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Class number problems for dicyclic CM-fields

By S. LOUBOUTIN (Caen) and Y.-H. PARK (Seoul)

Abstract. We prove that the least relative class number of dicyclic CM-fields of
degree 4p (p any odd prime) is equal to four and we determine all the dicyclic CM-
fields of relative class number four. This determination provides us (1) with interesting
examples of numerical computations of relative class numbers of non-abelian CM-fields
by using evaluations at s = 1 of Hecke L-functions over real quadratic fields for which
their Artin root numbers may be equal either to +1 or to −1, and (2) with interesting
illustrations of the use of our theorem on upper bounds of values at s = 1 of some abelian
Hecke L-functions. We also point out that Shintani’s method enables to understand
why relative class numbers of various types of CM-fields are always perfect squares.

1. Introduction

Let us fix some of the notation we will be using throughout this paper.
We let L denote a real quadratic number field and let AL, dL and χL denote
the ring of algebraic integers, the discriminant and the even primitive
Dirichlet character of conductor dL associated with L, respectively. We
let p ≥ 3 denote an odd prime and N a dicyclic number field of degree 4p,
i.e., N is a number field (considered as a subfield of the field of complex
numbers) such that the extension N/Q is a normal extension of degree
4p with Galois group the dicyclic group Q4p of order 4p defined by the
presentation Q4p = 〈a, b : a2p = 1, ap = b2, b−1ab = a−1〉. Note that
the centre Z(Q4p) = {1, ap} of Q4p has order 2. We let N+ denote the
subfield of N fixed by the cyclic subgroup generated by ap and M denote
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the subfield of N fixed by the cyclic subgroup generated by a2. We have
the following lattice of subfields:

N
N+

L

Q

M

2

p
p

2
2

N/Q dicyclic

N/L cyclic

M/Q cyclic quartic

N+/Q dihedral

The conductor FN+/L of the cyclic extension N+/L is given by FN+/L =
(f+) for some positive rational integer f+ ≥ 1 of the form

(1) f+ = pa
r∏

i=1

qi where a = 0 or a =





2 if p does not divide dL

1 if p ≥ 5 divides dL,

1 or 2 if p = 3 divides dL,

where the qi’s are primes not equal to p satisfying qi ≡ χL(qi) (mod p)
(see [Mar] and [LPL]). Notice that since M is cyclic then any prime which
divides dL is not equal to 3 modulo 4 and the latter occurence will never
happen. Recall that a number field E is called a CM-field if it is a quadratic
extension of its maximal totally real subfield E+. In that situation, the
class number hE+ of E+ divides the class number hE of E and h−E =
hE/hE+ is called the relative class number of E. If E has degree 2n then
we have

(2) h−E =
QEwE

(2π)n

√
dE

dE+

Ress=1(ζE)
Ress=1(ζE+)

= 2−nQEwE(ζE/ζE+)(0)

where dE and dE+ denote the absolute values of the discriminants of E

and E+, respectively. If E is a normal CM-field then complex conjugation
c is in the center Z(G) of its Galois group G ([LOO, Lemma 2]). Hence,
E+/Q is a normal extension. In particular, if N is a dicyclic CM-field
then c = ap and our present notation is consistent with the previous one
we used in our lattice of subfields. The motivation of this paper is to prove
the following result related to [Lou5, Theorem 7]:
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Theorem 1. Let N be a dicyclic CM-field of degree 4p, p any odd
prime. Then h−N ≥ 4. Moreover, h−N = 4 if and only if N = KM is one of
the following four dicyclic CM-fields of degree 12 where K is a non-normal
totally real cubic field of discriminant dK and M is an imaginary cyclic
quartic field of conductor fM :

PK(X) dK fM f+ M = Q
�√−αM

�
with hN+

X3 + X2 − 3X − 1 148 = 37 · 22 37 2 αM = 37 + 6
√

37 1

X3 − 10X − 10 1300 = 13 · 102 13 10 αM = 13 + 2
√

13 1

X3 + X2 − 7X − 2 1573 = 13 · 112 13 11 αM = 13 + 2
√

13 1

X3 − 12X − 14 1620 = 5 · 182 5 18 αM = 5 + 2
√

5 1

In that case, N+ = KL is a dihedral sextic field where L is the real

quadratic subfield of M.

Remark. For the four CM-fields N of degree 12 which appear in the
table above we have hN = h−NhN+ = 4. Since the extension N/K is cyclic
quartic, then according to [Lou1, Lemma 1] the ideal class group of N

cannot be cyclic. Hence, in these four cases the ideal class group of N is
of type (2, 2).

2. The least possible relative class number

Let p be an odd prime. A pure real dihedral number field of degree 2p

is a normal field F of degree 2p and of Galois group the dihedral group of
order 2p such that p is totally ramified in F/Q and such that p is the only
rational prime which is ramified in F/Q. Note that if there exists a pure
real dihedral field F of degree 2p then p ≡ 1 (mod 4) and Q(

√
p) is the

quadratic subfield of F . We now collect known results we will use to prove
that there is no dicyclic CM-field with relative class number less than 4:

Proposition 3.

1. (See [LOO, Theorem 5].) Let k ⊆ K be two CM-fields. If the degree

[K : k] of the extension K/k is odd, then h−k divides h−K .

2. (See [LO].) Let K be a CM-field. If t prime ideals of K are ramified

in K/K+ then 2t−1 divides h−K .

3. (See [LOO, Proposition 8].) Let N/M be a cyclic extension of CM-

fields of degree p an odd prime and assume that N+/M+ also is a
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cyclic extension of degree p. If T prime ideals of M+ split in M/M+

and are ramified in N+/M+ then pT−1h−M divides h−N .

4. (See [LOO, Proposition 9].) Let p ≡ 1 (mod 4) be a prime and let

εp = (up + vp
√

p)/2 > 1 be the fundamental unit of Q(
√

p). If p

does not divides vp, then there does not exist any pure real dihedral

number field of degree 2p.

5. (See [Mar].) Let F be a dihedral field of degree 2p, let L denote

its quadratic subfield, let χL denote the primitive quadratic Dirichlet

character associated with L and let q denote any rational prime. Then,

(a) q is not inert in F/Q.

(b) If q is ramified in L/Q, say (q) = Q2 in L, then either Q splits

completely in F/L or Q is totally ramified in F/L. In the latter

case, q = p.

(c) If q is different from1 p and if the prime ideals of L above q are

ramified in F/L then q ≡ χL(q) (mod p).

6. (See [Lou1].) Let M be an imaginary cyclic quartic field of conduc-

tor fM . Then h−M is odd if and only if fM = 16 or fM = q ≡ 5
(mod 8) is prime. Moreover, if h−M is odd then h−M ≡ 1 (mod 4),
hence we cannot have h−M = 3. Finally, h−M = 1 if and only if

fM ∈ {16, 5, 13, 29, 37, 53, 61}.

Proof. Only the last point needs a proof. If h−M is odd then accord-
ing to point 2 at most one prime ideal of M+ is ramified in M/M+, and
since M/Q is cyclic quartic, then at most one rational prime q is rami-
fied in M/Q. Conversely, if only one rational prime is ramified in M/Q

then hM is odd (see [Wa, Theorem 10.4(b)]), hence h−M is odd. Now, if
fM = 16 or if fM = 5 then h−M = 1. If fM = q ≡ 5 (mod 8) is not equal
to 5 and χM denotes any one of the two quartic Dirichlet characters mod-
ulo q associated with M , then 2q2h−M = a2 + b2 = NQ(i)/Q(a + bi) where
a + bi =

∑q−1
x=1 xχM (x) ∈ Z[i] (use [Wa, Theorem 4.17]): Since h−M is odd

we get h−M ≡ 1 (mod 4). ¤

1Note that we forgot to mention this restriction in [LOO, Lemma 4(ii)].
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Theorem 4. Let N be a dicyclic CM-field of degree 4p, p ≥ 3 a prime.

1. Assume that p ≡ 1 (mod 4) and L = Q(
√

p). Any rational prime

q 6= p which is ramified in N+/L satisfies q ≡ 1 (mod p) and splits in

L/Q. Therefore, if fM = p and N+ is not pure, then p divides h−N .

2. Assume that 2p does not divide h−N . Then we are in one of following

two situations:

(a) p ≡ 1 (mod 4), L = Q(
√

p), p is totally ramified in N+/Q and

if a prime q 6= p is ramified in M/Q then q splits completely in

L/Q. Therefore, either

4 divides h−M ,

or fM = p ≡ 5 (mod 8), h−M is odd, and if N+ is not pure then

p ≥ 5 divides h−N .

(b) fM = 16 or fM = q ≡ 5 (mod 8) is prime, and if q = p then p is

not totally ramified in N+/Q. In that situation 2p−1 divides h−N
and h−M is odd.

3. If h−N < 4 then h−M = 1 and N+ is a pure real dihedral field of degree

2p. Hence, we must have p ∈ {5, 13, 29, 37, 53, 61}.2 Therefore, we

always have h−N ≥ 4.

4. Assume that h−N = 4. Then, either

(a) p ≡ 1 (mod 4), L = Q(
√

p), p is totally ramified in N+, h−M = 4
and fM = p ·qa ∈ {5 ·29, 13 ·17, 17 ·4, 17 ·8, 29 ·5, 41 ·4, 73 ·3},

(b) or p = 3, h−M = 1 and fM = q ∈ {16, 5, 13, 29, 37, 53, 61}.
Proof.

1. Since q ≡ χL(q) (mod p) (Proposition 3, point 5) we do get χL(q) =
( q

p ) = (±1
p ) = +1 and q ≡ χL(q) = 1 (mod p). If fM = p then M is a

subfield of the cyclotomic field Q(ζp) and since q ≡ 1 (mod p) implies
that q splits completely in Q(ζp)/Q, we get that q splits completely
in M/Q and if N+ is not pure then pT−1 with T ≥ [M+ : Q] = 2
divides h−N (Proposition 3, point 3).

2. Assume that at least two rational primes q1 and q2 are ramified in
L/Q. We may assume that q2 6= p. Then the prime ideal of L lying
above q2 splits in N+/L (Proposition 3, point 5) and at least p + 1
ideals of N+ are ramified in N/N+ (the p ones above q2 and the

2Note that the possibility p = 61 was not taken care of in [LOO, Theorem 6(iii)].
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ones above q1) and 2p divides h−N (Proposition 3, point 2). Therefore,
L = Q(

√
q) for some prime q 6≡ 3 (mod 4).

First, assume that we are in case (a) and let q 6= p be ramified
in M/Q. If q were inert in L/Q then q would not be ramified in
N+/L (point 1) and would split completely in N+/L (Proposition 3,
point 5). Hence, at least p+1 ideals of N+ would be ramified in N/N+

(the p ones above q and the one above p) and 2p would divides h−N
(Proposition 3, point 2), a contradiction. Therefore, q splits in L/Q,
hence at least three prime ideals of L = M+ are ramified in M/M+

(those above q and the one above p) and 4 divides h−M (Proposition 3,
point 2). We then use Proposition 3, point 6, to complete the proof
of this case (a).

Second, assume that we are not in case (a). Then either q 6= p,
or q = p ≡ 1 (mod 4) and p is not totally ramified in N+/L. In both
cases the prime ideals of L above q split in N+/L and ramify in M/L,
hence at least p prime ideals of N+ ramify in N/N+ and 2p−1 divides
h−N . Since 2p does not divide h−N then q is the only prime ramified in
M/L and since M/Q is cyclic quartic q is the only prime ramified in
M/Q and according to Proposition 3, point 6, we do are in case (b).

3. Follows from point 2.

4. Use point 2 and the determination in [PK] of all the imaginary cyclic
quartic fields with relative class number 4. ¤

3. Lower bounds on relative class numbers

In the dicyclic case, we set ζN+/L = ζN+/ζL, ζN/L = ζN/ζL (both of
them being entire functions), rewrite (2) in the following form

(3) h−N =
QNwN

(2π)2p

√
dN

dN+

ζN/L(1)
ζN+/L(1)

.

To get lower bounds on h−N we need upper bounds on ζN+/L(1) and lower
bounds on ζN/L(1). For a CM-field N of degree 2n we set

(4) εN = max(ε′N , ε′′N ) where ε′N =
2
5

exp

(
− 2πn

d
1/2n
N

)
and ε′′N =1− 2πn

d
1/2n
N

.
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We have:

Proposition 5. Let N be a dicyclic CM-field of degree 4p, let L be

its real quadratic subfield and N+ is maximal totally real subfield. Let

χN+ be a character of order p generating the group of characters of or-

der p associated with the abelian extension N+/L and let f+ denote its

conductor.

1. (See [Lou2], [Lou3].) Set c = 2 + γ − log(4π) = 0.046 · · · where

γ = 0.577 · · · denotes Euler’s constant. Then,

Ress=1(ζL) ≤ (log dL + c)/2,

λL
def=

(
1 + log

(√
dL/4π

))
L(1, χL) + L′(1, χL) ≤ 1

8
log2 dL

and

ζN+/L(1) =
p−1∏

i=1

|L(1, χi
N+)| ≤ (Ress=1(ζL) log f+ + 2λL)p−1

.(5)

2. We have ζN/L(s) ≥ 0 for 0 < s < 1.

3. (See [Lou1, Section 3.1].) Let L be a real quadratic field, N be a

totally imaginary number field and assume that the extension N/L is

normal and such that ζN/L(s) ≥ 0 for 0 < s < 1. Then

(6) ζN/L(1) ≥ εN
4

e(log dL + c) log dN
.

Proof. Only point 2 needs a proof. Since the extension N/L is cyclic
of degree 2p then ζN/ζM is a product of 2p−2 abelian L-functions L(s, χ)
over non quadratic characters χ which come in conjugate pairs. Hence,
(ζN/ζM )(s) ≥ 0 for 0 < s < 1. In the same way since M/Q is cyclic quartic
then ζM/ζL is a product of two Dirichlet L-functions associated with two
conjugated quartic characters. Hence, (ζM/ζL)(s) ≥ 0 for 0 < s < 1 (note
that we cannot prove this last assertion if N is a dihedral field). Since
ζM/ζL = (ζN/ζM )(ζM/ζL), we get the desired result. ¤

We developed in [Lou3] an efficient technique for computing numerical
approximations of λL, technique we have used to fill in Table 1 below.
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case dL Ress=1(ζL) λL fM p f+ ≤
1 8 0.623 · · · 0.0877 · · · 16 3 2800

2 5 0.430 · · · 0.0436 · · · 5 3 3900

3 13 0.662 · · · 0.146 · · · 13 3 3000

4 29 0.611 · · · 0.283 · · · 29 3 1400

5 37 0.819 · · · 0.352 · · · 37 3 1500

6 53 0.540 · · · 0.407 · · · 53 3 700

7 61 0.938 · · · 0.487 · · · 61 3 1100

8 5 0.430 · · · 0.0436 · · · 145 5 160

9 13 0.662 · · · 0.146 · · · 221 13 60

10 17 1.016 · · · 0.220 · · · 68 17 80

11 17 1.016 · · · 0.220 · · · 136 17 80

12 29 0.611 · · · 0.283 · · · 145 29 30

13 41 1.299 · · · 0.473 · · · 164 41 50

14 73 1.794 · · · 0.756 · · · 219 73 50

Table 1: bounds on f+ if h−N = 4.

Theorem 6. Let N be a dicyclic CM-field of degree 4p where p is an

odd prime. Let f+ and fM denote the conductors of the extensions N+/L

and M/Q, respectively, and set f = lcm(f2
+, dM/d2

L) = lcm(f2
+, f2

M/dL).
Then f+, fM and f are positive integers and we have

dN/dN+ = (dLf)p−1f2
M , dM/dM+ = dM/dL = f2

M , dN+ = dp
Lf

2(p−1)
+ ,

dN = dM (d2
Lf2

+f)p−1 and

(7) h−N ≥ εN
2fM

eπ2(log dL + c) log dN

( √
dLf/16π4

Ress=1(ζL) log f+ + 2λL

)p−1

.

Hence, according to Proposition 5 and Theorem 6, we have

(8) h−N ≥ εN
2fM

eπ2(log dL + c) log dN

( √
dLf/π4

(log dL + c) log(dLf)

)p−1

.

Proof. Let F+, F− and F denote the conductors of the extensions
N+/L, M/L and N/L, respectively. Then F = lcm(F+,F−). Since F+

and F− are clearly invariant under the action of the Galois group of L/Q

we get NL/Q(F) = lcm(NL/Q(F+), NL/Q(F−)) = lcm(f2
+, dM/d2

L) = f .
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We then use the conductor-discriminant formula to compute all these dis-
criminants. Finally, we use formula (3) and Proposition 5 to complete the
proof. ¤

Corollary 7. Let N be a dicyclic CM-field of degree 4p, p any odd

prime and assume that (p, dL) is one of the fourteen occurrence which

appear in Theorem 4, point 4. Then Table 1 provides us with upper

bounds on f+ the conductor of the extension N+/L whenever h−N = 4.

4. Computation of relative class numbers

Now, Theorem 1 follows from Corollary 7 which reduces the determi-
nation of all dicyclic CM-fields with relative class number 4 to the compu-
tation of the relative class numbers of finitely many dicyclic fields (excerpts
of our computation appear in the tables of the following section). This sec-
tion is devoted to explaining how we performed these computations. To
begin with, we prove a phenomenon which was observed but not explained
in [Lef]:

Theorem 8. Let p be any odd prime. Let N be either a dihedral or a

dicyclic CM-field of degree 4p and let M denote its imaginary quartic sub-

field. Let χN denote any one of the p− 1 characters of order 2p associated

with the cyclic extension N/L of degree 2p.

1. (See [Loo, Theorem 5].) QN = QM , wN = wM and h−M divides h−N .

2. h−N/h−M = (h−N/M )2 is a perfect square and if we let FN/L denote the

conductor of the extension N/L and set f = NL/Q(FN/L), then

(9) h−N/M =
(p−3)/2∏

j=0

√
dLf

4π2
L

(
1, χ2j+1

N

)
= 21−p

(p−3)/2∏

j=0

L
(
0, χ2j+1

N

)
.

Proof. In using (2) for both E = M and E = N , we obtain:

h−N/h−M = 22−2p

2p−1∏

j=0
gcd(j,2p)=1

L(0, χj
N ).
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Now, χN has order 2p and according to Siegel–Klingen’s Theorem we have
L(0, χN ) ∈ Q(ζp) (see [Hid, Corollary 1, p. 57]). Therefore, the previous
formula writes

h−N/h−M = 22−2pNQ(ζp)/Q(L(0, χN )).

Finally, let Q+(ζp) denote the maximal real subfield of Q(ζp). Since
L(0, χN ) is real (for the character χ∗N of Q4p induced by χN is real valued),
we get that h−N/h−M = (h−N/M )2 is the square of the rational number

h−N/M = 21−pNQ+(ζp)/Q(L(0, χN )),

hence is the square of the rational integer h−N/M . ¤
We explained in details in [Lou4] how one can compute relative class

numbers of CM-fields N which are abelian extensions of real quadratic
fields L and gave there several examples of computation of relative class
numbers of dihedral CM-fields N of degree 4p. Such computations in-
clude the computation of various Artin root numbers Wχ for characters
χ associated with the abelian extension N/L. In this respect, it is worth
mentioning that the Artin root numbers Wχ of the p − 1 characters χ of
order 2p associated with dihedral CM-fields N of degree 4p are all equal
to +1 (see [FQ]). In contrast, the Artin root numbers Wχ of the p − 1
characters χ of order 2p associated with dicyclic CM-fields N of degree 4p
can be equal either to +1 or to −1 and may not only depend on N but also
on χ (however, if p is not totally ramified in N/Q then these Wχ ∈ {±1}
depend on N only and will be denoted by WN in Tables 2 and 3 below).
To avoid their lengthy computation, we used [Lou6] in which explicit for-
mulae for these roots numbers associated with dicyclic CM-fields of degree
4p are given.

Finally, dicyclic CM-fields N of degree 4p are composita N = MN+

of imaginary cyclic quartic fields M and of real dihedral field N+ of degree
2p. Since such M ’s are easy to construct, it would remain to explain the
constructions of such N+’s and we refer the reader to [Lou4], [Lef] and
[LPL] for their construction. Let us just mention that here the situation
is rather simple for in the fourteen occurences of Theorem 4, point 4, we
have hL = 1. Hence, for f+ as in (1), χ+ may be viewed as a primitive
character on the multiplicative group (AL/(f+))∗ which is trivial on the
image of Z and trivial on εL (the fundamental unit of L) and there is a
bijective correspondance between the cyclic groups of order p generated by
such characters and the real dihedral field N+ of degree 2p with quadratic
subfield L and conductor FN/L = (f+). For example, we obtain:
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Corollary 9. There are only two real dicyclic fields of degree 4p with
p ∈ {5, 13, 17, 29, 41, 73} totally ramified in N+/Q and L = Q(

√
p)

(i.e., with N+ as Theorem 4, point 4(a)), with f+ less than or equal to the
bounds given in part 2 of Table 1: those with p = 5 of conductors f+ = 55
and f+ = 155.

5. Tables of relative class numbers

Table 2 lists the values of the relative class numbers of the eight
dicyclic CM-fields containing M with the least possible values for f+ for
each of the seven possibilities for M as in Theorem 4, point 4(b). Table 3
gives examples of computations of relative class numbers of dicyclic CM-
fields of degree 4p with p > 3 for which p is not totally ramified in N/Q.

dL f+ WN h−N
8 29 −1 64

8 35 −1 144

8 45 −1 256

8 55 +1 400

8 59 −1 196

8 63 +1 900

8 77 −1 900

8 79 +1 400

dL f+ WN h−N
5 18 −1 4

5 34 +1 16

5 38 −1 16

5 46 +1 16

5 47 −1 16

5 62 −1 36

5 106 +1 256

5 107 −1 100

dL f+ WN h−N
13 10 +1 4

13 11 −1 4

13 18 −1 36

13 41 −1 64

13 45 −1 144

13 79 +1 144

13 86 −1 400

13 90 +1 900

Table 2.

dL f+ WN h−N
29 9 +1 16

29 14 −1 144

29 22 +1 64

29 26 −1 676

29 34 +1 676

29 41 −1 676

29 77 −1 2304

29 91 +1 900

dL f+ WN h−N
37 2 −1 4

37 35 −1 900

37 45 −1 2500

37 63 +1 2304

37 70 +1 6084

37 70 +1 2304

37 73 +1 6400

37 85 +1 1444

dL f+ WN h−N
53 7 +1 64

53 10 +1 400

53 18 −1 484

53 23 −1 1024

53 26 −1 900

53 43 +1 1024

53 45 −1 2704

53 65 −1 2304

Table 2 (continued).
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dL f+ WN h−N
61 13 +1 576

61 18 −1 1024

61 22 +1 2500

61 23 −1 676

61 34 +1 12100

61 38 −1 1936

61 53 −1 10816

61 58 +1 1024

Table 2 (continued).

dL p f+ fM WN h−N/h−M
5 5 341 145 +1 7867642

8 5 179 16 −1 40162

5 7 307 5 −1 201682

13 7 211 13 +1 846162

5 11 859 5 +1 23569540162

5 11 967 5 −1 55909990722

5 13 911 5 +1 2085476432002

29 13 389 29 −1 734543612490882

Table 3.

Finally, we quote the following two examples (related to Theorem 4,
point 4(a) and to Corollary 9) of dicyclic CM-fields N = N+M of degree
20 for which p = 5 is totally ramified in N/Q, L = Q(

√
5) and fM = 145

(for which h−M = 4): f+ = 55 for which h−N = 4 · (4061)2 and f+ = 155 for
which h−N = 4 · (32161)2.
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UNIVERSITÉ DE CAEN, CAMPUS 2
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