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Transversal Cartan chains in a real hyperquadric

By Y. VILLARROEL (Caracas)

Abstract. Let Φ be an hermitian quadratic form, of maximal rank and index
(n, 1), defined over a complex (n + 1) dimensional vector space V .

Consider the real hyperquadric defined in the complex projective space P nV by

Q = {[ζ] ∈ P nV : Φ(ζ) = 0}.
Let G be the subgroup of the special linear group which leaves Q invariant, and

D the (2n− 2) distribution defined by the Cauchy-Riemann structure induced over Q.
We shall study the induced G action on the manifold C2Q of contact elements

of order two and dimension one, proving that the Cartan chains transversal to D are
solutions of a differential system defined as a submanifold of C2Q. This gives a char-
acterization of the transversal Cartan chains as curves whose second order contact
elements are singular at all their points.

Moreover, we prove that the Cartan chains are orbits of order 1, induced by the
action of a closed subgroup K of G on Q.

1. Introduction

A Cauchy Riemann structure, or an almost complex structure, on a
smooth (2n − 1)-dimensional manifold is defined by a distribution D of
(2n− 2)-dimensional tangent spaces, together with a linear operator I on
each subspace D, such that I2 = −1. A codimension 1 real submanifold
of a complex analytic manifold has a Cauchy Riemann structure induced
by the complex structure.
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These structures were first studied by Poincaré [8], while seeking
to generalize Riemann’s conformal transformation theorem for domains
in Cn, n ≥ 1. Later, Elie Cartan [2] considered the special case n = 2
and introduced the notion of chains, which are certain curves defined by
second order ordinary differential equations. These chains were to play a
fundamental role in the study of Cauchy Riemann structures.

The objective of this work is to give a coordinate-free characterization
of Cartan chains in a hyperquadric Q. We use the induced action of the
group G of automorphisms of the quadric on the manifold C2Q of second
order contact elements of Q [11].

We shall define a generalized Frobenius system [10] generated by the
singular orbits in C2Q, proving that the Cartan chains transversal to the
distribution D are solutions of this system.

This gives a characterization of these chains as curves whose second
order contact elements are singular at all their points.

Moreover, we prove that there exists a closed subgroup K ⊂ G such
that, the Cartan chains are orbits of order 1, [12], induced by the action
of K on Q.

2. The real hyperquadric

Let Φ be a hermitian quadratic form of maximal rank and index (n, 1),
defined over a (n + 1) vector space V . There is a basis {fα} of V , such
that Φ is given as

Φ(ζ) = ζαζα + i(ζnζ0 − ζnζ0), ζ ∈ V,

and the matrix of its representation is

A =




0 0 i

0 In−1 0
−i 0 0


 .

If 〈 , 〉 denotes the bilinear form associated with Φ, then we have

〈ζ, ν〉 = t(ν̄)A(ζ) for ζ, ν ∈ V,

where (ν) is the (n + 1) matrix of the components of ν in the basis {fα}.
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Let G ⊂ SL(n + 1,C) be the subgroup which leaves Φ invariant. If
we represent g ∈ G in the standard basis by the matrix (gα

γ ), 0 ≤ α, γ ≤ n

and its column vector by gγ , then

g ∈ G ⇔ (Φ ◦ g)(ζ) = Φ(ζ)

⇔ tζ̄ = tḡAgζ = tζ̄Aζ ⇔ (〈gγ , gα〉) = A.

Hence, for 0 ≤ γ ≤ n, 1 ≤ α, β ≤ n−1, the following relations are satisfied:

〈g0, gγ〉 = −iδγ
n, 〈gβ , gα〉 = −δα

β ,

〈gn, gγ〉 = iδγ
0 , det g = 1.

The Lie algebra G of G is given by

G =





` ∈ TeG : ` =




`00 `01 . . . `0n−1 `0n
`10 −i`01
... (`α

β )
...

`n−1
0 −i`0n−1

`n
0 i`10 . . . i`n−1

0 −`00




;

`α
β + `β

α = 0,

tr ` = 0,

`0n, `n
0 ∈ R





.

The canonical form ω over G, with components ωα
γ with respect to the

standard basis Iα
γ ∈ G(n + 1,C), satisfies the relations

ωx(v) =
n∑
0

ωα
γx(v)Iα

γ , for v ∈ TxG; dωα
β + ωα

γ ∧ ωγ
β = 0.

Let Q be the (2n − 1)-dimensional real hyperquadric, defined in the
complex projective space PnV by the equation

Q = {[ζ] ∈ PnV, Φ(ζ) = 0}.

The group G acts on PnV by g · [ζ] = [g ·ζ], and the quadric Q is invariant
by the action of G on PnV . Moreover, G acts transitively on Q, see [4].

Now, given p0 = [(1, 0, 0)], the isotropy group G0 at p0 is

G0 = {g ∈ G : gα
0 = 0, 1 ≤ α ≤ n},
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and its Lie algebra G0 is given by

G0 =





` ∈ G : ` =




`00 . . . `0n

0 (`α
β )

...
0 0 −`00








.

The map ψ0 : g ∈ G 7→ g · p0 ∈ Q defines an isomorphism: G/G0 ' Q.

The Cartan forms {ωα
0 } of the group G vanish on TeG

0, allowing us
to define a basis {ω̃α

0 } of T ∗p0
Q as follows (see [3]):

Given ṽ ∈ Tp0Q, let ω̃α
0 (ṽ) = ωα

0 e(ve), where v ∈ G and Teψ
0
e(v) = ṽ.

These forms are well defined, since for u, v ∈ G

Teψ
0
e(ue) = Teψ

0
e(ve) ⇔ Teψ

0
e(ue − ve) = 0 ⇔ ue − ve ∈ TeG

0 ' G
⇔ ωα

0 e(ue − ve) = 0,

and so ω̃α
0 (ũ) = ω̃α

0 (ṽ).
Since the dimension of T ∗p0

Q is 2n− 1, the forms {ω̃α
0 } define a basis

of T ∗p0
Q.

Now, the Lie algebra G0 acts on T ∗Q and its coordinate expression is
given by the following

Proposition 1. The Lie algebra G0 acts on T ∗p0
Q as follows:

(`, ω̃) ∈ G0 × T ∗p0
Q → ` · ω̃,

where ` · ω̃(ṽ) = −dω |e (`e, ve) with v ∈ G, Teψ
0(ve) = ṽ,

and is given in coordinates as:

` · ωα
0 = `γ

αωγ
0 + (−`00 + `α

α)ωα
0 − i`0αωn

0 , 1 ≤ α, γ ≤ n− 1.

` · wn
0 = −2Re `0nwn

0 , γ 6= α.

Proof. Let us write

`.ωα
0 =

(
aβ
0 + ibβ

0

)
ωβ

0 + cωn
0 , aβ

0 , bβ
0 ∈ <,
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and consider a basis of vectors in TeG dual to the basis ωα
0 . Applying `.ωα

0

to such a basis, and using the relation

ωx(v) =
n∑
0

ωα
γx(v)Iα

γ v ∈ TxG, dωα
β + ωα

γ ∧ ωγ
β = 0,

we obtain the result. ¤

We observe that the subspace Dp0 ⊂ Tp0 = Q defined by ω̃u
0 = 0 is

invariant by G0, since G0 transforms ωu
0 in a multiple of itself, and G0 is

connected.
The transitivity of the action of G on Q allows us to define a (2n−2)-

dimensional distribution over Q, as follows:

D : p ∈ Q → (lg)∗(Dp0), where g ∈ G and lg(p0) = g · p0 = p.

To study the real curves in Q, it is natural to consider two cases:
the curves tangent to the distribution D at all its points, and the curves
transversal to D at all its points. In this paper we consider the Cartan
chains transversal to D. We will use the following theorem about Lie
groups [1]:

Let G be a Lie group that acts on a smooth manifold M and G its
Lie algebra. Let χ(M) denote the smooth (C∞) vector fields on M , and
let F be the map

F : G −→ χ(M), ` 7−→ F`, with F`(x) =
d

dt
|t=0 (exp((t`)ẋ)),

then [1] we have:
a) The integral curve y(x) of the field F` at the point x ∈ M is

contained in the orbit G(x) of x.
b) The action of G on M is transitive if and only if for each x ∈ M

and for any v ∈ TxM there exists ` ∈ G such that F`(x) = v.

3. Orbits of contact elements of Q

Two imbedded submanifolds Γ, Γ1 ⊂ Q of dimension one have contact
of order s ≥ 1 at q ∈ Γ ∩ Γ1, if there exist local parametrizations of Γ and
Γ1 given by imbeddings

γ, γ1 : U ⊂ R→ Q,
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and a local coordinate system (V, (x, yj)), 1 ≤ j ≤ 2n− 1 such that:
i) γ(0) = γ1 = (0)q,
ii) x ◦ γ = x ◦ γ1 = r is the canonical coordinate in R,
iii) the partial derivates at 0 of (yj ◦ γ) and (yj ◦ γ1) are equal up to

order s.
The equivalence class of contact elements of order s and dimension

one at q ∈ Γ is called a contact element of order s at q ∈ Γ.
Clearly, C1

q Γ = C1
q Γ1 if and only if TqΓ = TqΓ1.

Let Cs
qQ be the manifold of contact elements of order s and dimen-

sion 1 at q ∈ Q, and CsQ the manifold of all contact elements Cs
qQ with

q ∈ Q (see [5], [6], [11]).
Consider the canonical projection

πs
k : CsQ → CkQ, Cs

qΓ 7→ Ck
q Γ, k ≤ s,

and the canonical immersions

is : Γ −→ CsQ, q ∈ Γ 7→ Cs
qΓ,

i1,s : Cs+1Q → C1(CsQ), Cs+1
q Γ 7→ C1

Cs
qΓCsΓ.

The action α : G×Q → Q, α(g, q) = g.q induces an action

αs : G× CsQ → CsQ, g.Cs
qΓ = Cs

g.qg.Γ.

Let H1 be the fiber of the contact elements of order 1 transversal to D
which project onto p0, i.e.

H1 =
{
X1 ∈ C1

p0
Q : ω̃n

0 |X1 6= 0
}

,

where ω̃n
0 |X1 denotes the restriction of ω̃n

0 to the 1-dimensional subspace
defined by the contact element X1.

Consider on H1 the following coordinates, defined as in [7]:

ω̃α
0 |X1 = λα

0 ω̃n
0 |X1, λα

0 ∈ C, 1 ≤ α ≤ n− 1,

and express X1 in coordinates as

X1 = (λ1
0 . . . λn−1

0 ).

Denote by C̃1Q all the contact elements of order 1, transversal to D.



Transversal Cartan chains in a real hyperquadric 259

Proposition 2. The group G acts transitively on C̃1Q.

Proof. Since the action of G on Q is transitive, it is sufficient to
prove that the action of G0 on C̃1

p0
Q, the contact elements of order 1

transversal to D which project onto p0, is transitive. Now, given X ∈
C̃1

p0
Q, we have (see [11]),

F 0
` (X) =

(
n−1∑
γ=2

`γ
1λγ

0 +
(−`00 + `11 + 2 Re `00

)
λ1

0 − i`01

)
∂

λ1
0

∣∣∣
X

+ · · ·

· · ·+
(∑

γ 6=α

`γ
αλγ

0 +
(−`00 + `α

α + 2Re `00
)
λα

0 − i`0α

)
λn−1

0

∂

∂λα
0

∣∣∣
X

+ · · ·

· · ·+
(

n−2∑
γ=1

`γ
n−1λ

γ
0 +

(−`00 + `n−1
n−1 + 2Re `00

)− i`0n−1

)
∂

λ1
n−1

∣∣∣
X

.

So we can choose `1, . . . , `n−1 ∈ G0 such that
{

F 0
`1(X), . . . , F 0

`n−1
(X)

}

generate TXH1, hence G0 acts transitively on H1. ¤

Corollary 1. Let X1 ∈ C̃1
p0

Q, and G1 the Lie algebra of the isotropy

group G1 ⊂ G0 of X1; then

C̃1Q ' G/G1.

Proof. The orbit

G ·X1 = O1 ' C̃1Q,

is diffeomorphic to G/G1. ¤

Proposition 3. Let X1
0 ∈ C̃1

p0
Q be defined in coordinates as follows:

ωn
0 |X1

0 6= 0, ωα
0 |X1

0 = 0, 1 ≤ α ≤ n− 1;

then the Lie algebra G1 of the isotropy group G1 ⊂ G0 of X1
0 is given by

G1 =
{
` ∈ G0 : `01 = · · · = `0n−1 = 0

}
,
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i.e.

G1 =



` =




`00 0 `0n
0 (`α

β ) 0
0 0 −`00


 ; `α

β + `β
α = 0, tr ` = 0



 .

Proof. We have

F 0
` (X1

0 ) = 0 ⇔ `01 = · · · = `0α = · · · = `0n−1 = 0. ¤

The forms {
ωα

0 , ωn
0 , ω0

α

}
,

vanishing on G1, define 4n − 3 linearly independent real forms. These
forms can be projected onto TX1

0
O1, and the projected forms, denoted by

{
ω̃α

0 , ω̃0
α, ω̃n

0

}
,

define a basis of T ∗
X1

0
O1 = T ∗

X1
0
C̃1Q.

Given ` ∈ G1, in [11] we proved that

`.ω̃0
α = −

∑

γ 6=α

`γ
αω̃0

α +
(
`0α − `α

α

)
ω̃0

α.

Now, the orbit O1 = G · X1
0 is principal ([1], [11]), and diffeomorphic

to G/G1.
Then, the forms

ωα
0 , ω0

α, ωn
0 ,

which vanish on G1, define 4n− 3 real forms, which are linearly indepen-
dent.

These forms can be projected on TX1
0
O1, using an argument similar

to (1.2). The projected forms give a basis of T ∗
X1

0
O1 = T ∗

X1
0
C̃1Q.

Let H2 be the fiber of the contact elements of order 2 which project
onto X1

0 . Let i : C2Q → C1(C1Q) be the canonical immersion, and

π1
0 : C1Q → Q, π1,1

0 : C1
(
C1Q

) → C1Q,
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the canonical projections. Then

i(H2) =
{
X2 ∈ C2

p0
Q : ω̃α

0 |X2 = 0, 2 ≤ α ≤ n− 1
}

.

Indeed, given X2
p ∈ C2

pQ the image

i(X2
p) ⊂ C1

X1
p
C1Q

can be identified with a 1-dimensional subspace in Tπ1,1
0 (X2

p)C
1Q.

Then (π1
0)∗i(X2

p) is identified with a subspace in TpQ.
The following can be verified using coordinates, see [13]:
If X1,1 ∈ C1(C1Q), then there exists X2 ∈ C2Q, i(X2) = X1,1

⇔ T
(
π1

0)(X1,1
)

= π1,1
0

(
X1,1

)
.

Consider coordinates in H2 defined as

X2 =
(
λ0

1, . . . , λ0
n−1

)
, where ω̃0

α|X2 = λ0
αω̃n

0 |X2.

Let C̃2Q be the contact elements of order 2, tranversal to D, which
project onto C̃1Q.

4. Singular orbits on second order contact elements of Q

The space C2Q, together with the action α2 of G, is a G-space. The
subspace

O = G(X) = {g(X) ∈ C2Q; g ∈ G}
is the orbit of X (under G).

If O is a G-orbit, then we let type (O) denote its type, that is, its
equivalence class under equivariant homeomorphisms.

Type (O) contains a coset space G/H, with H the isotropy group of G

at X. Moreover, type (G/H) = type(G/K) iff H and K are conjugate
in G.

The maximum orbit type of orbits in C2Q, guaranteed in [1, 3.1], is
called the principal orbit type, and orbits of this type are called principal
orbits. If O1 is a principal orbit and O2 is any orbit, then there is an
equivariant map O1 → O2.
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If O1 ' G/H and O2 ' G/K, then H is conjugate to a subgroup
of K and without loss of generality we may assume that H ⊂ K. Then
the equivariant maps

O2 → O1; G/H → G/K,

are fiber bundle projections with fiber K/H.
If

dimO2 > dimO1, i.e. dim K/H > 0,

then O2 is called a singular orbit.

Proposition 4. The orbit Ô2 by the action of G on C̃2Q, defined as

Ô2 = G.X̂2
0 , with π2

0

(
X̂2

0

)
= X1

0 , λ0
α(X̂2

0 ) = 0, 1 ≤ α ≤ n− 1,

is a singular orbit.

Moreover, if g2 is the Lie algebra of the isotropy group G2 ⊂ G1 of X̂2
0 ,

then

g2 = g1.

Proof. Since G0 acts transitively on C̃1Q, it is sufficient to prove
that

Ô2 = G1(X̂2
0 )

is a singular orbit by the action of G1 on H2.
Let F 1 : G1 → χ(H2) be defined as

F 1
` (X2) =

d

dt
|t=0 (exp (t`).X2) .

Using coordinates we have

F 1
` (X2) =

n−1∑
1

B0
α

∂

∂λ0
α

|X2 .

Now, given
X2 =

(
λ0

1, . . . , λ
0
n−1

)
and ` ∈ G1,

let r(t) = exp t`X2 be expressed in coordinates as

r(t) =
(
λ0

1(t), . . . , λ
0
n−1(t)

)
, where ω0

α|r(t) = λ0
α(t)ωn

0 |r(t).
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Deriving the last expression with respect to t at 0, we have

F 1
` (X2) =

(
−

∑

α 6=1

`α
1 λ0

α +
(−`00 + `11 − 2Re `00

)
λ0

1, . . . ,

−
∑

α 6=n−1

`α
n−1λ

0
α +

(−`00 + `n−1
n−1 − 2Re `00

)
λ0

n−1

)
.

Now, if λ0
α 6= 0 for some α, then we can find 2n− 2 vector fields

`1, . . . , `2n−2 ∈ G1,

such that {F 1
`j

(X2)} generates TX2H2, and we conclude that G1 acts tran-
sitively on the contact elements of order 2 with λ0

α 6= 0 for some α.
These elements can be represented as

Õ2 = G1(X2
0 ), with λ0

1(X
2
0 ) = 1, λ0

α(X2
0 ) = 0,

and so we have

F 1
` (X2

0 ) = 0 ⇔ −`00 + `11 − Re `00 − `12 = · · · = `1n−1 = 0, ` ∈ G1.

Therefore GX2
0
6= G1.

If λ0
α = 0, then for all α we have the element X̂2

0 , defined by π2
0(X̂2

0 ) =
X1

0 and λ0
α(X̂2

0 ) = 0.
We observe that

F 1
`

(
X̂2

)
= 0, ` ∈ G1.

Now GX2
0

= G1. ¤

Corollary 2. The map π2
1 : Ô2 → C̃1Q is a local inmersion.

Proof. Since g1 = g2, we see that G1 ⊂ G2 is open, moreover G1 is
connected and the group G acts transitively on C̃1Q, hence

π2
1 : Ô2 ∼= G/G2 → C̃1Q ∼= G/G1,

is a local immersion. ¤
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5. The Cartan chains

Elie Cartan [2] introduced the notion of chains, which are curves
defined by second order ordinary differential equations. These curves play
a role similar to that of lines in Euclidean space.

The Cartan chains are obtained as the intersection of complex pro-
jective lines with the hyperquadric.

In this section we shall prove that the orbit Ô2 defines a completely
integrable differential system on Q, and that the Cartan chains transversal
to D are solutions of this system.

Definition 1. By a differential system of order 2 and dimension 1 in M

we mean an imbedded submanifold W ⊂ C2Q [11].
A solution of a differential system W at X ∈ W is a 1-dimensional

imbedded submanifold Γ ⊂ Q with x = π2
0(X) ∈ Γ, such that C2Γ ⊂ W

and C2
xΓ = X.

An imbedded submanifold W ⊂ C2Q such that the following condi-
tions are satisfied:

1. π2
1 : W → C1Q; is a local inmersion in a neighborhood of X ∈ W ;

2. π3
2 : C1W ∩C2Q → W is a local submersion in a neighborhood of X;

defines a differential system with solution Γ ⊂ M passing through X

[10].

Let X2
0 be the contact element of order 2, defined in coordinates as

ω̃2
0 |X002 6= 0; ω̃α

0 |X2
0 = ω̃2

α|X2
0 = 0, 1 ≤ α ≤ n− 1.

Proposition 5. Let Γ(t) be the curve in Q defined in non-homogene-

ous coordinates as

Γ(t) = (1, 0, . . . , 0, t),

and g(t) the curve in G given by

g(t) =




1 0 0
0 In−1 0
t 0 1


 ,
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then

i) C2
p0

T = X2
0

ii) C2
Γ(t)T = g(t)X2

0 .

Proof. Consider the curve Γ(t) = (1, 0, . . . , 0, t) ⊂ Q which we iden-
tify with

[g(t)] =




1 0 0
0 In 0
t 0 1


 ⊂ G/G0 ∼= Q.

Let X2
0 = C2

p0
Γ, then

ω̃u
0 |X2

0 6= 0; ω̃α
0 |X2

0 = ω̃0
α|X2

0 = 0 1 ≤ α ≤ u− 1.

Moreover

g(t) ·X2
0 = g(t)C2

p0
Γ = C2

g(t)p0
g(t) = Γ = C2

Γ(t)Γ. ¤

Theorem 1. Let O2 be the orbit by the action of G on Q, defined as

O2 = G ·X2
0 ,

with ω̃n
0 |X2

0 6= 0; ω̃α
0 |X2

0 = ω0
α|X2

0 = 0 1 ≤ α ≤ n− 1,

then O2 is a completely integrable system.

Proof. The submanifold O2 is regularly immersed, because it is an
orbit of the G-action on C̃2Q.

Now, the map π2
1 : O2

0 → C1Q is a local inmersion; indeed by Propo-
sition 4, we have g1 = g2, and G1 ⊂ G2 is open. Moreover G1 is connected
and the group G acts transitively on G̃1Q, therefore

π2
1 : O2 ∼= G/G2 → C̃1Q ∼= G/G1

is a local inmersion, and Condition 1 of Theorem 2 is satisfied.
Let X2

p ∈ O2 and g ∈ G such that X2
p = g·X2

0 , then by Proposition 2.1
we have that the curve Γ = (t)g · g(t) · P0 satisfies

C2
Γ(t)Γ ⊂ O2,

C3
Γ(t)Γ ∩ C1O2 π3

2−→ C2
Γ(t)Γ = X2

p ,
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hence π3
2 is a local submersion in a neigborhood of X2

0 , and we obtain the
result. ¤

Theorem 2. Let Γ : J ⊂ R→ Q be a curve given by the intersection

of a complex projective line transversal to D with Q, then Γ is the solution

of the differential system defined by O2.

Proof. Let p0 = (1, 0, . . . , 0) ∈ V ; v0 = (0, . . . , 0, 1) ∈ Tp0V ;

P0 = [µp0 + λv0], µ, λ ∈ C.

It is clear that ωn
0 (π∗(v0)) = 1, and

Γ(t) = Q ∩ P0 = {[1, 0, . . . , 0, t)], t ∈ R},

expressed in non homogeneous coordinates as

Γ(t) = (1, 0, . . . , 0, t),

is the solution of the differential system defined by O2 with initial condi-
tion X2

0 .
From the uniqueness of the solution [10] and the transitivity of the

G action on the directions transversal to D, we obtain that a transversal
curve to D at p0 is singular, if and only if it is contained in a Cartan chain
transversal to D.

Let p̃ ∈ V , v ∈ ΓepV be such that

π(p̃) ∈ Q π∗(ṽ) = v /∈ Dp.

Let P = {[µp̃+λṽ], µλ ∈ C}. Since G acts transitively on C̃1Q, there
is a g ∈ G such that g · po = p, and (Lg)∗(v0) = v.

Now Lg−1(P ) is a projective line transversal to D at p0. Since Q is
G-invariant and Lg is an n diffeomorphism,

Lg−1(Q ∩ P ) = Q ∩ Lg−1P.

Therefore Q∩P is a solution ofO2 at p, whose tangent line at p is generated
by v.
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From the uniqueness of the solution of O2, we obtain that Γ = Q∩P

is the solution of O2 at P . ¤

Corollary 3. Given a point p ∈ Q and a line L ⊂ TpQ transversal

to D, there exists a unique Cartan chain tangent to L at P .

Let be given a homogeneous manifold M = G/H, and a closed sub-
group K ⊂ G. Let K(0) be the orbit of 0 = π(H) under the induced
action of K on G/H.

The order of the orbit K(0), defined in [9], can be given in terms of
contact elements as follows:

If Gs is the isotropy group of Cs
0K(0) by the action of G on CsK(0)

and gs its Lie algebra, then the first index s such that gs = gs+1 is the
order of the orbit K(0).

Corollary 4. The Cartan chains are orbits of order 1 induced by the

action of a closed subgroup K of G on G/H0.
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