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Bornologicity of certain spaces

of bounded linear operators

By EVA C. ADAM (Wien)

Abstract. The example of a nuclear Fréchet space E is given, for which the
space L(E, E) of bounded linear operators on E, when endowed with the topology of
uniform convergence on bounded sets, is not bornological. It is shown further that

for E the subspace of the product RI over an uncountable index set I formed by the
sequences with countable support, this locally convex topology on the space L(E, E) is
bornological.

1. Introduction and preliminaries

We consider spaces E, carrying a locally convex structure and hence

a canonical convex bornological structure (a collection of bounded sets)

given by the associated von Neumann bornology (the scalarly bounded

sets). The space L(E,E) of bounded linear operators on E may then be

equipped with a natural locally convex structure, namely the one of uni-

form convergence on bounded sets. The bornologification of this topology

plays an important role in connection with approximation problems stud-

ied in [4] that arise in different contexts of differential calculus in infinite

dimensions, e.g. approximation of vector valued smooth functions (see [1])

and the question whether operational and kinematic tangent bundle of a

given manifold modeled on an infinite dimensional vector space coincide

([9, Chapter VI]). As in general the zero neighbourhoods of the bornologi-

fication do not admit an explicit description, one is interested in the case

where the natural topology of L(E,E) is bornological. Trivially, the latter
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is true for the locally convex spaces R
I and R

(I), where the index set I

is of non measurable cardinality. A less obvious example is given by the

space R
I
ℵ0
⊆ R

I of sequences with countable support, as we will prove in

Section 3.

If the topology of uniform convergence on bounded sets is bornolog-

ical, then the same must hold for the direct summands E and L(E,R),

where the latter carries the topology of uniform convergence on bounded

subsets of E, i.e. the strong topology. The question, whether this is suffi-

cient, is answered to the negative, since in Section 2 we show the existence

of a nuclear Fréchet space E, for which L(E,E) is not bornological. That

there exist Fréchet spaces with non bornological strong dual, was estab-

lished by A. Grothendieck in 1954 ([5]).

Our example is the space C∞(R) of infinitely often differentiable real-

valued functions on R and a topological isomorphism

L(C∞(R), C∞(R)) ∼= C∞(R, C∞(R)′)

yields non-bornologicity of the former space once we know the same is true

for the latter, obviously involving some concept of smoothness of maps

into infinite dimensional locally convex spaces. An appropriate setting

for this is the differential calculus mappings as developed in [3], of which

we will give a brief outline in this section following the lines of the most

recent exposition given in [9]. There exist approaches also for nonlinear

objects ([2]) but we will essentially restrict to mappings between (manifolds

modeled on open subsets of) vector spaces: For a curve c : R → E into a

locally convex space E we can define difference quotients and derivatives in

each point in an obvious way. If all iterated derivatives exist then c is said

to be smooth or C∞. The set C∞(R, E) of smooth curves into a locally

convex space E does not depend on the topology of E but only on the

system of its bounded sets, its bornology, because the difference quotients

of a smooth curve are even Mackey convergent , i.e., convergent in EB for

some bounded disk B ⊆ E, where EB is the linear span of B in E endowed

with the Minkowski seminorm pB associated to B (see [6] for the theory of

bornological spaces). A mapping between locally convex spaces is called

smooth if it carries smooth curves to smooth curves. This definition of

smoothness implies existence, smoothness and linearity of derivatives and

the chain rule. The most important result is the exponential law

C∞(R× R, E) ∼= C∞(R, C∞(R, E))
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which holds much more generally for smooth maps between smooth spaces,

i.e. sets for which a family of smooth curves is given. The smooth maps

between smooth spaces are again defined as those that carry smooth curves

to smooth curves.

If E is Mackey complete, i.e. each sequence that is Cauchy in EB
for some bounded disk B ⊆ E is converging Mackey in E, then scalarly

smooth curves are smooth. In case E is a space of smooth mappings it

even suffices to test by point evaluations. This is called the differentiable

uniform boundedness principle. A convenient vector space is a locally con-

vex space which is Mackey complete. Multilinear maps are smooth if and

only if they are bounded. Furthermore, if we denote by L(E1, . . . , En;F )

the space of bounded (smooth) n-linear maps between the convenient vec-

tor spaces E1 × · · · × En and F , we have the corresponding exponential

law

L(E × F,G) ∼= L(E,L(F,G))

for any three convenient vector spaces E, F , G. The bornology consisting

of sets which are bounded on bounded subsets defines the structure of a

convenient vector space on L(E,F ) for each two convenient vector spaces E

and F and the exponential law is true also with respect to these structures.

Instead of L(E,R) we will write E ′.

By Con we denote the category of convenient vector spaces and bound-

ed linear maps. Note that the objects of this category are determined by

their bornology, whereas their locally convex topology may vary over all

locally convex topologies having the same system of bounded sets. The

finest among them is bornological and we will call it the bornological locally

convex topology of E. A convenient vector space E is said to be reflexive if

E ∼= E′′ in Con by means of the natural map. As by [3, 5.4.7] for Fréchet

spaces this is equivalent to reflexivity in the usual locally convex sense,

C∞(R) is reflexive as a convenient vector space.

On the space C∞(Rn, E), the topology of uniform convergence on

compact sets in each partial derivative determines a convenient vector

space structure for any convenient vector space and the exponential law

holds for this structure. Since smoothness is tested along curves it is

natural to consider on a convenient vector space E the topology induced

by its C∞-curves. This topology is called c∞-topology and it is finer

than any locally convex topology compatible with the bornology of E.

Accordingly, a set which is dense with respect to this topology, is said
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to be c∞-dense. The adherence of a subset A ⊆ E with respect to the

c∞-topology coincides with the set of limits of sequences in the subset

which are Mackey convergent (see [3, 2.3.10]) and is called the Mackey

adherence of A and is denoted by A′. More generally, if an ordinal α is

given, we can define the α-th Mackey adherence A(α) of A inductively by

A(α) :=
⋃

β<αA
(β) if α is a limit ordinal and A(α) := (A(α−1))′ if α has a

predecessor. The closure of subsets in the c∞-topology coincides with the

sequential closure, i.e. the union of all adherences.

In the holomorphic setting, the basic spaces are the sets of all holo-

morphic mappings from the unit disk D ⊆ C into a complex convenient

vector space. Holomorphic mappings between complex convenient vector

spaces are then defined as those that carry holomorphic curves to holo-

morphic curves. Again, multilinear mappings are holomorphic if and only

if they are bounded and the exponential laws hold (c.f. [10] for the the-

ory of holomorphic mappings). As in the real case, the dual of a complex

convenient vector space will be denoted by E ′.

2. Two isomorphy results and their consequences

Proposition 2.1 and Definition ([3, 5.1.1]). For every smooth space

X there exists a convenient vector space λX and a smooth map ιX :X→λX

with the property that every smooth map g : X → E into a convenient

vector space factors as g = g ◦ ιX with a unique linear Con-morphism

g : λX → E. The space λX is called the free convenient vector space

over X. It can be constructed as the c∞-closure of the linear subspace of

C∞(X,R)′ generated by the point evaluations evx =: ιX(x) for x ∈ X.

Proposition 2.2 ([3, 5.1.8]). Let X be a finite-dimensional separable

smooth manifold. Then the free convenient vector space λX over X equals

C∞(X,R)′.

We will obtain as a corollary of Theorem 2.6 the generalization of (2.2)

to manifolds with edges, modelled on generalized half spaces, i.e. finite

products of copies of R and the half line.

In the context of holomorphic spaces, we have a very similar situation,

as shown in [13], where the analogon of Proposition 2.2 is established for

Riemann surfaces.

Before giving the main result of this section in Theorem 2.7, some

preparations will be necessary.
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Proposition 2.3. Let E be a convenient vector space, H ⊆ R
n a gen-

eralized half space of dimension n and the space C∞(H,E) of functions

carrying smooth curves with image inH to smooth curves be endowed with

the topology of uniform convergence of each derivative on relatively com-

pact subsets of H with respect to the bornological locally convex topology

of E, where the space L(Rn, . . . ,Rn;E) carries the topology of uniform

convergence on relatively compact sets and in C∞(H,E) the restrictions

of the derivatives of one (any) smooth extension to R
n is taken. (These

extensions exist by [11].) Then C∞(H,E) is a complemented subspace of

C∞(Rn, E) in the category LCS of locally convex spaces.

Proof. Step 1. C∞(H,E) is a complemented Con-subspace of

C∞(Rn, E): The assertion for the case E = R and H = [0,∞) is shown

in [3], where a right inverse σ of the restriction map ρ : C∞(R) →

C∞([0,∞),R) is given by using a construction due to Seeley (c.f. [14]).

The same construction works also in case E is an arbitrary convenient

vector space. Finally, let E be a convenient vector space and the state-

ment hold for any generalized half space of dimension k = n − 1. Let

H ⊆ R
n a generalized half space of dimension n. Then we may write

either H ∼= Hn−1 × R or H ∼= Hn−1 × [0,∞), where Hn−1 ⊆ R
n−1 is a

generalized half space. The second case may be reduced to the first by

means of the exponential law which shows that C∞(Hn−1× [0,∞), E) is a

complemented subspace of C∞(Hn−1 ×R, E). So it remains to show that

C∞(Hn−1 × R, E) is a direct summand of C∞(Rn, E). This can be done

by using the exponential law once more and by induction hypothesis.

Step 2. For E a Banach space the topologies of C∞(H,E) and

C∞(Rn, E) are Fréchet and hence bornological so that the morphisms

σ, ρ explained in Step 1 are continuous. If E is an arbitrary convenient

vector space then its bornological locally convex topology is embedded in

a projective limit of Banach spaces so that we can reduce this case to the

case where E is a Banach space by means of Lemma 2.4 below which is

obtained very easily. ¤

Lemma 2.4. For any generalized half space H ⊆ R
n, the functor

C∞(H, ) : LCS → LCS and for any convex bornological space E, the

functor L(E, ) : LCS → LCS given by means of the topology of uniform

convergence on bounded sets preserves limits.



394 Eva C. Adam

Lemma 2.5. Let the finite product E :=
∏k
i=1Ei of the convenient

vector spaces E1, . . . , Ek, x := (x1, . . . , xk)∈E, a finite sequence α1, . . . , αk
of ordinals and subsets Ai ⊆ Ei for i = 1, . . . , k be given such that xi ∈

A
(αi)
i for all i = 1, . . . , k. Then

x ∈

(

k
∏

i=1

Ai

)(maxki=1
αi)

.

Proof. We proceed by induction on the number k of the factors

Ei, i = 1, . . . , k: Since for the product consisting of one factor there is

nothing to show, let the assertion hold for every product of k ∈ N fac-

tors and a product E :=
∏k
i=1Ei as well as x ∈ E, subsets Ai ⊆ Ei,

i = 1, . . . , k + 1 and a finite sequence α1, . . . , αk+1 of ordinals with the

properties formulated above be given. By induction hypothesis and since

maxk+1i=1 αi = max{maxki=1 αi, αk+1}, we may assume k = 1. We show the

assertion by transfinite induction on the ordinal α := max{α1, α2}:

If α has a predecessor, then we may assume the same to hold for both

α1, α2, since if αi is a limit ordinal for i = 1 or i = 2, then for obvious

reasons αi < α so that we can simply replace αi by its successor αi + 1.

Now xi ∈ A
(αi)
i implies that there exist sequences (xni )n∈N in A

(αi−1)
i

converging Mackey to xi. By induction hypothesis,

(xn1 , x
n
2 ) ∈ A

(α1−1)
1 ×A

(α2−1)
2 ⊆ (A1×A2)

(max{α1−1,α2−1}) = (A1×A2)
(α−1)

and of course the sequence (xn1 , x
n
2 )n∈N is Mackey convergent to x =

(x1, x2).

If α is a limit ordinal, then there exist βi ≤ αi ≤ α such that βi < α

and xi ∈ A
(βi)
i for i = 1, 2 so that we get

(x1, x2) ∈ A
(β1)
1 ×A

(β2)
2 ⊆ (A1 ×A2)

(max{β1,β2}) ⊆ (A1 ×A2)
(α). ¤

Theorem 2.6.

(1) The map

ι∗X : L(C∞(X,R)′, E)→ C∞(X,E)

is a topological isomorphism for any convenient vector space E, X=M a

separable finite dimensional smooth manifold with edges, where C∞(X,E)
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is endowed with the initial topology with respect to the pullbacks u∗n :

C∞(M,E) → C∞(Un, E) along the charts (un, Un) of a countable atlas

A, C∞(Un, E) is endowed with the topology of uniform convergence on

compact sets in each derivative for each chart domain Un with respect to

the bornological locally convex topology of E and L(C∞(X,R)′, E) carries

the topology of uniform convergence on bounded sets with respect to the

bornological locally convex topology of E.

(2) The map

ι∗X : L(H(X,C)′, E)→ H(X,E)

is a topological isomorphism for any complex convenient vector space E,

X = M a separable complex manifold modelled on polycylinders, where

H(X,C) is endowed with the initial topology with respect to the pullbacks

along charts of a countable atlas and L(H(X,C)′, E) carries the topology

of uniform convergence on bounded sets with respect to the bornological

locally convex topology of E.

Proof. Claim 1. The map ι∗
R

is injective: This is equivalent to

density of the linear span of Im ιR with respect to the bornological locally

convex topology of C∞(R)′. The claimed density follows from the algebraic

isomorphism C∞(R)′′ ∼= C∞(R).

Claim 2. The map ι∗
R
is surjective: In an obvious way, we obtain a

canonical map

C∞(R, E)→ L(E′, C∞(R)) ∼= L(C∞(R)′, E′′).

Let us show that it has image in L(C∞(R)′, E): If E∗c denotes the topo-

logical dual E∗ of E endowed with the topology of uniform convergence on

compact subsets of E, then E ∼= (E∗c )
∗ algebraically by the Mackey–Arens

theorem ([8, 8.5.5]). Since E is bornologically embedded in its bidual E ′′,

our claim follows if we can show the following: For each f ∈ C∞(R, E)

and l ∈ C∞(R)′, the map l ◦ (f)∗ : E′c → R is continuous. Indeed, there

exists K ∈ R compact, ε > 0 and n ∈ N such that l ∈ V (K, ε, n)o where

V (K, ε, n) := {g ∈ C∞(R) : |g(i)(x)| ≤ ε ∀x ∈ K, i ≤ n}. Further, there

exist compact sets Ki ⊆ Li(R, E) such that f (i)(K) ⊆ Ki ∀i ≤ n and a

compact subset K ′ ⊆ E with
⋃

i≤nKi ⊆ K ′ (where we identify E with

Li(R, E)). Thus |l(x′ ◦ f)| ≤ 1 ∀x′ ∈ ε(K ′)o and we are done.
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Claim 3. The map ι∗
R
is continuous: For this, let

V (K,W,n) := {c ∈ C∞(R, E) : c(k)(x) ∈W ∀x ∈ K, i ≤ n}

be a typical neighbourhood of zero in C∞(R, E) with n ∈ N, K ⊆ R com-
pact andW ⊆ E an arbitrary closed and absolutely convex zero neighbour-
hood. It suffices to show the existence of a bounded subset B ⊂ C∞(R)′

with the property that ι∗
R
(NB,W ) ⊆ V (K,W,n), where

NB,W := {l ∈ L(C∞(R)′, E) : l(B) ⊆W}.

We set B := (V (K, 1, n))o, using the simplified notation given in the proof
of Claim 2 for our zero neighbourhood base in C∞(R). Obviously we have

l ∈ NB,W ⇔ l(B) ⊆W ⇒ l

(

ι
(i)
R

(

(

ι
(i)
R

)−1

(B)

))

⊆W for all i ≤ n.

Note furthermore, that

(

ι
(i)
R

)∗

(l) = l ◦ ι
(i)
R

= (l ◦ ιR)
(i) = (ι∗R(l))

(i) for all i ∈ N

as l is a morphism. So (ι∗
R
(l))(i)((ι

(i)
R
)−1(B)) ⊆W and in order to deduce

our claim it will suffice to show that ι
(i)
R
(K) ⊆ B for i ≤ n. Indeed, we

have

ι
(i)
R

: R → C∞(R)′

x 7→
(

f 7→ f (i)(x)
)

,

i.e. ι
(i)
R

= (D(i))∗ ◦ ev: Again, this holds since evf : C∞(R)′ → R is a

morphism and thus evf ◦(ι
(i)
R
) = (evf ◦ιR)

(i) = f (i).

Claim 4. The map ι∗
R
has a continuous inverse: With the notations of

the previous claim, it suffices to show that for each compact subset K ⊆ R,
n ∈ N and any closed and absolutely convex zero neighbourhood in E we
have

ι∗R(NB,W ) ⊇ V (K,W,n)

where B := (V (k, 1, n))o. It suffices to prove

B =

〈

⋃

i≤n

(

ι
(i)
R

)

(K)

〉

acx

,
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where the latter denotes the closed absolutely convex hull of the set
⋃

i≤n(ι
(i)
R
)(K) with respect to any locally convex topology on C∞(R)′,

for which the elements of L(C∞(R)′, E) are continuous.

Indeed, in this case

l ∈ NB,W ⇔ l(B) ⊆W ⇔ l

(

⋃

i≤n

(

ι
(i)
R

)

(K)

)

⊆W

⇔
(

ι
(i)
R

)∗

(l)(K) ⊆W ∀i ≤ n⇔ (ι∗R(l))
(i)(K) ⊆W ∀i ≤ n

⇔ ι∗R(l) ∈ V (K,W,n).

From now on we will w.l.o.g. assume K = I for some compact real inter-

val I. By (2.3), C∞(I,R) is a Con-direct summand of C∞(R). By dual-

izing we get in particular that (C∞(I,R))′ is a direct summand (whence

a closed subspace) of C∞(R,R)′ for the topologies of uniform convergence

on the bounded sets. Since all l ∈ B vanish on {f ∈ C∞(R) : f |I = 0}, we

may consider B as (by the Alaoǧlu–Bourbaki theorem weakly compact)

subset of (C∞(I,R))′. Actually, the elements of B are continuous for the

topology C∞n (I,R) induced on C∞(I,R) by the inclusion

ι : C∞(I,R) ↪→

n
∏

i=1

C(I,R)

f 7→ (f (k))ni=1,

where the product is endowed with the maximum of the respective supre-

mum norms and B is nothing else than the image of the unit ball of
∐n
i=1(C(I,R))′ under the restriction map

ι∗ :
n
∐

i=1

(C(I,R))′ → (C∞n (I,R))′.

We claim that the extremal points of the unit sphere of
∐n
i=1(C(I,R))′

are given by evaluations of single components: First, let x = (xi)
n
i=1 ∈

∐n
i=1(C(I,R))′ have at least two non vanishing components. Without loss
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of generality we may assume xi 6= 0 for i = 1, 2. But then

x =
‖x1‖

‖x1‖+ ‖x2‖

(

‖x1‖+ ‖x2‖

‖x1‖
x1, 0, x3, . . . , xn

)

+
‖x2‖

‖x1‖+ ‖x2‖

(

0,
‖x1‖+ ‖x2‖

‖x2‖
x2, . . . , xn

)

is a nontrivial convex combination of two elements of the unit sphere so

that it cannot be extremal. Thus if an extremal point of the unit sphere

is given, it must have at most one non vanishing component, which itself

cannot be a nontrivial convex combination of two elements of the unit

sphere of C(I,R)′, whence must be an extremal point. But it follows from

Riesz’s representation theorem (e.g. [8, 7.6.1]) that the extremal points of

the unit sphere of C(I,R)′ are exactly the measures with support consisting

of one point: If µ is a measure the support of which contains at least two

points, then separate these by a partition of unity {ψ1, ψ2} and

µ =

∫

ψ1

(

mult∗ψ1(µ)
∫

ψ1

)

+

∫

ψ2

(

mult∗ψ2(µ)
∫

ψ2

)

is a desired nontrivial convex combination of elements of the unit sphere

provided µ is. Conversely, let t ∈ I with α 6= 0, β 6= 0 and y, z in the unit

sphere of
∐n
i=1(C(I,R))′ such that x = (evt, 0, . . . , 0) = αy+ βz. Then in

particular evt = αy1 + βz1. Since ‖y1‖ ≤
∑n
i=1 ‖yk‖ = ‖y‖ ≤ 1, we get

that y1 (and for the same reason also z1) are elements of the unit sphere

of C(I,R). It follows by extremality of evt that y1 = z1 = evt but then

yi = xi = 0 for all i 6= 1 since ‖ evt ‖ = 1. By the Krein–Milman theorem

([8, 7.5]) the unit sphere of the Banach space
∐n
i=1(C(I,R))′ coincides

with the weak∗-closure of the absolutely convex hull of its extremal points.

Since

id ◦ι∗ :
n
∐

i=1

C(I,R)′ → C∞n (I,R)′ → C∞(I,R)′

is linear and weak∗-continuous, its image B of the unit sphere is contained

in the closed absolutely convex hull of evaluations of derivatives in some

point in I and the theorem is proved for M = R.
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Claim 5. The map ι∗[0,∞) is a topological isomorphism: Consider the

diagram

L(C∞(R)′, E)
ι∗
R C∞(R, E)

L(C∞([0,∞),R)′, E)
ι∗[0,∞)

σ∗∗

C∞([0,∞), E)

σ

where σ is as in (2.3). Then

ι∗[0,∞)

(

L(C∞([0,∞))′, E)
)

⊆ C∞([0,∞), E)

and ι∗[0,∞) is a morphism since ι[0,∞) : [0,∞) → C∞([0,∞),R)′ is wellde-

fined and smooth as restriction of the smooth map ιR. By commuta-

tivity of the diagram, ι∗[0,∞) admits the inverse (ρ∗)∗ ◦ (ι∗
R
)−1 ◦ σ, where

ρ : C∞(R)→ C∞([0,∞),R) is the restriction map.

Claim 6. The map ι∗H is a topological isomorphism for any generalized

half space H ⊆ R
n: In the case where H ∼= R×Hn−1 for some generalized

half space Hn−1 ⊆ R
n−1 we have the sequence of topological isomorphisms

L(C∞(R×Hn−1,R)′, E)

∼= (1)

L(C∞(R, C∞(Hn−1,R))′, E)

∼= (2)

L(L(C∞(R)′, C∞(Hn−1,R))′, E)

∼= (3)

L(L(C∞(R)′, C∞(Hn−1,R)′′)′, E)

∼= (4)

L(L(C∞(R)′⊗̂πC
∞(Hn−1,R)′;R)′, E)

∼= (5)
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∼= (5)

L(C∞(R)′⊗̂πC
∞(Hn−1,R)′, E)

∼= (6)

L((C∞(R)′, L(C∞(Hn−1,R)′, E))

∼= (7)

L(C∞(R)′, C∞(Hn−1, E))

∼= (8)

C∞(R, C∞(Hn−1, E))

∼= (9)

C∞(R×Hn−1, E).

It is obvious that the maps given in (1), (2), (3) and (8) constitute topo-

logical isomorphisms. Further, we have the Con-isomorphism

L(C∞(R)′, C∞(Hn−1,R)′;R) ∼= L(C∞(R)′, C∞(Hn−1,R)′;R),

where the latter denotes the space of bilinear continuous maps from

C∞(R)′ × C∞(Hn−1,R)′ to R with respect to the bornological locally

convex topology, since the topology of C∞(R)′ is bornological DF and

bilinear bounded maps on products of such spaces are continuous by [8,

15.6.7]. The bijection

L(C∞(R)′, C∞(R)′;R) ∼= L(C∞(R)′⊗̂πC
∞(R)′;R)

is an isomorphism for the topologies of uniform convergence on bounded

sets and in particular for the associated bornologies since by [8, 15.6] each

bounded subset of C∞(R)′⊗̂πC
∞(R)′ is contained in the bipolar of the

image of some bounded subset of C∞(R)′×C∞(R)′. Moreover, the locally

convex space C∞(R)′⊗̂πC
∞(R)′ is bornological by [8, 15.6.8] so that we

obtain the isomorphism given in (5).



Bornologicity of certain spaces of bounded linear operators 401

The locally convex space C∞(R)′⊗̂πC
∞(R)′ is nuclear by [8, 21.2.3]

and hence

C∞(R)′⊗̂πC
∞(R)′ ∼= L(C∞(R)′⊗̂πC

∞(R)′,R)′

in Con by [7, p. 140], which implies that the map given in (5) is an iso-

morphism. The isomorphism (6) follows as in the case of (4). The map

given in (7) is a topological isomorphism since

C∞(Hn−1, E) ∼= L(C∞(Hn−1,R)′, E)

by induction hypothesis. Finally, we know by the exponential law that (9)

is a Con-isomorphism and hence a topological one for Banach spaces. If E

is an arbitrary convenient vector space, then its locally convex topology is

dense in a topological projective limit of Banach spaces. Now by 2.4 the

statement follows.

As for the case H ∼= [0,∞) × Hn−1, it is clear that up to obvious

modifications we obtain the desired isomorphism by the same sequence.

Claim 7. The map ι∗M is a topological isomorphism for any separable

C∞-manifold modelled on a generalized half space H ⊆ R
n:

Let A = {(un, Un);n ∈ N} a countable atlas, where Un ⊆ H is c∞-

open. Then the diagram below commutes:

L(C∞(M,R)′, E)
ι∗M

(u∗∗∗n )n∈N

C∞(M,E)

(u∗n)n∈N

∏

n∈N

L(C∞(Un,R)′, E)
∼= ∏

n∈N

C∞(Un, E)

where the map at the bottom is given by
∏

n∈N
ι∗Un . Since the atlas A is

countable, the map

(u∗n)n∈N : C∞(M,R)→
∏

n∈N

C∞(Un,R)

is an embedding for the bornological locally convex topologies. Dualizing

yields a bounded linear map

∐

n∈N

C∞(Un,R)′ → C∞(M,R)′
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which is surjective by the Hahn–Banach theorem and has the property
that each bounded set in C∞(M,R)′ is contained in the image of some
bounded subset of

∐

n∈N
C∞(Un,R)′. Dualizing again yields a topological

embedding

L(C∞(M,R)′, E)→ L

(

∐

n∈N

C∞(Un,R)′, E

)

.

Furthermore there is a topological isomorphism

L

(

∐

n∈N

C∞(Un,R)′, E

)

∼=
∏

n∈N

L(C∞(Un,R)′, E).

That these two spaces are isomorphic in Con, follows by rightadjointness of
L( , E) : Conop → Con. This isomorphism is easily seen to be topological
for the given topologies so that we get that the map (u∗∗∗n ) given in the
diagram above is a topological embedding. Note that, since we may choose
the chart domains so small that each Un is isomorphic to some (not nec-
essarily fixed) generalized half space, isomorphism of the map

∏

n∈N
ι∗Un

follows by what we have already established and it suffices to show that
ι∗M is a bijection. We have mentioned in (2.1) that the free convenient vec-
tor space of a general smooth space X may be constructed by taking the
Mackey closure of the linear span of ιX(X) ⊆ C∞(X,R)′ so that we have
to show Mackey denseness of the linear span of ιM (M) in C∞(M,R)′.
For this, let l ∈ C∞(M,R)′. As already mentioned above, l admits an
extension

l ∈

(

∏

n∈N

C∞(Un,R)

)′

∼=
∐

n∈N

C∞(Un,R)′.

Let F ⊂ N denote the (finite) support of l. By what we have shown for
generalized half spaces, for each n ∈ F , there exists a countable ordinal αn
such that ln is contained in the αn-th Mackey adherence (〈ιUn(Un)〉V S)

(αn)

of the linear span of ιUn(Un). By (2.5),

l ∈

(

∏

n∈F

〈ιUn(Un)〉V S

)(α)

⊆
∐

n∈N

C∞(Un,R)′,

where α := max{αn;n ∈ F}. Clearly,

(

(u∗n)n∈N

)∗
(

∐

n∈N

〈ιUn(Un)〉V S

)

⊆ 〈ιM (M)〉V S ,
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so that

l =
(

(u∗n)n∈N

)∗
(l) ∈

(

(u∗n)n∈N

)∗

(

(

∐

n∈N

〈ιUn(Un)〉V S

)(α)
)

⊆

(

(

(u∗n)n∈N

)∗
(

∐

n∈N

〈ιUn(Un)〉V S

)

)(α)

⊆
(

〈ιM (M)〉V S
)(α)

.

It remains to show the assertion on complex manifolds:

Claim 8. The map ι∗
D

is a topological isomorphism: According to

[9] we have topological embeddings H(D, E)R ↪→ C∞(DR, ER) whenever E

is a convenient vector space over C and H(D, E ⊗ C) ↪→ C∞(D, E) ⊗ C

whenever E is a convenient vector space over R. Thus we get the following

sequence of (R-linear) morphisms:

L(H(D,C)′, E)R

(1) ∼=

LC(H(D,C)′R, ER)

(2)

LC(L(H(D,C),C)R, ER)

(3)

LC(L(C
∞(DR,R)⊗ C,C)R, ER)

(4) ∼=

LC((L(C
∞(DR,R),R)⊗ C)R, ER)

(5) ∼=

L(C∞(D,R)′, ER)

where LC(FR, GR) ⊆ L(FR, GR) denotes the convenient subspace of C-

linear maps, i.e. the isomorphic image of L(F,G)R in L(FR, GR) whenever

F,G are complex convenient vector spaces. Hence the map given in (1)
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is a topological isomorphism by definition. By metrizability, the Con-

embedding

H(D,C) ↪→ C∞(DR,R)⊗ C

is an embedding for the bornological locally convex topologies and by

dualizing we get a surjective bornological map

L(C∞(DR,R)⊗ C,C)R → L(H(D,C),C)R

with the property that each bounded subset of L(H(D,C), )R is contained

in the image of a bounded subset of L(C∞(DR,R)⊗ C,C))R. Dualizing a

second time yields the topological embedding (3). The map given in (4) is

a topological isomorphism since clearly, the algebraic bijection

L(C∞(DR,R)⊗ C,C)→ L(C∞(DR,R),R)⊗ C

constitutes a Con-isomorphism. Similarly, the map given in (5) is a topo-

logical isomorphism. So we get the following commuting diagram

L(C∞(D,R)×, ER)
∼=
ι∗
D

C∞(D, ER)

L(H(D,C)′, E)R
ι∗
D

H(D, E)R

where the vertical arrows denote the respective natural embeddings, the

left hand side defined by composition of the morphisms given in the se-

quence above. Like in the smooth case, holomorphy of ιD : D → H(D,C)′

follows by the exponential law so that the map ι∗
D
|L(H(D,C)′,E)R

:

L(H(D,C)′, E)R → H(D, E)R is well defined and injective as restriction

of an injective morphism and it remains to show surjectivity.

Let l ∈ LC(L(C
∞(DR,R) ⊗ C,C)R, ER) and l ◦ ιD ∈ H(D, E)R ⊆

C∞(DR, ER). We have to show that l factors over H(D,C)′
R
. Let

λ1, λ2 ∈ L(C
∞(DR,R)⊗ C,C)R

with λ1|H(D,C) = λ2|H(D,C). Since the C-linear span of ιD(D) is Mackey

dense in L(C∞(DR,R) ⊗ C,C), there exist nets (
∑

i∈Fα
aαi evxi)α∈A and
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(
∑

j∈Fβ
b
β
j evyj )β∈B converging to λ1 and λ2, respectively, with respect to

the c∞-topology, hence a fortiori pointwise so that

∑

i∈Fα

aαi evxi(λ ◦ l ◦ ιD)→ λ1(λ ◦ l ◦ ιD)

and
∑

j∈Fβ

b
β
j evyj (λ ◦ l ◦ ιD)→ λ2(λ ◦ l ◦ ιD)

for any λ ∈ E× since then λ ◦ l ◦ ιD ∈ H(D,C) ⊆ C∞(DR,R
2). On the

other hand, we have

∑

i∈Fα

aαi evxi(λ ◦ l ◦ ιD) =
∑

i∈Fα

aαi (λ ◦ l)(evxi)

= (λ ◦ l)

(

∑

i∈Fα

aαi evxi

)

→ (λ ◦ l)(λ1)

and likewise
∑

j∈Fβ
b
β
j evyj (λ ◦ l ◦ ιD)→ (λ ◦ l)(λ1) since

λ ◦ l ∈ LC(L(C
∞(DR,R)⊗ C,C)R,R

2).

It follows that (λ ◦ l)(λ1)=λ1(λ ◦ l ◦ ιD)=λ2(λ ◦ l ◦ ιD)= (λ ◦ l)(λ2). Thus

l factors algebraically, whence as a morphism by finality of

L(C∞(DR,R)⊗ C,C)R → L(H(D,C),C)R.

Claim 9. The map ι∗M is a topological isomorphism for M a complex

separable manifold modelled on polycylinders: We may proceed as we did

in the real case. ¤

Remark 2.7. Another way to prove Claims 1 to 4 of (2.6) is the fol-

lowing: By [3, 5.1.3] the linear isomorphism ι∗X : C∞(X,E) ∼= L(λX,E)

obtained according to (2.1) is even a Con-isomorphism and hence ι∗
R
is a

topological one for E Fréchet. The rest follows by proving Claim 2 as we

did and applying Lemma 2.4 to the representation of an arbitrary con-

venient vector space as subspace of a projective limit of Banach spaces

(compare the proof of (2.3)).
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Corollary 2.8. The natural topology of L(C∞(R)′, C∞(R)′) is not

bornological and the same holds for L(C∞(R), C∞(R)).

Proof. The topology of uniform convergence on compact sets in

each derivative on C∞(R,R(N)) is not bornological: The functional f 7→
∑

k∈N
(prk ◦f)

(k)(0) is bounded but not continuous (see [3]). On the other

hand, R
(N) is a complemented locally convex subspace of C∞(R)′ by means

of the defining sequence

R
(N) ι
−→ C∞(R,R)′

ρ
−→ R

(N)

where ι : (xn)n∈N 7→
∑

n∈N
xn evn and ρ : l 7→ (l(ψn))n∈N with ψn ∈

C∞(R) defined as follows: Choose a smooth function ψ ∈ C∞(R) with

carrier contained in [−1, 1], ψ(0) = 1 and set ψn := ψ( − n). Clearly, ρ is

left inverse to ι and both maps are Con-morphisms, so that they are also

continuous for the bornological locally convex topologies. So C∞(R,R(N))

is a topological direct summand of

C∞(R, C∞(R)′) ∼= L(C∞(R)′, C∞(R)′).

The latter cannot be bornological, since complemented subspaces of a

bornological locally convex space must be bornological. By reflexivity of

C∞(R),

L(C∞(R), C∞(R)) ∼= L(C∞(R)′, C∞(R)′)

topologically, as can be shown with the methods of the proof of (2.6),

Claim 6. ¤

3. The space L(RIℵ0 ,R
I
ℵ0
)

In the following, let I be an arbitrary set and for i ∈ I, Ei 6= {0} a

vector space. Let furthermore Z := {z=(zi)i∈I ∈
∏

i∈I Ei : zi 6=0 ∀i∈ I}.

If z ∈
∏

i∈I Ei and M ⊆ I an arbitrary subset, set

(xM )i :=

{

xi for i ∈M

0 otherwise.

A subspace F ⊆
∏

i∈I Ei is said to be invariant under projection if xM ∈ F

for each x ∈ F and each subset M ⊆ I. Proposition 3.1 is an adaption

of [8, 2.5].
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Proposition 3.1. Let Ei be topological vector spaces, E ⊆
∏

i∈I Ei
a topological linear subspace invariant under projection and F a second

topological vector space. Then a linear map T : E → F is continuous if

and only its restrictions to Ei and E ∩
∏

i∈I〈zi〉 for each z = (zi)i∈I ∈ Z

are continuous.

Let I be a set with |I| ≥ ℵ0. We set R
I
ℵ0

:= {x ∈ R
I : ∃M ⊂ I,

|M | ≤ ℵ0 : xI\M = 0} and endow the space R
I
ℵ0

with the trace of the

product topology on R
I .

Proposition 3.2. For any index set I of non measurable cardinality,

the topology of uniform convergence on bounded sets on L(RI
ℵ0
,RIℵ0) is

bornological.

Proof. Claim 1. L(RIℵ0 ,R
I
ℵ0
) is topologically embedded in (R(I))I :

By [3, 6.2.9] the topology of R
I
ℵ0

is bornological so that its inclusion into R
I

is a dense embedding for the bornological locally convex topologies. Hence

R
I is the locally convex completion of R

I
ℵ0

so that for any complete locally

convex space E we have an algebraic isomorphism L(RI
ℵ0
, E) ∼= L(RI , E)

which is in fact a topological one for uniform convergence on bounded

sets: Let B ⊆ R
I be bounded and b ∈ B. Without loss of generality, we

may assume B =
∏

i∈I Bi, where Bi ⊂ R is an absolutely convex bounded

subset of R. Then the net (bF )F⊂I finite is convergent to b in R
I and by

our assumption on the shape of B, bF ∈ B for all F ⊂ I finite. Since

b ∈ B was arbitrary, we conclude B ⊆ B ∩ RI
ℵ0

so that each bounded

subset of R
I is contained in the closure of some bounded subset of R

I
ℵ0
.

Conversely, each bounded subset of R
I
ℵ0

has bounded closure in R
I . Let

now NB,V ⊆ L(RI , E) be a typical neighbourhood of zero, where B ⊆ R
I
ℵ0

is closed and bounded and V ⊆ E an arbitrary absolutely convex closed

neighbourhood of zero. Then NB,V is contained in the inverse image in

L(RIℵ0 , F ) under the above isomorphism which we have now shown to

be continuous. Its inverse is the restriction map and as such obviously

continuous. Hence we may consider L(RI
ℵ0
,RIℵ0) as topological subspace

of
(

R
(I)
)I

by means of

L(RIℵ0 ,R
I
ℵ0) ⊆ L(RIℵ0 ,R

I) ∼= L(RI ,RI) ∼=
(

R
(I)
)I
.

Claim 2. L(RIℵ0 ,R
I
ℵ0
) is quasibarrelled: Let B ⊆ L(RI ,RI) be bound-

ed. Then for any B1 ⊂ R
I
ℵ0

closed and bounded there exists B2 ⊂ R
I
ℵ0
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bounded with B(B1) ⊆ B2. Without loss of generality, we may assume

B2 to be of form {x = (xi)i∈I ∈ R
I
ℵ0
;xi ≤ εi} for some family (εi)i∈I

of positive real numbers. Let f ∈ B. Then (prF )∗(f) is convergent to f

uniformly on R
I and (prF )∗f(B1) ⊆ prF (B2) ⊆ B2. Hence each bounded

subset of L(RI ,RI) is contained in the closure of some bounded subset

of L(RIℵ0 ,R
I
ℵ0
). Let V be a bornivorous barrel in L(RI

ℵ0
,RIℵ0). Then the

same holds for V ⊆ L(RI ,RI). Since L(RI ,RI) is bornological, V is a zero

neighbourhood in L(RI ,RI) and so its trace V is a zero neighbourhood in

the trace topology.

Claim 3. E is bornological: Note first that the image E of L(RI
ℵ0
,RIℵ0)

under its embedding into
(

R
(I)
)I

is given by

F =

{

(fj)i ∈
∏

j∈I

(

∐

i∈I

R

)

; |Ji(f)| ≤ ℵ0

}

,

where (fj)i := (f(ei))j , ei the i-th standard unit vector in R
I
ℵ0

and Ji(f) :=

{j ∈ I : (fj)i 6= 0}.

For j ∈ I, let fj ∈ R
(I) be non zero. In view of (3.1), it suffices to

show that every bounded linear functional on E ∩
∏

j∈I〈fj〉 is continuous.

For this, we adapt part of the proof of [3, 6.2.9], which we include here for

the sake of completeness: Let l : E ∩
∏

j∈I〈fj〉 → R be bounded linear.

Note, that

l : E ∩
∏

j∈I

〈fj〉 ∼= {(λj)j∈I ∈ R
I ;

|{j ∈ Ji(f) : λj 6= 0}| ≤ ℵ0 for all i ∈ I}

and hence R
I
ℵ0
⊆ E∩

∏

j∈I〈fj〉 ⊆ R
I . The restriction l0 := l|RI

ℵ0

: R
I
ℵ0
→ R

is sequentially continuous: Being bounded on R
I
ℵ0
, l0 carries Mackey con-

vergent sequences to convergent sequences in R. On the other hand, each

convergent sequence in R
I
ℵ0

is contained in a metrizable complemented

subspace R
A with A ⊂ I countable and is therefore even Mackey conver-

gent (therein). By [12] l0 factors over some countable subset of the index

set I, i.e. there exists A0 ⊂ I countable such that l0(x) = l0(xA0
) for all

x ∈ R
I
ℵ0
.
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Our claim is that l(x) = l(xA0
) for arbitrary x ∈ E∩

∏

j∈I〈fj〉: Indeed,

let us consider the map ϕx : 2I → R defined by A 7→ l(xA∩A0
) − l(xA0

).

The definition makes sense as E∩
∏

j∈I〈fj〉 is defined by carrier conditions

and hence xA ∈ E ∩
∏

j∈I〈fj〉 for arbitrary subsets A of the index set.

Clearly ϕx(A) = 0 for A ∈ 2I countable. Furthermore, ϕx is sequentially

continuous: Let (An)n∈N be convergent to A in 2I , i.e. for all i ∈ I there

exists n(i) ∈ N such that χAn(i) = χA(i) for all n ∈ N with n > n(i). Then

{n(xAn − xA) : n ∈ N} ⊂ E ∩
∏

j∈I〈fj〉 is bounded since each coordinate

eventually equals zero. But this exactly means that (xAn)n∈N is Mackey

convergent to xA and, since l is bounded, ϕx(An) is convergent to ϕx(A)

in R. Now the conclusion follows by another result of [12] stating that

each sequentially continuous realvalued function on 2I vanishing on all

countable subsets vanishes on the whole of 2I , provided the index set I is

of nonmeasurable cardinality. ¤
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