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Symmetric words in free nilpotent groups of class 4

By WALDEMAR HOLUBOWSKI (Gliwice)

Abstract. A word w(Xi,...,Xy) is called n-symmetric for a given group G
if w(g1,---,9n) = W(Gs(1)s- -+ »9o(n)) for all gi,... ,gn in G and all permutations o
from the symmetric group Sy,. In this note we describe n-symmetric words in the free
nilpotent groups of class 4.

1. Preliminaries and main results

The problem of characterizing the n-symmetric words in the given
group G was initiated by PLONKA [8]-[10] who gave a complete description
of the n-symmetric words in nilpotent groups of class < 3. For results for
metabelian and other groups we refer to [1]-[6].

Let F;,, denote the absolutely free group on Xi,...,X,.

Definition. A word w(Xy,...,X,) € F, is called n-symmetric word

for a group G if w(g,(1),- -+ s 90(n)) = w(g1,... ,9n) forall g1,... ,gn € G
and all permutations o from the symmetric group S,,.

It follows from the definition that we can restrict ourselves to relatively
free groups with n free generators and to natural action of S,, on them.
Let F,,(G) be the relatively free group on 1, ... ,x, in a variety generated
by the group G. Let A be the group of automorphisms of F,(G) induced
by the mappings z; — 2,3y, 1 <i < n, (¢ € S,). The group

SM(@) = {w € F\(G) : w = aw) for every a € A}

is called a group of n-symmetric words for G.
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In this paper we describe S (G) in the case of G, the free nilpotent
group of class 4 which we denote shortly by S (9,) (M, — variety of
nilpotent groups of class ¢). Our results extend these from [8], [10] and
give a correction to one statement in [5].

1

We denote by [r,y] = 7'y~ lzy a commutator of elements z, y.

Commutators of higher weight are defined as left-normed.

Let ul(l"y) = [y’x7aj”y7x7y}_17 UQ(‘T’y) = [?/,%xw][y,%?/,y]_l-

Theorem 1. The group S® (M) is a free nilpotent group of class 2
generated by w1 (z,y), ua(z,y) and us =z [y, 2Py, z, 2% [y, 2, 2, 2]'° x

ly, z, z, y]*8.

The Theorem 1 answers affirmatively a question raised in [9]. We note
here that all groups S(™ (9,) are abelian if ¢ < 3.

Theorem 2. The group S®) (M) is a free abelian group generated by
w1 (:1:7 Y, Z) = Uu (l‘, y)ul (1"7 Z)ul (ya Z)a

wa(z,y, 2) = ug(x, y)ua(w, 2)ua(y, 2).

Theorem 3. The group S*) (M) is a free abelian group generated by
w3($7 Y, z, t) = u1 (.73, y)ul (x, Z)ul (.73, t)ul (ya Z)ul (ya t)ul (Zv t)?
w4 (Y, 2, 1) = uz(x,y)uz (@, 2)uz(z, )ua(y, 2)ua(y, t)uz(z,1).

Since we have isomorphisms S () = S®W(M,) (for n > 4 [9]), our
theorems give a full description of n-symmetric words for any natural n.
A map w(zy,...,Tn, Tpr1) — w(ry,...,Ty, 1) induces homomor-
phism
orti ) - St (M) — S ().

It is clear that §771(91,) is an isomorphism for n > 3. However, §3 (M) is
a monomorphism, which contradicts a second part of Theorem 3 from [5]
which states that 67" (M,,42) is not a monomorphism for any n. In fact,
a sketch of the proof given in [5] shows that 67+ (M, 2) is not monomor-
phism for n > 2. This raise a question of checking the validity of this

statement from [5] for other nilpotent groups of class 4.
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2. Identities in nilpotent groups

We use a standard definitions from [7] without explanations.

We need some well known identities:

1) byl =[zy sz, Q) [y =[] ey
(3)  [zy, 2] =[x, 2][z, 2, 4]y, 2], (4)  [z,yz] = [z, 2][z, yl[x, y, 2]

valid in arbitrary groups. We use notation (7) = & -n(n—1)--- (n—i+1).
Now we list identities of nilpotent groups of class 4 which we use in
next sections to rewrite some words as the products of basic commutators.

We fix a natural order of basic commutators:
r<y<z<t<lyz <lzz] <[tz] <|zy <[ty <[tz]<...

Lemma 1. The following identities hold in a nilpotent group G of
class four for any z, y, z, t € G and all integers n, m, k, [.

(5) [ynvxm] = [y’x]nm[y’x’x]n(g”)[y’x’y](g)m[y’x’x’x]n(gf)
x [y, z,2,y) ) ) [y, 2,9, )™,

6)  Iy"am 2 = [y, gy, 2
m k)nm

X [y,x,x,z](Q)" [y,x,z,z](2 ,

(1) [y",a™, 2R = [y, @, 2, )R

Proor. Using (1)-(4) one can prove that

2] = [y, 2]y, 2, ylly, @y, 9]
1

[yvxil] = [ywr]i [y,x,:):][y,x,x,x]fl

and by induction the following identities for all natural n, m

n

", 2] = [y, 2]" [y, 2, 9] [y, 2, y, 4] ),

[y’xm] = [ya x]m[ya$ax]( )[y,:z:,x,x](?)
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Now we have [y, 27 ™] = [y, (™) 7] = [y, 2™] [y, 2™, 2™]x

[y, z™, a™ ™! = [y,x]’m[y,x,x]tgn)[y,x,x,x](73m) so, this identity is
valid for all integers. Similarly we obtain the expression for [y~", z]. Fi-
nally, for all integers n, m, we have

i+j<5
[y’IL,xm] - [ynux]m[yn7x7w](g) [yn)$7xax](7;) - H [yﬂ Ia(j—l) y](?)(zn)
4,7>0

Using this identity one can easily prove (6); (7) is easy to check directly.

0
Lemma 2. The following identities hold in any nilpotent group of
class four:
(8) [2,y,2] = ly,z, 2],
(9) 2.y, 2] = [z, 2, ylly, 2, 27 [z, 2l [y, 2]z, 9, Ty, 2]){[z, 9], 2. 2],
(10)  [z.y,2,8] = [y, 2,87,
(1) [y, t,2] = [y, 2, 2, t][[2, 1], [y, ],
(12)  [eyy.a,t] = [z2,y. 8y, 2,2, 87
(13)  [ty,a, 2] = [t 2.y, 2y, @, 2, 1) [, 2], [y, 2],
14) =y ta] = [za,y dy, @, 2,07 2], [ y]) 7
(15) [ty 2, 2] = [t 2y, 2)[y, @, 2, 6] [t ), [z, 2])([E, 2], [y, 2])-

ProOF. (8) and (10) follow easily from (1)—(4). (9) is the Jacobi
identity. We have

[vy, 2t] = [y, t][zy, 2][zy, 2, 1]
= [z, t][z, t, ylly, tl]x, 2l [z, 2, y]ly, 2] [z, 2, U] [z, 2, 9, U] [y, 2, 1]

and similarly

[zy, 2t] = [z, 2t][z, 21, y][y, 21]
= [z, t][z, 2][y, [y, 2] [z, 2, t][y, 2, [, ¢, yl[2, 2, Y] [z, 2, £, Y]
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which implies (11). By Jacobi identity we have

2.y, 2,] = [2,y,2] 77 ey, alt = [y, @, 2]z, 2,9 [, 9, [2,2]] 7

< [[z,9), [y 2]z 2l [y, 2l 7z 2, ully, @, 2]

x [[z,y], [z, 2]l[[2, 4], [y, 2][[2, =], [y, 2]]t

= [y, @, 2|z, @, y] " [z, ytly, 2, 2]y, @ 2, 8]
= [y, 2, 2)[z, 2,9, )y, =, 2] [y, z, 2, ]

which gives us (12). (13) follows from

(11)

_1 (12)
[ta%%z] - ! = [

t,2,y,2]ly, 2, t, 2] toa,y, 2lly, z,oz, )7 [ 8], [y, 2] 7
Similarly we have

=yt 1] D [z @ [ 2], [z, 9] [z, g, s @, 2, 8] (8 2], [z )]

and
(11) (12) _
[ty z,2) = [y, 2 2 y), 2.2 = [y, 2y, @t 2] 7 [ ) (2, 2]
(11) _
[t 2.y, 2y, @, 2,07 [t 2], [y, 2)[E v, [z, 2]). 0
We need a characterization of elements of S?)(My). Every element

from S (M) has a form x4 . .. z%-c, where ¢ belongs to the commutator
subgroup (see Lemma 4 of [2]). Moreover, we have

Lemma 3. An element w(z,y) from Fy(My) belongs to S (Ny) if
and only if

w(z,y) = 2y [y, 2]’ [y, 7, 2] [y, 2, Y] [y, z, 2, 2] " [y, 2, 2, Y] [y, 2, y, y]©

where
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PrROOF. We have to prove the equality

w(y, ) = yz*[z,y)" [z, v, ] [, v, 2|2 [z, y, y, Y] " [2, v, y, 2] 2 [2, y, 2, 2] %

= 2y [y*, 2%ly, 2] [y, 2, 2] "2y, 2, 9] [y, @, 2, 2]
[y, z, 2,972y, 2,9,y
= 2y"fy. 2]y, 2] D7y g) B g 2 ) ()
x [y, 2,2, y) D))=y, 2.y, 5] G~ = w(z,y).
The lemma now follows from the fact that in the free nilpotent group a
presentation of the element as a product of basic commutators is unique [7].
O

3. Proofs of main results

Now we are ready to prove our theorems.

PROOF of Theorem 1. It follows from the Lemma 3 that every element
of ) (9My) has a form

2 2 _ e
m4my4m[y7m]8m [y’x7x]6[y,x7y]8m (4m—1) [y;x7x7$]d
X[y, z, x, y]2m2(4m—1)2 v, 2,9, 4] %8m2(4m—1)(4m—2)_d’

where m, ¢, d are arbitrary integers. So, the group S (G) is generated
by three elements

ur = [y,zally eyl we =y ally ey gl
us = 2y ly, Py, v, 2] [y, 2, 2, 2] [y, @, 2, )",
We have ugui # ujusz = u;gulué and commutator of any two 2-symmetric
words from S® () belongs to the centre, so the theorem is proved. [
PROOF of Theorem 2. Every element of S(*) () has a form

U(:U: Y, Z) = xayaza[y’ x]b[zv x]b[z7 y]bvl (:U: y)v2($7 Z)Ug(y, z)’UO(wv Y, Z)

where

U’L ('CL‘7 y) = [y7 x’ m]Ciyl [y’ x? y]Cin [y? ‘/1:7 l‘? x]di’I [y? l‘? '1"’ y}diYQ {y7 CL‘, y’ y}dlg
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and vg is a product of basic commutators on exactly three letters. Simple
calculation using transpositions of generators, shows that v; = vy = v3.
Since v(z,y, 1) belongs to S (M), we can apply Lemma 3. So we have

vi(2,y) = [y, 2,2 [y, 2, 9]y, x, 2, 2] [y, 2, 2, Y] ™[y, 2, y, y| @
and a, b, c1, ca, dy, do, ds satisfy the conditions of Lemma 3. We put

vo(,y, 2) = [y, 2, 2] [2, 2, y]“ [y, @, z, 2] M [y, 3,9, 2] ® [y, z, 2, 2] %

X I:Z? x? x? y]d7 [Z7 x? y7 y]ds [27 x? y? Z]dg

x [z, 2l [y, 2] [z, 9l [y, 2]][[2, 9], [, 2]
and rewrite the element v(y, x, z) as a product of basic commutators. We

consider now only the basic commutators on three letters. By rewriting
Vo we obtain

Uo(y’ €, Z) = [y7 €Z, Z]_ca_c4 [2’7 Z, y]c‘* [y, x,T, Z]_d5_d8 [y7 z,y, Z}_d4_d7
X [y’ T, z, Z]_dﬁ_dg [Zv x,x, y]d8 [27 x,y, y]d7 [Z, r,y, Z]dg
[z, al, [y, 2] 62208 [z, ], [y, ] et

x [[z,9], [z, 2]] 72T

and from v(y, x, 2)(vo(y, x,2)) " we have

3 2(a a a

2,2 [y, 2,2 Gy, 2,9, 2 Gy, 2, 2, 217 G [z, 9), [2, 2]

The same calculation for v(y, z, z) gives us

Uo(ya Zs .Z‘) = [ya x, z]763704 [Z, x, y]CS [y, x,x, z]7d67d9 [y’ x,y, Z}*dz;*d?
X [yv T, z, Z]idkr)idg [Z, Zr,T, y]d6 [Z, x,, y]d4 [z’ TR Z]d5
[l [y e e 2z, g [y, af s 2

x [[2, 9], [z, z]] 2 Hestds

from rewriting vo(y, z, ) and from v(y, z, z)(vo(y, 2, z)) !

[y, 2,21 [y, 2, 2, 2] B[y, 2,9, 2] (g, 2, 2, 2]°()

[z 2], [y, )~ [z 9, Ly 2]) 70 [l o), 2, 2]) 2
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Comparing the powers of basic commutators we obtain
a2:26, c3=cs=c, dy=dg=dy =dg=d, ds =dg = dy, 3¢ =a,
2d + dy :a2<;>, 2y = 0%, €1 + 2 = ¢+ 2d, 2e3 = ¢ + b7,
er+b2+dy=es+c+2d, ea+b>=e1+c+2d, e3+b*>=es+c+dy.

This implies 3c+4d —6dy = 0 and for some integer k the equalities a = 6k,
b=18k% ¢ = 12k% dy = 3*-2k* and d = 2-33k3(6k — 1) —3*- k*. But then
we obtain £%(1 — 6k) = 0 and consequently k = 0 and e; = es = e3 = 0,
which finishes the proof. U

PROOF of Theorem 3. Let w = w(z,y, z,t) belong to S®(Ny) and
let
wy = 2y 2t [y, 2]z, 21°[t, ][z, y]°t, Y]t 2"

Since the words w(x,y, z,1), w(x,y, 1,t), w(z, 1, z,t), w(l,y, z,t) are both
in SG)(M,) we have

w(‘ra Y, z, t) = w2w1($7 Y, z>w1 (.f, Y, t>w1 (.f, 2, t)’IU1(y, 2, t)’w() = w?l - Wo,
where w] is a product of commutators which contain exactly 3 letters and

Wo = [y,x,z,t]fl [vaayv t]f2 [t,.fl),y, Z]fs[[tvx]v [Zay]]f4
x [[t, ), [z, )l [[t, 2]y, ]}

is the product of all basic commutators on exactly 4 letters and ws is trivial
because a = b = 0.

Using Lemmas 1, 2 we rewrite w(y, z, z,t) as a product of basic com-
mutators. Then we obtain

[y 2,2, 1Dy 0 [y, 20 [ 2], [z, )
<t 9], [z, 2]} t, 2], [y, ) .

So we deduce that

2fi+ fo+f3=0, fa=/fs, [s=1/f1, 2f6=f3
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The similar calculations for the element w(y, z,t, x) give

ly, x, z, t]_fl—fz—fa [z, Jj,y,t]fl [t,x,y, Z]fZ[[t, a], [Z’y“_fl—fa
x[[t, 9], [2, $Hf2+f5 [[t, 2], [y, x]]f2+f4'

It follows that f; = fo = f3 = f4 = fs = fe = 0 and Theorem 3 is proved.
O
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