
Publ. Math. Debrecen

57 / 3-4 (2000), 435–444

(J2 = ±1)-metric manifolds

By FERNANDO ETAYO (Santander)

and RAFAEL SANTAMARÍA (Santander)

Abstract. Manifolds with a (1, 1) tensor field J such that J2 = ±1, and with
an adapted semi-Riemannian metric g verifying g(JX, JY ) = ±g(X, Y ) have been
studied in the last years, developing four independent geometries. This paper is of
survey character, showing that these geometries are strongly related among them and
with the theory of 3-webs.

Introduction

Manifolds (M,J, g) where J is a (1, 1) tensor field such that J2 = ±1
and g is a (pseudo)-Riemannian metric such that g(JX, JY ) = ±g(X,Y )
for all vector fields X, Y tangent to M , have been studied in the last
decades, developing four different geometries:

(1) If J2 = 1 and g(JX, JY ) = g(X, Y ), then (M, J, g) is an (indefi-
nite) Riemannian almost product manifold.

(2) If J2 = 1 and g(JX, JY ) = −g(X, Y ), then (M, J, g) is an almost
para-Hermitian manifold.

(3) If J2 = −1 and g(JX, JY ) = g(X,Y ), then (M, J, g) is an (indef-
inite) almost Hermitian manifold.

(4) If J2 = −1 and g(JX, JY ) = −g(X,Y ), then (M, J, g) is a Norden
manifold.

In the cases (2), (3) and (4) M is an even-dimensional orientable
manifold, because: in cases (2) and (4) the metric g has signature (n, n); in
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cases (2) and (3), the fundamental form Ω given by Ω(X, Y ) = g(JX, Y ) is
a nondegenerate 2-form, and then (M, Ω) is an almost symplectic manifold;
in cases (3) and (4) (M, J) is an almost complex manifold. Then, one can
expect that there exist some relations among manifolds of types (2), (3)
and (4). (Obviously, (indefinite) Riemannian almost product manifolds
may be odd-dimensional and non-orientable.)

As we have said, these four different geometries have independently
grown. For example, there exist classifications of all of them: see [11]
(resp. [9], [10], [8]) for the manifolds (1) (resp. (2), (3) and (4)) in the
above list.

The main aim of the present paper is to show that there exist some
relations among different (J2 = ±1)-metric structures and with the geom-
etry of 3-webs. The organization of the paper is as follows:

In Section 1, we show the main definitions and results about bipara-
complex structures, which will be used later. A manifold endowed with an
integrable biparacomplex structure is a manifold endowed with a 3-web.

In Section 2, we obtain almost para-Hermitian and biparacomplex
structures on manifolds endowed with other geometries: Norden surfaces
(Proposition 2.1 and Corollary 2.2) and almost complex manifolds endowed
with a purely real distribution (Remark 2.3). As one can see, an almost
complex structure is not enough to obtain an almost para-complex one.

In Section 3, we consider an almost para-Hermitian manifold. We
prove that it does always admit: an almost Hermitian structure (Proposi-
tion 3.1), and a biparacomplex structure (Remark 3.4). We also study in
Theorem 3.3 the case when the four geometries of the beginning of the pa-
per appear: when M is a biparacomplex manifold with respect to both its
almost para-Hermitian structures and the induced almost Hermitian one.
Moreover, para-Kähler manifolds are symplectic, and then compact para-
Kähler manifolds have some of the topological obstructions of compact
Kähler ones: those which are given by the compact symplectic structure
(see Proposition 3.5).

In Section 4 we study the geometry of the tangent bundle of a Rie-
mannian manifold in the light of the results obtained in the above sections.

1. Biparacomplex structures and 3-webs

Cruceanu introduced in [4] the notion of biparacomplex manifold in
the following way: A biparacomplex structure on a manifold M is given by
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two anticommutative almost product structures F and P , i.e., two tensor
fields F and P of type (1, 1) verifying F 2 = P 2 = 1, F ◦P+P ◦F = 0. Then,
there are four equidimensional and supplementary distributions, defined by
the eigenspaces associated with +1 and −1 of the automorphisms F and
P (namely F+, F−, P+, P−). In particular, M has even dimension, F
and P are almost paracomplex structures (because dim F+ = dim F−,
dim P+ = dim P−) and F (resp. P ) is an isomorphism between P+ and
P− (resp. between F+ and F−).

Another equivalent introduction of this structure is also obtained
in [4]; one can study manifolds endowed with three equidimensional sup-
plementary distributions: for all x ∈ M , the tangent space of M at x is
decomposed as TxM = V1(x) ⊕ V2(x) = V1(x) ⊕ V3(x) = V2(x) ⊕ V3(x),
V1, V2, V3 being the distributions. If F is the almost product structure
given by F+ = V1, F

− = V2 and P is the almost product structure given
by P+ = V3, P

− = F (V3) = V4, one easily can check that (M, F, P ) is a
biparacomplex manifold.

Now we can state

Proposition 1.1 [4]. A manifold M is endowed with three supple-
mentary distributions iff there exist two anticommuting almost product
structures on the manifold.

One can easily prove that the following conditions are equivalent: (1)
the Nijenhuis tensor fields of F and P vanish; (2) the distributions Vi are
involutive for all i ∈ {1, 2, 3}. In this case, M is said to be endowed with
a 3-web.

Moreover, if (M, F, P ) is a biparacomplex manifold, then one can
consider J = P ◦ F , which is an almost complex structure on M . So, a
biparacomplex manifold is an even-dimensional orientable manifold which
has two almost product structures and one almost complex one.

One also can define an almost tangent structure K given by: K(X) =
P (X) if X ∈ F+, and K(X) = 0 if X ∈ F−.

Remark 1.2. Let (M,F, P ) be a biparacomplex manifold, then one can
consider F2 : F+ ⊕F− → F− the projection over F−. The couple (F2, P )
of polynomial structures verifies: F 2

2 = F2; P 2 = 1; P ◦ F2 = (1− F2) ◦ P
and it is such that F+ = kerF2; F− = ker(1 − F2); P+ = ker(P − 1).
In [14], a couple (P, B) of tensor fields of type (1, 1) satisfying the above
conditions is called a (P,B)-structure on M associated with the three
distributions F+, F− and P+. It is easily seen that a (P,B)-structure on
M defines three supplementary distributions.

Now we will study metrics adapted to a biparacomplex structure.
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Definition 1.3 (see [13]). Let (M,F, P ) be a biparacomplex manifold
and let g be a pseudo-Riemannian metric on M . Then (M, F, P, g) is
said to be an (ε1, ε2) pseudo-Riemannian biparacomplex manifold , where
ε1, ε2 ∈ {+,−} according to the following relations:

g(FX, FY ) = ε1g(X,Y ); g(PX,PY ) = ε2g(X, Y ).

Example. In [2], Blažić introduces a quotient manifold Pn(B) =
S4n+3

2n+1/S3
1 , where Si

j denotes the sphere of dimension i and pseudo-Rie-
mannian metric of index j, and calls Pn(B) the paraquaternionic projective
space (in a sense different from [6]). Then he proves that Pn(B) admits
three tensor fields E, F , I of type (1, 1) verifying E2 = F 2 = −I2 = 1;
I ◦ E = −E ◦ I = F and g(EX,EY ) = g(FX, FY ) = −g(X, Y ) for all
vectors fields X, Y on Pn(B), where g is a pseudo-Riemannian metric of
signature (n, n) on Pn(B). The author also proves that the Levi–Civita
connection ∇ of g parallelizes E and F . It is easy seen that (E, F ) is a
biparacomplex structure on Pn(B).

A (−,−) pseudo-Riemannian manifold is called a paraquaternionic
Hermitian manifold in [2].

2. Neutral metrics

Let M be a manifold endowed with a neutral metric, i.e., with a
pseudo-Riemannian metric g of signature (n, n). Then one can easily prove
the following

Proposition 2.1. If (M, g) is a neutral metric with dim M = 2, then
M is an almost para-Hermitian manifold.

Proof. One can consider the maximal isotropic distributions V1 and
V2, which verify the following properties for all x ∈ M :

(1) TxM = (V1)x ⊕ (V2)x

(2) dim(V1)x = dim(V2)x = 1
(3) g |(V1)x

= g |(V2)x
= 0.

Then one can define an almost product structure F such that (V1)x

(resp. (V2)x) is the eigenspace associated with +1 (resp. −1), for each
x ∈ M . Then, by a straightforward computation, one concludes that
(M, F, g) is an almost para-Hermitian manifold. ¤

The above proposition cannot be generalized to dim : M > 2 because
one cannot choose two isotropic maximal distributions in a canonical way.
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Corollary 2.2. Every Norden surface admits an almost para-Her-

mitian structure and a (−,+) pseudo-Riemannian biparacomplex struc-

ture.

Proof. Taking into account the above proposition, if (M, J, g) is a
Norden surface, then M admits a para-Hermitian structure (F, g). One
easily checks that both distributions V1 and J(V1) satisfy conditions (1),
(2) and (3) in the proof of Proposition 2.1. Then V2 = J(V1), and
consequently J is an isomorphism between both distributions which are
defined by the eigenspaces of F . Now it is an easy exercise to show
that J ◦ F + F ◦ J = 0, and then (M, F, P = J ◦ F ) is a biparacom-
plex manifold. Finally, taking vector fields X and Y on M , one has
g(FX, FY ) = −g(X, Y ) by the above proposition, and g(PX, PY ) =
g(JFX, JFY ) = −g(FX,FY ) = g(X, Y ), thus proving that (M,F, P, g)
is a (−,+) pseudo-Riemannian biparacomplex manifold. ¤

Remark 2.3. One can obtain a para-Hermitian structure on an al-
most complex 2n-dimensional manifold (M, J) if one has a purely real n-
dimensional distribution (i.e. a distribution D such that J(D)∩D = {0}).
Moreover, in this case M admits a biparacomplex structure, because one
can follow the proof of the above corollary (observe that we have obtained
in the corollary a purely real distribution by means of the neutral metric).
This result has been obtained by Bejan in [1, p. 18].

3. Almost para-Hermitian manifolds

Let (M, F, g) be an almost para-Hermitian manifold. Then the metric
g has signature (n, n) and the dimension of the manifold M is even. One
can define an almost symplectic structure Ω given by Ω(X, Y ) = g(FX, Y )
for all vector fields X, Y on M , and then M is orientable. Moreover,
naming the distributions generated by the eigenspaces of F as F+ and F−,
one has that TM = F+ ⊕ F−, and then (M, Ω) is an almost bilagrangian
manifold , in the sense that it is an almost symplectic manifold with two
transverse Lagrangian distributions.

The authors do not know whether more considerations about other
structures related to this one of an almost para-Hermitian manifold have
been published. Now we will present our results. First of all, we will show
that every almost para-Hermitian manifold admits an almost Hermitian
structure:
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Proposition 3.1. Let (M, F, g) be an almost para-Hermitian manifold

with fundamental form Ω. Then M admits an almost Hermitian structure

(J,G), where G is a Riemannian metric, such that its fundamental form

(or Kähler form) coincides with Ω.

Proof. As is well known (see, e.g., [12, Theorem 8.13], if a man-
ifold M admits a symplectic 2-form Ω then it admits an almost Hermitian
structure (J,G) such that Ω(X, Y ) = G(JX, Y ). The proof finishes when
one takes Ω as the fundamental form of (M, F, g). ¤

Remark 3.2. An almost para-Kähler manifold is an almost para-Her-
mitian manifold (M, F, g) whose fundamental 2-form Ω is closed. Then
(M, J,G) is an almost Hermitian manifold, J being the almost complex
structure induced by F , because Ω is the fundamental form of both struc-
tures J and F .

Following the notation in the above proposition one has an almost
para-Hermitian manifold (M, F, g) and its associated almost Hermitian
structure (M, J,G). Now one can look for a biparacomplex structure on M

and one can ask whether (M,J, g) (resp. (M, F, G)) is a Norden (resp.
Riemannian almost product) manifold. The three problems are related:

Theorem 3.3. Let (M, F, g) be an almost para-Hermitian manifold

and let (M,J,G) be its associated almost Hermitian structure. The fol-

lowing conditions are equivalent:

(1) (M, F, P = J ◦ F ) is a biparacomplex manifold;

(2) (M, J, g) is a Norden manifold;

(3) (M, F,G) is a Riemannian almost product manifold.

Moreover, in this case (M,F, P, g) is a (−,+) pseudo-Riemannian bipara-

complex manifold and (M, F, P, G) is a (+, +) Riemannian biparacomplex

manifold.

Proof. One easily can check that condition (1) is equivalent to
F ◦J +J ◦F = 0, and G being Riemannian this is equivalent to G((F ◦J +
J ◦F )X, Y ) = 0, for all vector fields X, Y on M . Let Ω be the fundamental
form of both F and J . Then one has:

G((J ◦ F )X, Y ) = Ω(FX, Y ) = g(F 2X, Y ) = g(X, Y ).
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Then, condition (1) is equivalent to G((F ◦J)X, Y ) = −g(X, Y ). Now
we can prove the result:
(1)⇔(2): G((F ◦ J)X,Y ) = G(JFJX, JY ) = Ω(FJX, JY ) =

g(F 2JX, JY ) = g(JX, JY ), thus proving the result.
(3)⇒(1): G((F ◦ J)X,Y ) = G(F 2JX, FY ) = G(JX, FY ) =

Ω(X, FY ) = g(FX, FY ) = −g(X, Y ).
(1)⇒(3): G(FX, FY ) = G(JFX, JFY ) = G(FJX,FJY ) =

−g(X, FJY )= g(FX, JY )= Ω(X, JY )= G(JX, JY )= G(X, Y ).

The last part of the proof is trivial, because P is an isometry for both
metrics g and G:

g(PX,PY ) = g(JFX, JFY ) = −g(FX, FY ) = g(X, Y )

G(PX,PY ) = G(JFX, JFY ) = G(FX, FY ) = G(X,Y )

thus finishing the proof. ¤

Remark 3.4. One always can obtain a biparacomplex structure on
an almost para-Hermitian 2n-dimensional manifold (M, F, g): taking into
account Proposition 3.1, one has an almost Hermitian structure (J,G)
on M and a purely real n-dimensional distribution given by F+ (which is
purely real because F+ and JF+ are G-orthogonal). Then, by Remark 2.3
the result follows. Observe that if JF+ = F− then the biparacomplex
structure coincides with that given in the above Theorem 3.3.

A para-Kählermanifold is an almost para-Hermitianmanifold (M,F, g)
such that ∇F = 0, where ∇ is the Levi–Civita connection of g. As is well
known, this condition is equivalent to the following: the 2-form Ω is closed
and the Nijenhuis tensor of F vanishes, i.e., dΩ = 0 and NF = 0. Thus, a
para-Kähler manifold is symplectic and one obtains

Proposition 3.5. If (M, F, g) is a compact para-Kähler manifold of di-

mension 2n, then all the even-dimensional Betti numbers of M are nonzero,

all the odd-dimensional Betti numbers of M are even, and br(M) ≤
br+2(M), 0 ≤ r < n, with the corresponding inequalities for r ≥ n.

Proof. This is a direct consequence of the similar result for compact
symplectic manifolds (see, e.g., [12, Corollary 8.41]). ¤
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4. The tangent bundle of a Riemannian manifold

Let M be an n-dimensional manifold endowed with a metric g and let
∇ be the Levi–Civita connection of g. In [5] the following almost complex
structure on TM is introduced: JXV = −XH , JXH = XV , where X

is a vector field on M and V (resp. H) denotes the vertical (resp. the
horizontal) lift to the tangent bundle (see [15]). One can also introduce the
almost para-complex structure on TM defined by FXV = −XV , FXH =
XH . (The opposite of this structure has been introduced in [3].) Let gD

(resp. gH) be the diagonal (resp. horizontal) lift of g and∇H the horizontal
lift of ∇. Then we have

Proposition 4.1 ([15]). (TM, J, gD) is an almost Kähler manifold and

∇HgD = 0.

One can also prove that (TM,F, gH) is an almost para-Hermitian
manifold and ∇HgH = 0.

Let Ω be the almost symplectic structure of (TM,F, gH) and Ω̄ the
fundamental form of (TM, J, gD). One can obtain:

Ω(XV , Y V )=0=Ω(XH , Y H), Ω(XV , Y H)=−(g(X, Y ))V =−Ω(XH , Y V ),

Ω̄(XV, Y V )=0=Ω̄(XH, Y H), Ω̄(XV, Y H)=−(g(X, Y ))V =−Ω̄(XH, Y V ).

Then, the almost Hermitian structure (TM, J, gD) is associated with the
almost para-Hermitian structure (TM,F, gH) in the sense of Proposi-
tion 3.1.

Let P be the almost para-complex structure on TM given by P =
J ◦ F . One can check that (TM,F, P ) is a biparacomplex manifold and
then, by Theorem 3.3, (TM, J, gH) is a Norden manifold and (TM,F, gD)
is a Riemannian almost product manifold. The connection ∇H is well-
adapted to the geometry of TM , because one has

Theorem 4.2 ([7, Theorem 1]). ∇H is the unique connection on TM

such that

∇HJ = 0, ∇HF = 0, ∇HgD = 0, ∇HgH = 0.

It is easily seen that ∇HP = 0.
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Taking into account that ∇ is symmetric, one has

Tor∇H (XV , Y H) = (Tor∇(X,Y ))V = 0,

for any every vector fields X, Y on M , where Tor∇H is the torsion ten-
sor field of ∇H , thus proving that ∇H is the canonical connection of the
biparacomplex structure (F, P ). This connection is also called the Chern
connection of the 3-web defined by the distributions (F+, F−, P+).

If ∇ is locally flat, i.e., Tor∇ = 0 and R∇ = 0, where R∇ denotes the
curvature tensor of ∇, then ∇H is also locally flat, taking into account the
following

Proposition 4.3 ([15, Proposition 7.3, 7.4]). Let ∇ be a symmetric

connection. Then the connection ∇H is symmetric if and only if R∇ = 0.

In this case, one also has R∇H = 0.

Let us assume that (M, g) is locally flat, and that ∇ is the Levi–
Civita connection of g. Then, ∇H is the Levi–Civita connection of gD and
gH . Taking into account that ∇H is symmetric and that ∇HJ = ∇HF =
∇HP = 0, we can conclude that NJ = NF = NP = 0, where NK denotes
the Nijenhuis tensor field of the (1, 1)-tensor field K.

We see that (TM, J, gD) is a Kähler manifold and (TM, F, gH) a
para-Kähler manifold. Moreover, (TM, F, P, gH) is a (−, +) Kähler bi-
paracomplex manifold and (TM, F, P, gD) a (+, +) Kähler biparacomplex
manifold.
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