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Remark on the characterization of continuous functions

By JACEK TABOR (Kraków)

Abstract. W. Ring, P. Sch�opf and J. Schwaiger showed in [RSS] that if E
is a finite dimensional normed space then a function f : E → R is continuous iff f ◦ γ
is continuous for every regular curve γ : [0, 1] → E.

In the case E is infinite-dimensional we construct a function f : E → R not
continuous at zero such that an analogue of the above result fails to hold.

By C1(I, E) we denote the space of all regular curves from an interval
I to a Banach space E. To explain our results we first quote Theorem 4
from [RSS]:

Theorem RSS. Suppose D ⊂ R2 is open and f : D → R. Moreover,

assume that f ◦ γ : I → R is continuous for every regular curve γ : I → D,

γ ∈ C1 (I,R2) and I ⊂ R compact. Then f is continuous.

W. Ring, P. Schöpf and J. Schwaiger mention in Remark 4.3
in [RSS] that the restriction to the two-dimensional case D ⊂ R2 is not
essential, and that with some minor adjustments their proof works for
D ⊂ Rn. They also state that it is not clear what happens in the infinite
dimensional case, due to the noncompactness of unit spheres.

What may seem surprising, we show that Theorem RSS is really spe-
cific to finite dimensional spaces.

Theorem 1. Let E be an arbitrary infinite-dimensional Banach space.

Then there exists a function f : E → R which is not continuous at zero

such that f ◦ γ : I → R is continuous for every regular curve γ : I → E,

γ ∈ C1(I, E), where I is an arbitrary interval.
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Moreover, if γ(t0) = 0 for some t0 ∈ I, then f ◦ γ is zero on some
neighbourhood of t0.

The proof of the above theorem is divided into a few technical lemmas.
We will use the following well-known result from functional analysis:

Lemma (Lemma 1.12 from Chapter III [To]). Let E be an arbitrary
infinite dimensional normed space. Then there exists a sequence
{en}n∈N ⊂ E such that

(1) ‖en‖ = 1 for n ∈ N
and

(2) ‖en − ek‖ ≥ 1 for n, k ∈ N, n 6= k.

By B(x, r) we denote the closed ball with center at x and radius r.

Lemma 1. Let the sequence {en} be as in the Lemma. Then

(3)
1
n

B

(
en,

1
5

)
∩ 1

k
B

(
ek,

1
5

)
= ∅ for n, k ∈ N, n 6= k.

Proof. Let k, n ∈ N and x be such that x ∈ 1
nB(en, 1

5 ) ∩ 1
kB(ek, 1

5 ).
We are going to show that n = k. We have

(4) ‖nx− en‖ ≤ 1
5
, ‖kx− ek‖ ≤ 1

5
,

which by (1) gives us

‖kx‖ ∈
[
4
5
,
6
5

]
, ‖nx‖ ∈

[
4
5
,
6
5

]
.

This and (4) yields

‖en − ek‖ ≤ ‖kx− ek‖+ ‖nx− en‖+ ‖kx− nx‖

≤ 1
5

+
1
5

+ |k − n| · ‖x‖ =
2
5

+
∣∣ ‖kx‖ − ‖nx‖

∣∣

≤ 2
5

+
2
5

=
4
5
,

which by (2) implies that n = k. ¤
By supp(f) we denote the support of the function f , that is the closure

of the set of all points x ∈ E such that f(x) 6= 0.
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Lemma 2. For n ∈ N let fn : E → R be an arbitrary continuous

function such that supp(fn) ⊂ 1
nB(en, 1

5 ) and f( 1
nen) = n.

We put

f(x) =
∞∑

i=1

fn(x) for x ∈ E.

Then f is a well-defined real valued function on E which is continuous on

E \ {0} and discontinuous at zero.

Proof. Let x ∈ E \ {0} be arbitrary and let Ux be an arbitrary
neighbourhood of x which does not contain zero. By the definition of the
sequence fn one can easily notice that only a finite number of elements of
fn is nonzero on Ux. By the definition of f this implies that f is continuous
on Ux. As x was chosen arbitrarily this implies that f is continuous on
E \ {0}.

We show that f is discontinuous at zero. Obviously, by the definition
f( 1

kek) = k. However, the sequence { 1
kek} converges to zero as k → ∞,

which implies that f is not bounded on any neighbourhood of zero, and
therefore not continuous. ¤

Before proceeding to the next lemma we would like to remark that
functions fn satisfying the assumptions of Lemma 2 exist in an arbitrary
normed space, for example we may put

fn(x) := n ·max{0, 1− 5‖nx− en‖} for x ∈ E.

If E is a unitary space then these functions can be chosen to be of the
class C∞.

From now on, by fn and f we denote functions chosen as in the
previous lemma.

Lemma 3. Let a > 0 and let γ : [0, a) → E be differentiable at zero

and such that γ(0) = 0, γ′(0) 6= 0.

Then there exists ε > 0 such that if for certain k ∈ N, t ∈ (0, ε)

γ(t) ∈ supp(fk),

then ∥∥∥∥ek − 1
‖γ′(0)‖γ′(0)

∥∥∥∥ <
1
2
.
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Proof. Applying, if necessary, rescaling by 1
‖γ′(0)‖ we may assume

that ‖γ′(0)‖ = 1.
Let α ∈ (0, a) be chosen so that

(5) max
{

1− 4
5
· 1
1 + α

,
6
5
· 1
1− α

− 1
}

+
6
5
· α

1− α
+

1
5

<
1
2

(such an α exists as the left side of the above inequality is a continuous
function on the interval (0, a) which for α = 0 takes the value 2

5 ).
As γ is differentiable at zero, we can find ε > 0 such that

(6) ‖γ(t)− tγ′(0)‖ ≤ αt for t ∈ (0, ε).

Now suppose that there exists t0 ∈ (0, ε) and k ∈ N be such that

γ(t0) ∈ supp(fk).

Then

(7) ‖kγ(t0)− ek‖ ≤ 1
5
.

By (6) we get

(8) ‖kγ(t0)− kt0γ
′(0)‖ ≤ kt0α,

which by the triangle inequality yields

‖kγ(t0)‖ − kt0‖γ′(0)‖ ≤ kt0α, kt0‖γ′(0)‖ − ‖kγ(t0)‖ ≤ kt0α.

As ‖γ′(0)‖ = 1 this means that

‖kγ(t0)‖ ≤ kt0(1 + α), ‖kγ(t0)‖ ≥ kt0(1− α),

and consequently

kt0 ∈
[

1
1 + α

,
1

1− α

]
· ‖kγ(t0)‖.

By (7) we obtain that ‖kγ(t0)‖ ∈ [ 45 , 6
5 ], so as t0 > 0

(9) kt0 ∈
[
4
5
· 1
1 + α

,
6
5
· 1
1− α

]
.
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Using once more (7) and applying (8) and (9) we get

‖γ′(0)− ek‖ ≤ ‖γ′(0)− kγ(t0)‖+ ‖kγ(t0)− ek‖

≤ ‖γ′(0)− kt0γ
′(0)‖+ ‖kt0γ

′(0)− kγ(t0)‖+
1
5

≤ |1− kt0| · ‖γ′(0)‖+ kt0α +
1
5

≤ max
{

1− 4
5
· 1
1 + α

,
6
5
· 1
1− α

− 1
}

+
6
5
· α

1− α
+

1
5
.

By (5) this yields

‖ek − γ′(0)‖ <
1
2
. ¤

Lemma 4. Let γ : [0, 1) → E be a function which is differentiable at

zero and such that γ(0) = 0, γ′(0) 6= 0.

Then there exists δ > 0 such that

f(γ(t)) = 0 for t ∈ [0, δ).

Proof. Let ε > 0 be chosen as in the previous lemma.
Trivially f(γ(0)) = f(0) = 0. If γ(t) /∈ supp(fk) for every k ∈ N and

t ∈ (0, ε) then fk(γ(t)) = 0 for every k ∈ N, so by the definition of f

f(γ(t)) =
∞∑

i=1

fi(γ(t)) = 0,

which yields the assertion of the Lemma in this case.
So we may assume that there exists k ∈ N such that for a certain

t0 ∈ (0, ε)
γ(t0) ∈ supp(fk).

We show that such a k ∈ N is unique. Let us assume that there exists
l ∈ N and t1 ∈ (0, ε) such that γ(t1) ∈ supp(fl). Applying Lemma 3 to
both k, t0 and l, t1 we obtain

∥∥∥∥ek − 1
‖γ′(0)‖γ′(0)

∥∥∥∥ <
1
2
,

∥∥∥∥el − 1
‖γ′(0)‖γ′(0)

∥∥∥∥ <
1
2
.
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Joining the two above inequalities we get

‖ek − el‖ < 1,

which implies by the Lemma that l = k.
Thus we have obtained that there is a unique k ∈ N such that there

exists t0 ∈ (0, ε) with
γ(t0) ∈ supp(fk).

In other words this means that for every l 6= k

γ(t) /∈ supp(fl) for t ∈ (0, ε),

or equivalently

(10) fl(γ(t)) = 0 for l ∈ N, l 6= k, t ∈ (0, ε).

As supp(fk) is isolated from zero, by the continuity of γ there exists δ > 0,
δ < ε such that

γ(t) /∈ supp(fk) for t ∈ (0, δ).

This means that fk(γ(t)) = 0 for t ∈ (0, δ). Joining this with (10) we have

fn(γ(t)) = 0 for n ∈ N, t ∈ (0, δ).

By the definition of f this yields the assertion of the Lemma. ¤
After these preparatory lemmas we are able to prove Theorem 1.

Proof of Theorem 1. Let I be an arbitrary interval and let γ : I → E

be a regular C1 function. We will show that f ◦ γ is continuous.
Let t0 ∈ I be arbitrarily fixed. If γ(t0) 6= 0 then f ◦ γ is continuous

at t0 as f is continuous on E \ {0}.
So suppose that γ(t0) = 0. We will show that then f ◦ γ is zero on

some neighbourhood of t0 (which in particular implies that it is continuous
at t0). Applying Lemma 4 to the function γ1(t) := γ(t + t0) we obtain
that there exists δ1 > 0 such that

f(γ1(t)) = 0 for t ∈ [0, δ1) ∩ (I − t0),

which means that

(11) f(γ(t)) = 0 for t ∈ [t0, t0 + δ1) ∩ I.
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Making use of Lemma 4 for the curve γ2(t) := γ(−t + t0), we get
δ2 > 0 such that

f(γ2(t)) = 0 for t ∈ [0, δ2) ∩ (t0 − I),

or in other words

(12) f(γ(t)) = 0 for t ∈ (t0 − δ2, t0] ∩ I.

By joining (11) with (12) we finally obtain

f(γ(t)) = 0 for t ∈ (t0 − δ2, t0 + δ1) ∩ I. ¤
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POLAND

E-mail: tabor@im.uj.edu.pl

(Received October 15, 1998; revised July 27, 1999)


