs}.

In the case min{ag, by} < 0, (30) is obvious because the right hand side is
nonnegative. In case of min{ag,bp} > 0, (29) and Theorem 4 yield

min{ag, by} < minf{ay,b;}.
Similarly
min{ag, by} < min{asg, by }.
Hence (30) is valid.
To complete the proof, we have only to show that min{ag, by} < 1.
On the contrary, suppose that ag, by > 1. We know, by (30), that in this

case aj, by, as,by > 1 (and consequently ay, by, as, be > 0). Taking the limit
y1 — 0 in (12) and applying Lemma 5, we obtain

Saobo (1,72 +Y2) < Say by (T1,22) +y2 (1, 22,92 € Ry).
Thus

(31)  lim (Sage (@1, 22 +Y2) — Y2) < Saypy (21, 22) (21,22 € Ry).

Y2 — 00
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By Lemma 6, the limit of the left hand side is xo, that is,
T2 S Sal,bl (mlv .TQ),

for all positive 1 and x5. If 1 < 22, then the inequality obtained contra-
dicts the mean value property of S, .
Thus the proof of Theorem 2 is completed.

Using the ideas followed in the paper, one can get the following gen-
eralization of Theorem 2.

Theorem 5. Let k > 2 and ag,ay,...,ag,bg,b1,...,bp € R. Then
Sambo(xl + Xk) < Sahbl (Xl) + Sakybk(xk) (Xl’ S XE € Ri—)
holds if and only if

(1) al,...,ak,bl,...,bkzO,
(i) max{1,ap + bo} < min{ay + b1,...,ar + b},

(iii) min{ag, b} < min{l,ay,by,...,ax,bx}.
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