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On characteristically simple conservative algebras

By LÁSZLÓ SZABÓ (Szeged)

and ENDRE VÁRMONOSTORY (Szeged)

Abstract. A classification of finite, characteristically simple, conservative alge-
bras is given and several corollaries are derived. Among others it is shown that every
nontrivial, at least three element, finite, conservative algebra with primitive automor-
phism group is functionally complete, and a nontrivial ρ-pattern algebra where ρ is a
regular relation is functionally complete if and only if the intersection of the equivalence
relations determining ρ is the equality relation.

1. Notions and notations

The notions collected below can be found in various texts and papers;
we present them only for the convenience of the readers.

Let A be a nonempty set. The full symmetric group on A is denoted
by SA. If n ≥ 1 then we put n = {1, . . . , n}, and we write Sn instead of Sn.
A permutation group G ≤ Sn is transitive if for any x, y ∈ n there exists
a π ∈ G such that xπ = y; G is primitive if (n; G) is a simple algebra and
|G| > 1 (if n = 2). If G is a subgroup of SA and H is a subgroup of Sm,
m ≥ 1, then G ↑ H denotes the wreath product of G and H, i.e., G ↑ H is
the permutation group on Am consisting of all permutations of the form

(π1, . . . , πm, τ) : Am → Am, (a1, . . . , am) 7→ (a1τπ1, . . . , amτπm),

where π1, . . . , πm ∈ G and τ ∈ H.
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An operation f on a set A is trivial if it is a projection; f is a con-
servative operation if each nonempty subset of A is a subalgebra of (A; f).
A ternary operation f on A is a majority operation if for all x, y ∈ A

we have f(x, x, y) = f(x, y, x) = f(y, x, x) = x; f is a Mal’cev opera-
tion if f(x, y, y) = f(y, y, x) = x for all x, y ∈ A. An n-ary operation t

on A is said to be an i-th semi-projection (n ≥ 3, 1 ≤ i ≤ n) if for all
x1, . . . , xn ∈ A we have t(x1, . . . , xn) = xi whenever at least two elements
among x1, . . . , xn are equal.

The clone of all term operations and the clone of all polynomial op-
erations of an algebra A are denoted by CloA and PolA, respectively.
The algebra A is said to be trivial (conservative) if every fundamental
operation of A is trivial (conservative).

Two algebras A and B are called term equivalent if they have a com-
mon base set and CloA = CloB; the algebras A and B are equivalent
if A is isomorphic to an algebra term equivalent to B. A finite algebra
A = (A,F ) is functionally complete if PolA is the set of all operations
on A. The automorphism group of A is denoted by AutA. The algebra
A is characteristically simple if (A; F ∪AutA) is simple.

By an automorphism of a relation ρ on A we mean a permutation π

on A such that π and π−1 preserve ρ. The group of all automorphisms of
ρ will be denoted by Aut ρ.

If ρ is an h-ary relation on a set A, π is a mapping from A to a set B,
and m ≥ 1, then ρm, resp., ρπ denote the h-ary relations on Am, resp., on
B defined as follows:

ρm = {((x11, . . . , x1m), . . . , (xh1, . . . , xhm)) :

(x1i, . . . , xhi) ∈ ρ, i = 1, . . . , m},
and

ρπ = {(x1π, . . . , xhπ) : (x1, . . . , xh) ∈ ρ}.

It is easy to check that Aut ρm = Aut ρ ↑ Sm.
A binary reflexive and symmetric relation ρ on A is called central if

ρ 6= A2 and there exists a c ∈ A such that (a, b) ∈ ρ whenever a = c or
b = c. Then the set

C = {c ∈ A : (c, x) ∈ ρ for all x ∈ a}

is called the center of ρ. Clearly C 6= A.
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Let k ≥ 3. A family T = {Θ1, . . . , Θm} (m ≥ 1) of equivalence
relations on A is called k-regular if each Θi (1 ≤ i ≤ m) has exactly k

blocks and ΘT = Θ1∩· · ·∩Θm has exactly km blocks (i.e., the intersection⋂m
i=1 Bi of arbitrary blocks Bi of Θi (i = 1, . . . , m) is nonempty). The

relation determined by T is

λT = {(a1, . . . , ak) ∈ Ak : for every i (1 ≤ i ≤ m), a1, . . . , ak

are not pairwise incongruent modulo Θi}.

Let U = (U ; F ) be a unary algebra and let m,n ≥ 1. For given
mappings σ : m → m, µ : m → n and unary term operations g1, . . . , gm

of U let us define an n-ary operation hσ
µ[g1, . . . , gm] on Um as follows: For

xi = (x1
i , . . . , x

m
i ) ∈ Um, i = 1, . . . , n, set

hσ
µ[g1, . . . , gm](x1, . . . , xn) = (g1(x1σ

1µ), . . . , gm(xmσ
mµ)).

Now the m’th matrix power of U, denoted by U[m], is the algebra with
universe Um and with all the functions hσ

µ[g1, . . . , gm] described above as
fundamental operations.

An algebra A is semi-affine with respect to an elementary Abelian
p-group Ā (p prime), if A and Ā have a common base set A and the
quaternary relation

{(x, y, z, t) ∈ A4 : x− y + z = t}

is a compatible relation of A; if, in addition, x− y + z is a term operation
of A then A is said to be affine with respect to Ā.

Consider an h-ary relation on a set A and let n ≥ 1. We say that
two n-tuples (x1, . . . , xn), (y1, . . . , yn) ∈ An are of the same ρ-pattern if
for any i1, . . . , in ∈ n, (xi1 , . . . , xin)∈ρ if and only if (yi1 , . . . , yin) ∈ ρ.
An n-ary operation f on A is called a ρ-pattern operation if for any
(x1, . . . , xn) ∈ An, f(x1, . . . , xn) = xi for some i, where i depends on
the ρ-pattern of (x1, . . . , xn) only. By a ρ-pattern algebra we mean an al-
gebra on A whose fundamental operations are all ρ-pattern operations. If
ρ is the equality relation then the ρ-pattern operations are the well-known
pattern operations (see [2], [5]).
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2. Results

Our aim is to give a classification of finite, characteristically simple,
conservative algebras and to derive several corollaries. We need the fol-
lowing result from [8].

Theorem 2.1. For a finite, surjective, characteristically simple alge-

bra A one of the following conditions holds:

(2.1.1) A is isomorphic to Bm (m ≥ 1) where B is a functionally com-

plete algebra and AutBm = AutB ↑ Sm.

(2.1.2) A is isomorphic to Bm (m ≥ 1) where B is a simple algebra

that is affine with respect to an elementary Abelian p-group (p is

prime).

(2.1.3) A is equivalent to U[m] (m ≥ 1) for an at least two element unary

algebra U = (U ; G) where G ≤ SU and either |G| = 1 or G is a

primitive permutation group on U or G is a simple group acting

regularly on U .

(2.1.4) A has a compatible binary central relation preserved by every

automorphism.

(2.1.5) A is isomorphic to Bm (m ≥ 1) where B is a simple algebra that

has a compatible bounded partial order ρ such that for every π ∈
AutB we have either ρπ = ρ or ρπ = ρ−1. Moreover, AutBm =
AutB ↑ Sm.

Using this theorem we can characterize the finite, conservative, char-
acteristically simple algebras. First consider some lemmas:

Lemma 2.2. Let A = (A;F ) be an at least two element algebra and

let k ≥ 2 be a positive integer. If Ak is a conservative algebra then either

A is trivial or k = 2 and A is term equivalent to the algebra ({0, 1}; xy +
xz + yz) where ({0, 1}; +, ·) is the two element field.

Proof. Let A be nontrivial algebra and suppose that Ak is conser-
vative for some k ≥ 2. First we establish some properties of the term
operations of A. Let f ∈ CloA be a nontrivial n-ary operation, n ≥ 1.
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Claim 1. f cannot be binary.

Indeed, if n = 2 then since f is not a projection, there exist ai, bi ∈ A,
i = 1, 2, such that f(a1, b1) 6= a1, f(a2, b2) 6= b2 and thus

(f((a1, a2, . . . ), (b1, b2, . . . ))
= (f(a1, b1), f(a2, b2), . . . ) /∈ {(a1, a2, . . . ), (b1, b2, . . . )}

showing that f is not a conservative operation on Ak.

Claim 2. f cannot be a semiprojection.

Let f be a first semiprojection. Since f is not the first projection,
3 ≤ n ≤ |A| and for some pairwise different elements a1, . . . , an ∈ A we
have f(a1, . . . , an) 6= a1. Without loss of generality we can suppose that
f(a1, . . . , an) 6= a2, . . . , an−1. Then

f((a1, a1, . . . ), (a2, a1, . . . ), (a3, a3, . . . ), . . . , (an, an, . . . ))
= (f(a1, a2, a3 . . . , an), f(a1, a1, a3, . . . , an)), . . . )
= (f(a1, a2, a3 . . . , an), a1, . . . )

which shows that f is not a conservative operation on Ak.

Claim 3. f cannot be a Mal’cev operation.

Indeed, if f is a Mal’cev operation and a, b ∈ A, a 6= b, then

f((a, b, . . . ), (b, b, . . . ), (b, a, . . . )) = (f((a, b, b), f(b, b, a), . . . ) = (a, a, . . . )

shows that f is not a conservative operation on Ak.

Claim 4. If f is a majority operation then k = 2 and A is term equiv-
alent to the two element algebra ({0, 1}; xy + xz + yz) where ({0, 1}; +, ·)
is the two element field.

Let f be a majority operation. If k ≥ 3 and a, b ∈ A, a 6= b then

f((a, b, b, . . . ), (b, a, b, . . . ), (b, b, a, . . . ))
= (f((a, b, b), f(b, a, b), (b, b, a), . . . ) = (b, b, b, . . . )

shows that f is not a conservative operation on Ak. If k = 2 and |A| ≥ 3
then let a, b, c ∈ A be pairwise distinct elements. Clearly, f(a, b, c) is
different from at least two of the elements a, b, c, say from a and b. Then

f((a, a), (b, a), (c, b)) = (f(a, b, c), f(a, a, b)) = (f(a, b, c), a)
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shows that f is not a conservative operation on A2. Hence k =2 and |A|=2.
Finally, using Post’s lattice [6], it is easy to check that ({0, 1}; xy + xz +
yz) is the only two element conservative algebra having a majority term
operation where ({0, 1}; +, ·) is the two element field. This completes the
proof of Claim 4.

Now we are in a position to complete the proof of the lemma. Since
A is a nontrivial algebra therefore there is a nontrivial operation in CloA
which is either an idempotent binary operation or a majority operation
or a Mal’cev operation or a semi-projection (see e.g. [4]). Taking into
consideration Claims 1–4, from this our statement follows. ¤

Lemma 2.3. Up to equivalence ({0, 1}; x + y + z) is the only conser-

vative affine algebra where ({0, 1}; +) is the two element group.

Proof. Let A = (A;F ) be a conservative algebra that is affine with
respect to an elementary Abelian p-group (A; +) (p prime). If |A| > 2 and
a, b ∈ A \ {0} are two distinct elements, then a + b 6= a, b and a + b =
a − 0 + b belongs to the subalgebra generated by {a, b} showing that A
is not conservative. Hence |A| = 2. Finally, taking into consideration
Post’s lattice [6] one can easily check that ({0, 1}; x + y + z) is the only
conservative affine algebra on {0, 1}. ¤

Lemma 2.4. If a matrix power U[m] of an at least two element unary

algebra U is conservative then U is trivial and m = 1.

Proof. It follows directly from the definition of matrix powers of
unary algebras. ¤

Theorem 2.5. For a nontrivial, finite, conservative, characteristically

simple algebra A one of the following conditions holds:

(2.5.1) A is functionally complete.

(2.5.2) A is equivalent to ({0, 1}; x + y + z) where ({0, 1}; +) is the two

element group.

(2.5.3) A is equivalent to ({0, 1};xy + xz + yz)2 where ({0, 1}; +, ·) is

the two element field.

(2.5.4) A has a compatible binary central relation preserved by every

automorphism.
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(2.5.5) A is a simple algebra that has a compatible bounded partial

order ρ such that for every π ∈ AutA we have either ρπ = ρ or

ρπ = ρ−1.

Proof. Let A be a nontrivial, finite, conservative, characteristically
simple algebra and apply Theorem 2.1 for A. According to Lemma 2.4,
case (2.1.3) cannot occur, and (2.1.4) is the same as (2.5.4). In case (2.1.2),
taking into consideration Lemma 2.3, we have (2.5.2). In case (2.1.1), by
Lemma 2.2, we have that m = 1, i.e., (2.5.1) holds for A. Finally in case
(2.1.5), again by Lemma 2.2, we have (2.5.3) or (2.5.5). ¤

Corollary 2.6. For a nontrivial, finite, conservative, characteristically

simple algebra A with transitive automorphism group one of the following

conditions holds:

(2.6.1) A is functionally complete.

(2.6.2) A is equivalent to ({0, 1}; x + y + z) where ({0, 1}; +) is the two

element group.

(2.6.3) A is equivalent to ({0, 1}; xy + xz + yz)k where k ≤ 2 and

({0, 1}; +, ·) is the two element field.

Proof. Let A = (A; F ) be a nontrivial, finite, conservative, charac-
teristically simple algebra with transitive automorphism group and apply
Theorem 2.5 for A. Cases (2.5.1) and (2.5.2) are the same as (2.6.1) and
(2.6.2). Case (2.5.3) is the same as (2.6.3) with k = 2. It is known and
easy to see that if a permutation preserves a central relation then it pre-
serves the centre of the relation (see [7]). Therefore, by the transitivity of
AutA, the case (2.5.4) cannot occur.

Finally suppose that (2.5.5) holds for A with the bounded partial
order ρ and let 0 and 1 be the least and greatest element of ρ, respectively.
For any π ∈ AutA we have either ρπ = ρ or ρπ = ρ−1 implying that
{0, 1}π = {0, 1}. Since AutA is transitive, it follows that |A| = 2. Using
Post’s lattice [6], it is easy to check that ({0, 1};xy + xz + yz) is the only
two element conservative algebra on {0, 1} with transitive automorphism
group having the property (2.5.5), i.e., we have (2.6.3) with k = 1. ¤

The next corollary extends classical results on the functional com-
pleteness of finite discriminator algebras ([3], [12]), and more generally,
those concerning pattern algebras ([2]).



432 László Szabó and Endre Vármonostory

Corollary 2.7. Every at least three element nontrivial, finite, con-

servative algebra with primitive automorphism group is functionally com-

plete.

Proof. Since Aut({0, 1}; xy + xz + yz)2 = S2 ↑ S2 is not primitive,
our statement follows from Corollary 2.6. ¤

The next corollaries supplement the results of [9], [10] and [11] where
certain types of ρ-pattern algebras are investigated in the cases when ρ is
a permutation, a binary central relation or a bounded partial order.

Corollary 2.8. Let A be an at least three element finite set and let

ρ be a relation on A such that Aut ρ is a primitive permutation group on

A of composite order. Then for any k ≥ 1, every nontrivial ρm-pattern

algebra on Am is functionally complete.

Proof. Let ρ be a relation on an at least three element set A such
that Aut ρ is a primitive permutation group on A of composite order, and
consider a nontrivial ρm-pattern algebra A on Am, m ≥ 1. First observe
that Aut ρ ↑ Sm ⊆ Aut ρm. On the other hand, since Aut ρ is a primitive
group of composite order, Aut ρ ↑ Sm is primitive (see [1]). It is also easy
to check that Aut ρm ⊆ AutA, and therefore AutA is primitive. Finally
apply Corollary 2.8. ¤

Corollary 2.9. Let A be an at least three element finite set and let

ιh = {(x1, . . . , xh) ∈ A : |{x1, . . . , xh}| ≤ h− 1}, 3 ≤ h ≤ |A|.

Then every nontrivial ιmh -pattern algebra on Am is functionally complete,

m ≥ 1.

Proof. Since Aut ιh = SA, our statement is a special case of Corol-
lary 2.8. ¤

Corollary 2.10. Let λT be k-regular relation on an at least three

element finite set A determined by a k-regular family T of equivalence

relations. Then a nontrivial λT -pattern algebra is functionally complete if

and only if
⋂

T is the equality relation.

Proof. Let λT be k-regular relation on an at least three element
finite set A determined by a k regular family T = {Θ1, . . . Θm} of equiva-
lence relations and consider a nontrivial λT -pattern algebra A. It is easy to
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check that
⋂

T is a congruence relation of A. Therefore if A is functionally
complete then

⋂
T is the equality relation.

Now suppose that
⋂

T is the equality relation. Then there is a bijec-
tion π : A → km such that ρπ = ιmk (see [7]). Therefore A is equivalent
to an ιmk -pattern algebra B on km. By Corollary 2.9, B is functionally
complete implying that A is also functionally complete. ¤
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