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Equality of Cauchy mean values

By LÁSZLÓ LOSONCZI (Kuwait)

Abstract. The Cauchy Mean Value Theorem for divided differences (see e.g. [2])
states the following:

Suppose that x1 ≤ · · · ≤ xn and f (n−1), g(n−1) exist, with g(n−1) 6=0, on [x1, xn].
Then there is a t ∈ [x1, xn] (moreover t ∈ (x1, xn) if x1 < xn) such that

[x1, . . . , xn]f

[x1, . . . , xn]g
=

f (n−1)(t)

g(n−1)(t)

where [x1, . . . , xn]f denotes the divided difference of f at the points x1, . . . , xn.

If the function f(n−1)

g(n−1) is invertible then

t =

 
f (n−1)

g(n−1)

!−1 �
[x1, . . . , xn]f

[x1, . . . , xn]g

�
is a mean value of x1, . . . , xn. It is called the Cauchy mean of the numbers x1, . . . , xn

and will be denoted by Df,g(x1, . . . , xn).
Here we solve the equality problem of Cauchy means for n ≥ 3 i.e. we solve the

functional equation

Df,g(x1, x2, . . . , xn) = DF,G(x1, x2, . . . , xn) (x1, x2, . . . , xn ∈ I)

under differentiability conditions.

1. Introduction

As it is well known, the Cauchy mean value theorem of the differential
calculus states the following.
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If f , g are continuous real functions on [x1, x2] which are differentiable
in (x1, x2), and g′(u) 6= 0 for u ∈ (x1, x2) then there is a point t ∈ (x1, x2)
such that

f ′(t)
g′(t)

=
f(x2)− f(x1)
g(x2)− g(x1)

.

Assuming now that f ′

g′ is invertible we get

t =
(

f ′

g′

)−1 (
f(x2)− f(x1)
g(x2)− g(x1)

)
.

This number t is called the Cauchy mean value of the numbers x1, x2 and
will be denoted by t = Df,g(x1, x2).

It is possible to define the Cauchy mean value for several variables.
To do so we need a mean value theorem for divided differences.

For a function f : I → R, I being a real interval, the divided differ-
ences of f on distinct points xi ∈ I are usually defined inductively by

[x1]f := f(x1),

[x1, . . . , xn]f :=
[x1, . . . , xn−1]f − [x2, . . . , xn]f

x1 − xn
(n = 2, 3, . . . )

(see e.g. Aumann and Haupt [1] §3.17, their expression contains an extra
factor n− 1 on the right).

This definition must be modified if two or more points of [x1, . . . , xn]f
coincide: if at most r points xi coincide, the definition is then framed on
the assumption that f is (r−1)-times differentiable on I. In the case n = 2
for example we obtain

[x1, x2]f :=





f(x1)− f(x2)
x1 − x2

(x1 6= x2),

f ′(x1) (x1 = x2).

A full definition, as the ratio of two determinants, can be found in Schu-

maker [7].
Some basic properties of the divided differences are as follows:

(1) A divided difference [x1, . . . , xn]f is independent of the order of its
arguments x1, . . . , xn.
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(2) The second line of the above inductive definition remains valid pro-
vided only that x1 6= xn.

(3) A divided difference is a linear functional, i.e. we have

[x1, . . . , xn]af+bg = a[x1, . . . , xn]f + b[x1, . . . , xn]g

for arbitrary constants a, b and arbitrary (suitably differentiable) func-
tions f, g.

(4) (Mean value theorem) If f is (n − 1)-times differentiable on I and
xi ∈ I (i = 1, . . . , n), then there is a t between the smallest and
largest xi (strictly between if the xi are not all the same) such that

[x1, . . . , xn]f =
f (n−1)(t)
(n− 1)!

.

(5) The “Leibniz rule” for divided differences

[x1, . . . , xn]fg =
n∑

i=1

[x1, . . . , xi]f · [xi, . . . , xn]g.

(6) The rule of adding an extra point to a divided difference:

[x2, . . . , xn]g = [x1, . . . , xn]h, h(x) := (x− x1)g(x).

(7) Differentiation with respect to a singly-occurring entry results in a
repetition of that entry

d

dxk
[x1, . . . , xn]f = [x1, . . . , xn, xk]f (k = 1, . . . , n).

(8) If f (n−1) is continuous then [x1, . . . , xn]f is a continuous function of
(x1, . . . , xn).

(9) If f is analytic then [x1, . . . , xn]f is analytic in (x1, . . . , xn).

The following mean value theorem (the Cauchy mean value theorem
for divided differences) is due to Leach and Sholander [2] (see also
Rätz and Russell [6], Páles [4], [5]).
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Theorem LS. Let x1 ≤ · · · ≤ xn and assume that f (n−1), g(n−1)

exist, with g(n−1)(u) 6= 0, on [x1, xn]. Then there is a t ∈ [x1, xn] (moreover

t ∈ (x1, xn) if x1 < xn) such that

[x1, . . . , xn]f
[x1, . . . , xn]g

=
f (n−1)(t)
g(n−1)(t)

.

Supposing that the function u → f(n−1)(u)
g(n−1)(u)

is invertible we get that

t =
(

f (n−1)

g(n−1)

)−1 (
[x1, . . . , xn]f
[x1, . . . , xn]g

)

is a mean value of x1, . . . , xn which, by property (1), is symmetric in its
variables. It is called the Cauchy (or difference) mean of the numbers
x1, . . . , xn and will be denoted by Df,g(x1, . . . , xn). This mean value was
first defined and examined by Leach and Sholander [2] (they called it
extended (f, g) mean of x1, . . . , xn).

The aim of this paper is to solve the functional equation (the equality
problem of Cauchy means)

Df,g(x1, . . . , xn) = DF,G(x1, . . . , xn) (x1, . . . , xn ∈ I)

if n ≥ 3 is fixed.
The equality problem of two variable Cauchy means is much harder

than the present one since for n = 2 the third derivative of the functional
equation does not give an independent equation. This problem is compa-
rable to the two variable equality problem for Gini means, solved by the
author [3].

2. The main result

Our main result is

Theorem 1. Suppose that I is a real interval, n ≥ 3 is a fixed natural

number,

(i) f, g, F,G : I → R are n + 2 times continuously differentiable on I,

(ii) g(n−1)(u) 6= 0, G(n−1)(u) 6= 0 for u ∈ I and

(iii) the functions f(n−1)

g(n−1) ,
F (n−1)

G(n−1) have non-vanishing first derivative on I.
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The functional equation

(1) Df,g(x1, x2, . . . , xn) = DF,G(x1, x2, . . . , xn) (x1, x2, . . . , xn ∈ I)

holds if and only if there exist constants α, β, γ, δ with αδ − βγ 6= 0 such
that for all x ∈ I

(2)
{

f (n−1)(x) = αF (n−1)(x) + βG(n−1)(x)

g(n−1)(x) = γF (n−1)(x) + δG(n−1)(x)

is satisfied.

Remark 1. The conditions (ii) and (iii) impose further restrictions on
the constants α, β, γ, δ which we do not specify here.

Remark 2. We need to assume (1) only for the values x1, x2 ∈ [x− ε,
x + ε] ∩ I, x3 = · · · = xn = x for all x ∈ I where ε is a positive number.

Remark 3. Condition (iii) implies that the functions f(n−1)

g(n−1) , F (n−1)

G(n−1) are
invertible on I. The derivative of either ratio cannot have both positive
and negative values by the intermediate value property of the derivative.
Any of these ratios is either positive or negative on I hence it is strictly
monotonic therefore invertible.

To prove the necessity of (2) we deduce a system of differential equa-
tions for the unknown functions f , g, F , G and solve it.

Our calculations will be simpler if we use an integral representation of
divided differences equivalent to the one given by Steffenson [8, p. 17]:

[x1, . . . , xn]f =
∫

Sn−1

f (n−1)(t) dµ

where

Sn−1 :=
{

µ = (µ1, . . . , µn−1) : µk ≥ 0, k = 1, . . . , n− 1 and
n−1∑
k=1

µk ≤ 1
}

is a simplex in Rn−1 and

t = xn +
n−1∑

k=1

µk(xk − xn) =
n−1∑

k=1

µkxk +

(
1−

n−1∑

k=1

µk

)
xn.

The corresponding formula in [8] uses the variables t1, . . . , tn, with
tk = 1−∑k

j=1 µj .
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Using this we have

(3) Df,g(x1, . . . , xn) =
(

f (n−1)

g(n−1)

)−1




∫
Sn−1

f (n−1)(t) dµ

∫
Sn−1

g(n−1)(t) dµ


 .

First we calculate some partial derivatives of Df,g. Suppressing the de-
pendence from f, g let us introduce the simplified notation

M(x1, x2, . . . , xn) = Df,g(x1, x2, . . . , xn) = h−1 (R(x1, x2, . . . , xn))

where h = f(n−1)

g(n−1) , R = K
L ,

K(x1, x2, . . . , xn) =
∫

Sn−1

f (n−1)

(
xn +

n−1∑

k=1

µk(xk − xn)
)

dµ,

L(x1, x2, . . . , xn) =
∫

Sn−1

g(n−1)

(
xn +

n−1∑

k=1

µk(xk − xn)
)

dµ

and µ = (µ1, . . . , µn−1).
Let us denote the partial derivatives of M(x1, x2, . . . , xn) with respect

to x1, x1x1 etc. at the point (x, x, . . . , x) by Mx1 ,Mx2
1

etc. respectively.
Then we have

Lemma 1. Suppose that (i), (ii), (iii) and (1) hold then we have

nMx1 = 1,

n2(n + 1)
n− 1

Mx2
1

=
h′′

h′
+ 2

g(n)

g(n−1)
,

n3(n + 1)(n + 2)Mx2
1x2

= (n2 − 3n− 2)
h′′′

h′
+ (−n2 + n + 6)

(
h′′

h′

)2

+ (−6n + 12)
h′′

h′
g(n)

g(n−1)
+ (−2n2 + 2n + 12)

(
g(n)

g(n−1)

)2

+ (2n2 − 8n)
g(n+1)

g(n−1)

where all derivatives of h, g are taken at the point x.
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Proof. We start with the formulae

Mx1 =
(
h−1

)′
(R)Rx1 ,

Mx2
1

=
(
h−1

)′′
(R)R2

x1
+

(
h−1

)′
(R)Rx2

1
,

Mx2
1x2

=
(
h−1

)′′′
(R)Rx2R

2
x1

+ 2
(
h−1

)′′
(R)Rx1Rx1x2

+
(
h−1

)′′
(R)Rx2Rx2

1
+

(
h−1

)′
(R)Rx2

1x2

where R and its partial derivatives Rx1 , Rx2 etc. are taken at the point
(x, x, . . . , x). Since

(
h−1

)′
=

1
h′(h−1)

,

(
h−1

)′′
= − h′′(h−1)

(h′(h−1))3
,

(
h−1

)′′′
= − h′′′(h−1)

(h′(h−1))4
+ 3

(h′′(h−1))2

(h′(h−1))5

we have

(4)





Mx1 =
1
h′

Rx1 ,

Mx2
1

= − h′′

(h′)3
R2

x1
+

1
h′

Rx2
1
,

Mx2
1x2

=
(
− h′′′

(h′)4
+ 3

(h′′)2

(h′)5

)
Rx2R

2
x1

− h′′

(h′)3
(
2Rx1Rx1x2 + Rx2

1
Rx2

)
+

1
h′

Rx2
1x2

where the derivatives of h have to be taken at h−1(R(x, x, . . . , x)) =
M(x, x, . . . , x) = x.

As R = K
L , the derivatives Rx1 , Rx2 , Rx2

1
, Rx1x2 , Rx2

1x2
are rational

functions of K, L and their partial derivatives. For example

(5) Rx2
1

=
Kx2

1
L2 −KLLx2

1
− 2Kx1LLx1 + 2KL2

x1

L3



224 László Losonczi

Using the integral formulae of Section 2 and differentiating behind the
integral sign (k times with respect to x1 and l times with respect to x2)
we have

Kxk
1xl

2
(x, x, . . . , x) = f (n+k+l−1)(x)

∫

Sn−1

µk
1µl

2 dµ.

It is easy to check that for any continuous function p

∫

Sn−1

p(µ1, µ2) dµ =

1∫

0

1−µ1∫

0

· · ·
1−µ1−···−µn−2∫

0

p(µ1, µ2) dµn−1 . . . dµ2 dµ1

=

1∫

0

1−µ1∫

0

p(µ1, µ2)
(1− µ1 − µ2)n−3

(n− 3)!
dµ2 dµ1.

Hence we obtain that

K(x, x, . . . , x) =
f (n−1)(x)
(n− 1)!

, Kx1(x, x, . . . , x) =
f (n)(x)

n!
,

Kx2(x, x, . . . , x) =
f (n)(x)

n!
, Kx1x2(x, x, . . . , x) =

f (n+1)(x)
(n + 1)!

,

Kx2
1
(x, x, . . . , x) = 2

f (n+1)(x)
(n + 1)!

, Kx2
1x2

(x, x, . . . , x) = 2
f (n+2)(x)
(n + 2)!

.

We obtain analogous expressions for L and its derivatives. Substitut-
ing these and f (n−1) = hg(n−1), f (n) = h′g(n−1) + hg(n) etc. into (5) we
obtain that

Rx2
1

=
2

n(n + 1)
h′′ +

2(n− 1)
n2(n + 1)

h′
g(n)

g(n−1)
.

In a similar way we find that

Rx1 = Rx2 =
1
n

h′,

Rx1x2 =
1

n(n + 1)
h′′ − 2

n2(n + 1)
h′

g(n)

g(n−1)
,
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Rx2
1x2

=
2

n(n + 1)(n + 2)
h′′′ − 2n2 − 8n

n3(n + 1)(n + 2)

(
h′′

g(n)

g(n−1)
+ h′

g(n+1)

g(n−1)

)

+
−2n2 + 2n + 12
n3(n + 1)(n + 2)

h′
(

g(n)

g(n−1)

)2

.

Substituting these expressions into (4) we obtain the statement of Lem-
ma 1.

The calculations presented in Lemma 1 were partially checked by the
software package Maple V. ¤

Lemma 2. Suppose that (i), (ii), (iii) and (1) hold then for all u ∈
J := {H(x) : x ∈ I} we have

h̃′′(u)
h̃′(u)

+ 2
g̃′(u)
g̃(u)

= 2
G̃′(u)
G̃(u)

(6)





(n2 − 3n− 2)
h̃′′′(u)
h̃′(u)

+ (−n2 + n + 6)

(
h̃′′(u)
h̃′(u)

)2

+(−6n + 12)
h̃′′(u)
h̃′(u)

g̃′(u)
g̃(u)

+(−2n2 + 2n + 12)
(

g̃′(u)
g̃(u)

)2

+ (2n2 − 8n)
g̃′′(u)
g̃(u)

= (−2n2 + 2n + 12)

(
G̃′(u)
G̃(u)

)2

+ (2n2 − 8n)
G̃′′(u)
G̃(u)

(7)

where

(8) h̃ := h
(
H−1

)
, g̃ := g(n−1)

(
H−1

)
, G̃ = G(n−1)

(
H−1

)
.

Proof. By Lemma 1 the equation (1) implies that for all x ∈ I

h′′(x)
h′(x)

+ 2
g(n)(x)

g(n−1)(x)
=

H ′′(x)
H ′(x)

+ 2
G(n)(x)

G(n−1)(x)
(9)
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



(n2 − 3n− 2)
h′′′(x)
h′(x)

+ (−n2 + n + 6)
(

h′′(x)
h′(x)

)2

+(−6n + 12)
h′′(x)
h′(x)

g(n)(x)
g(n−1)(x)

+(−2n2 + 2n + 12)
(

g(n)(x)
g(n−1)(x)

)2

+(2n2 − 8n)
g(n+1)(x)
g(n−1)(x)

= (n2 − 3n− 2)
H ′′′(x)
H ′(x)

+ (−n2 + n + 6)
(

H ′′(x)
H ′(x)

)2

+(−6n + 12)
H ′′(x)
H ′(x)

G(n)(x)
G(n−1)(x)

+(−2n2 + 2n + 12)
(

G(n)(x)
G(n−1)(x)

)2

+(2n2 − 8n)
G(n+1)(x)
G(n−1)(x)

(10)

From (8) we obtain that

h̃′′

h̃′
=

1
H ′(H−1)

[
h′′(H−1)
h′(H−1)

− H ′′(H−1)
H ′(H−1)

]
,

h̃′′′

h̃′
=

1
(H ′(H−1))2

[
h′′′(H−1)
h′(H−1)

− 3
h′′(H−1)
h′(H−1)

H ′′(H−1)
H ′(H−1)

−H ′′′(H−1)
H ′(H−1)

+ 3
(

H ′′(H−1)
H ′(H−1)

)2
]

,

g̃′′

g̃
=

1
(H ′(H−1))2

[
g(n+1)(H−1)
g(n−1)(H−1)

− g(n)(H−1)
g(n−1)(H−1)

H ′′(H−1)
H ′(H−1)

]
,

G̃′′

G̃
=

1
(H ′(H−1))2

[
G(n+1)(H−1)
G(n−1)(H−1)

− G(n)(H−1)
G(n−1)(H−1)

H ′′(H−1)
H ′(H−1)

]
.

Substituting these expressions into (6) and (7), multiplying the first equa-
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tion by H ′(H−1) the second by
(
H ′(H−1)

)2 we obtain, after some calcu-
lations, exactly (9) and (10) at the point x = H−1(u). We remark that in
case of (7) we have to use, during the calculations, also (9). This shows
that (6), (7) and (9), (10) are equivalent by the transformation (8) (and
its inverse), proving Lemma 2. ¤

Now we can prove our main result.

Proof. Necessity. If (1) holds then by Lemma 2 (6) and (7) are
satisfied. We shall solve this system of equations. Using (6) we get

G̃′′

G̃
=

(
G̃′

G̃

)′

+

(
G̃′

G̃

)2

=

(
h̃′′

2h̃′
+

g̃′

g̃

)′

+

(
h̃′′

2h̃′
+

g̃′

g̃

)2

=
1
2

h̃′′′

h̃′
− 1

4

(
h̃′′

h̃′

)2

+
h̃′′

h̃′
g̃′

g̃
+

g̃′′

g̃
.

Substituting this into (7) we obtain that

(11) 2
h̃′′′

h̃′
− 3

(
h̃′′

h̃′

)2

= 0.

With the notation w(u) = h̃′′(u)

h̃′(u)
(u ∈ J) we can rewrite the last equation

in the form
2w′ − w2 = 0.

The solutions of this separable equation are w(u) = − 2
u+c where c is an

arbitrary constant and w(u) = 0. From

h̃′′(u)
h̃′(u)

= (ln |h′(u)|)′ = w(u) =




− 2

u + c

0

by integration

(12) h̃(u) =





e

u + c
+ d

au + b

=
Au + B

Cu + D
(u ∈ J)

where A, B, C, D are arbitrary constants.
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Rewriting equation (6) in the form

(
ln

∣∣∣∣∣
G̃(u)
g̃(u)

∣∣∣∣∣

)′

=
1
2

h̃′′(u)
h̃′(u)

=
1
2
w(u) =

{
− C

Cu + D
if C 6= 0

0 if C = 0

we get by integration that

(13)
G̃(u)
g̃(u)

=
P

Cu + D
(u ∈ J)

where P 6= 0 is a constant. From (12), (13) by h = f(n−1)

g(n−1) , H = F (n−1)

G(n−1)

and (8) we obtain that

f (n−1)(x)
g(n−1)(x)

=
AH(x) + B

CH(x) + D
=

AF (n−1)(x) + BG(n−1)(x)
CF (n−1)(x) + DG(n−1)(x)

,

G(n−1)(x)
g(n−1)(x)

=
P

CH(x) + D
=

PG(n−1)(x)
CF (n−1)(x) + DG(n−1)(x)

From the last equation

g(n−1)(x) =
C

P
F (n−1)(x) +

D

P
G(n−1)(x) = γF (n−1)(x) + δG(n−1)(x)

and using this

f (n−1)(x) =
A

P
F (n−1)(x) +

B

P
G(n−1)(x) = αF (n−1)(x) + βG(n−1)(x)

proving (2).

Here the constants have to satisfy αδ−βγ 6= 0 otherwise f(n−1)

g(n−1) would
be a constant and not invertible.

To prove the sufficiency of (2) we notice that

h =
f (n−1)

g(n−1)
=

αF (n−1) + βG(n−1)

γF (n−1) + δG(n−1)
=

αH + β

γH + δ

h−1(u) = H−1

(
δu− β

α− γu

)
.therefore
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Thus, using the representation (2) we get with u = K
L

Df,g(x1, x2, . . . , xn) = h−1(u) = H−1

(
δ K

L − β

α− γ K
L

)
= H−1

(
δK − βL

αL− γK

)

and

δK − βL

αL− γK
=

∫
Sn−1

(δf (n−1)(t)− βg(n−1)(t))dµ

∫
Sn−1

(αg(n−1)(t)− γf (n−1)(t))dµ
=

∫
Sn−1

F (n−1)(t) dµ

∫
Sn−1

G(n−1)(t) dµ
.

Hence

Df,g(x1, x2, . . . , xn) = H−1




∫
Sn−1

F (n−1)(t) dµ

∫
Sn−1

G(n−1)(t) dµ




= DF,G(x1, x2, . . . , xn). ¤

3. Closing remarks

It is worth to specify our result for n = 3 since in this case the
regularity conditions of Theorem 1 are the weakest.

Theorem 2. Suppose that I is a real interval,

(i) f, g, F,G : I → R are five times continuously differentiable,

(ii) g′′(u) 6= 0, G′′(u) 6= 0 and

(iii) the functions f ′′

g′′ ,
F ′′
G′′ have non-vanishing first derivative on I.

The functional equation

(14) Df,g(x1, x2, x3) = DF,G(x1, x2, x3) (x1, x2, x3 ∈ I)

holds if and only if there exist constants α, β, γ, δ with αδ − βγ 6= 0 such
that for all x ∈ I

(15)
f ′′(x) = αF ′′(x) + βG′′(x)

g′′(x) = γF ′′(x) + δG′′(x)

is satisfied.
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Since (15) implies (2) it follows that if two Cauchy means are equal
for n = 3 variables then they are equal for n ≥ 3 variables too (provided
that conditions (i)–(iii) of Theorem 1 and Theorem 2 are satisfied).

If two Cauchy means are equal for n = 3 variables then they are equal
for n = 2 variables as well if we assume the additional conditions

{
f ′(c) = αF ′(c) + βG′(c)

g′(c) = γF ′(c) + δG′(c)

at some point c ∈ I (and the existence of the two variable Cauchy means).
Namely these, together with (15) ensure the validity of (2) (hence also (1))
for n = 2.
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