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The homogeneous lift
to the tangent bundle of a Finsler metric

By RADU MIRON (Iaşi)

Abstract. Notice that the Sasaki–Matsumoto lift
0G from (1.4) of a Finsler metric

tensor g is not homogeneous on the fibers of the tangent bundle. We correct this incon-
venient by introducing a new kind of lift G of g, given by (2.1), which is 0-homogeneous.

Some properties of the Riemannian space (gTM,G) are studied. The almost complex
structure F, from (3.1) is introduced. It has the property of homogeneity and (G,F)
is an almost Hermitian structure. We prove that in fact (G,F) is a conformal almost
Kählerian structure. It depends only on the fundamental function of the Finsler space
considered.

Introduction

The Sasaki–Matsumoto lift
0

G [6], [11] to the manifold T̃M = TM \
{O} of a Finsler metric tensor g is extremely important in the study of the

geometry of a Finsler space Fn = (M, F (x, y)).
0

G determines a Riemann-
ian structure on T̃M , which depends only on the fundamental function F .

It is not difficult to see that
0

G does not have a Finslerian meaning. More

precisely,
0

G is not homogeneous with respect to the vertical variables yi.
Consequently, we cannot study global properties – as the Gauss–Bonnet
Theorem – for the Finsler space Fn by means of this lift [4], [5]. Also, since

the two terms of the metric
0

G do not have the same physical dimensions,
it does not satisfy the principles of the Post-Newtonian Calculus and so it
is not convenient for a gauge theory.
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In the present paper, using the same ideas as in the Riemannian case
[10] we define a new lift G, (2.1), to T̃M , which depends only on the fun-
damental function F of the Finsler space Fn and which is 0-homogeneous
on the fibers of the tangent bundle TM .

Some geometrical properties of the space (T̃M,G) are studied by
means of the Cartan nonlinear connection of the space Fn: the canon-
ical metrical N -connection, the Levi–Civita connection of G etc.

We introduce the natural almost complex structure F by the formulae
(3.1). It has the property of homogeneity and depends only on F . The
main result is as follows: The space (T̃M,G,F) is almost Hermitian and its
associated almost symplectic structure θ is such that dθ = 0 (modulo θ).
We prove that this space is in fact conformal almost Kählerian. It repre-
sents the geometrical model of the Finsler space Fn with respect to the
homogeneous lift G.

1. Preliminaries

Let Fn = (M, F ) be a Finsler space, M being a real n-dimensional
differentiable manifold and F : TM → R its fundamental function. F is
of C∞-class on T̃M = TM \{O} and continuous on the null section of the
natural projection π : TM → M . The fundamental tensor field of Fn is

(1.1) gij(x, y) =
1
2

∂2F 2

∂yi∂yj
, ∀(x, y) ∈ T̃M.

The regular Lagrangian F 2(x, y) determines the canonical spray S =
yi ∂

∂xi − 2Gi ∂
∂yi with the coefficients Gi = 1

2γi
jk(x, y)yjyk, where γi

jk(x, y)
are the Christoffel symbols of the metric tensor gij(x, y). The Cartan
nonlinear connection N of the space Fn has the coefficients N i

j = ∂Gi

∂yj .

N determines a distribution on T̃M , which is supplementary to the
vertical distribution V . We have the following direct sum of linear spaces:

(1.2) Tu(T̃M) = Nu ⊕ Vu, ∀u ∈ T̃M.

An adapted basis to Nu and Vu is given by ( δ
δxi ,

∂
∂yi ), (i = 1, . . . , n),

where

(1.3)
δ

δxi
=

∂

∂xi
−N j

i (x, y)
∂

∂yj
.
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The dual basis is (dxi, δyi) with

(1.3)’ δyi = dyi + N i
j(x, y)dxj .

M. Matsumoto [6] extended to Finsler spaces Fn the notion of Sasaki
lift, considering the tensor field

(1.4)
0

G(x, y) = gij(x, y)dxi ⊗ dxj + gij(x, y)δyi ⊗ δyj , ∀(x, y) ∈ T̃M.

It easily follows that
0

G is a Riemannian metric globally defined on
T̃M and depending only on the fundamental function F of the Finsler
space Fn.

Let us consider the homothety ht : (x, y) → (x, ty), t ∈ R∗ on the

fibers of the tangent bundle TM . Then
0

G is transformed as follows:

0

G ◦ ht(x, y) = gij(x, y)dxi ⊗ dxj + t2gij(x, y)δyi ⊗ δyj , ∀t ∈ R∗.

We see that the Sasaki–Matsumoto lift
0

G is not homogeneous on the
fibers of the tangent bundle TM .

Next we consider the F(T̃M)-linear mapping F : χ(T̃M) → χ(T̃M),
defined by

(1.5)
0

F
(

δ

δxi

)
= − ∂

∂yi
,

0

F
(

∂

∂yi

)
=

δ

δxi
, (i = 1, . . . , n).

As
0

F maps the 1-homogeneous vector field δ
δxi onto 0-homogeneous

vector fields ∂
∂yi , (i = 1, . . . , n), it does not preserve the property of ho-

mogeneity of the vector fields on T̃M .

It is known that
0

F is an almost complex structure on T̃M depending
only on the fundamental function F which becomes a complex structure
on T̃M if and only if the horizontal distribution N is integrable.

Now let us consider the Cartan–Poincaré forms

(1.6)
◦
ω =

1
2

∂F 2

∂yi
dxi,

◦
θ = gij(x, y)δyi ∧ dxj .

Evidently,
◦
ω and

◦
θ are globally defined on T̃M and

◦
θ is an almost

symplectic structure on T̃M .
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As is known, between
◦
ω and

◦
θ there is the relation

(1.7) d
◦
ω =

◦
θ,

d being the exterior differential operator.

It follows that
◦
θ is a closed 2-form. In other words,

◦
θ is a symplectic

structure. Remarking that the pair (
0

G,
0

F) is an almost Hermitian structure

having
◦
θ as its associated symplectic structure, we recall the known result

that H2n = (T̃M,
0

G,
0

F) is an almost Kählerian space.
In the terminology of the book [7], H2n is the almost Kählerian model

on T̃M of the Finsler space Fn considered. This is important for the
geometry of the Finsler space Fn.

2. The homogeneous lift to T̃M of a Finsler metric

We define a new lift G on T̃M of the fundamental tensor field gij of
a Finsler space Fn = (M, F ) which satisfies the following conditions:
1◦ G is 0-homogeneous with respect to yi;
2◦ It depends only on the fundamental function F ;
3◦ In the mechanical interpretation the terms ofG have the same physical

dimensions.

Definition 2.1. By the homogeneous lift to T̃M of the fundamental
tensor field gij of a Finsler space Fn we mean the following tensor field
on T̃M :

(2.1)
G(x, y) = gij(x, y)dxi ⊗ dxj +

a2

‖y‖2 gij(x, y)δyi ⊗ δyj ,

∀(x, y) ∈ T̃M,

where a > 0 is a constant and

(2.2) ‖y‖2 = gij(x, y)yiyj = F 2(x, y).

The constant a is required by the applications, in order that the phys-
ical dimension of the terms of G be the same.

We get without difficulty the
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Theorem 2.1. The pair (T̃M,G) is a Riemannian space. G is 0-homo-

geneous on the fibers of TM and it depends only on the fundamental

function F (x, y) of the Finsler space Fn.

We consider G as a (h, v)-metric, that is,

G=GH+GV, GH= gij(x, y)dxi ⊗ dxj, GV = hij(x, y)δyi ⊗ δyj(2.3)

hij =
a2

‖y‖2 gij(x, y).(2.4)

Consequently, we can apply the theory of the (h, v)-Riemannian met-
ric on T̃M investigated by R. Miron and M. Anastasiei in the books [7]
and [8].

The equation F (x0, y) = a determines the so called indicatrix of the
Finsler space Fn in the point x0 ∈ M , [6].

Therefore, we have the

Proposition 2.1. The homogeneous liftG of the metric tensor gij(x, y)
coincides with the Sasaki–Matsumoto lift of gij(x, y) on the indicatrix

F (x0, y) = a for every point x0 ∈ M .

A linear connection D on T̃M is called a metrical N -connection with
respect to G, if DG = 0 and D preserves by parallelism the horizontal
distribution N .

As we know [7], [8], there exist the metrical N -connections on T̃M .
We represent a linear connection D on T̃M in the adapted basis in the
following form:

(2.5)
D δ

δxk

δ

δxj
=

H

Li
jk

δ

δxi
+ L̃i

jk

∂

∂yi
, D δ

δxk

∂

∂yj
=

˜̃
Li

jk

δ

δxi
+

V

Li
jk

∂

∂yi
,

D ∂

∂yk

δ

δxj
=

H

Ci
jk

δ

δxi
+ C̃i

jk

∂

∂yi
, D ∂

∂yk

∂

∂yj
=

˜̃
Ci

jk

δ

δxi
+

V

Ci
jk

∂

∂yi
.

where (
H

Li
jk, L̃i

jk,
˜̃
Li

jk,
V

Li
jk,

H

Ci
jk, C̃i

jk,
˜̃
Ci

jk,
V

Ci
jk) are the coefficients of D.

By a direct calculation we obtain
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Theorem 2.2. There exist the metrical N -connections D on T̃M with

respect to G, which depend only on the fundamental function F (x, y) of

the Finsler space Fn. One of them has the following coefficients:

(2.6)





L̃i
jk =

˜̃
Li

jk = C̃i
jk =

˜̃
Ci

jk = 0

H

Li
jk =

1
2
gis

(
δgsk

δxj
+

δgjs

δxk
− δgjk

δxs

)

V

Li
jk =

1
2
his

(
δhsk

δxj
+

δhjs

δxk
− δhjk

δxs

)

H

Ci
jk =

1
2
gis

(
∂gsk

∂yj
+

∂gjs

∂yk
− ∂gjk

∂ys

)

V

Ci
jk =

1
2
his

(
∂hsk

∂yj
+

∂hjs

∂yk
− ∂hjk

∂ys

)
.

Of course, the structure equations of the previous connection can be
written as in the books [7], [8].

For us it is important to express the coefficients( H

Li
jk, L̃i

jk,
˜̃
Li

jk,
V

Li
jk,

H

Ci
jk, C̃i

jk,
˜̃
Ci

jk,
V

Ci
jk

)
of the Levi–Civita connection of

the metric G.
To this aim, expressing in the adapted basis the conditions

XG(Y, Z)−G(DXY,Z)−G(Y,DXZ) = 0

DXY −DY X − [X, Y ] = 0

and using the torsions Ri
jk and P i

jk of the Cartan connection CΓ(N), we
get:

Theorem 2.3. The Levi–Civita connection of the Riemannian metric

G, in the adapted basis, has the following coefficients:

(2.7)





H

Li
jk,

V

Ci
jk,

H

Ci
jk =

˜̃
Li

jk = Ci
jk + 1

2gishmjR
m
sk,

V

Li
jk = F i

jk − 1
2 (δi

sδ
m
j − gsjg

im)P s
km, C̃i

jk =
V

Li
jk −Bi

jk,

L̃i
jk = −hisCskj + 1

2Ri
jk,

˜̃
Ci

jk = −hjsg
imC̃s

mk
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where
H

Li
jk,

V

Ci
jk are from (2.6) and (F i

jk, Ci
jk) are the coefficients of the

Cartan metrical connection of the Finsler space Fn.

Using the previous Levi–Civita connection we can study the main
geometrical properties of the space (T̃M,G).

3. The almost Hermitian structure (G,F)

The almost complex structure
0

F defined by (1.5) does not preserve the
property of homogeneity of the vector fields. It applies the 1-homogeneous
vector fields δ

δxi , (i = 1, . . . , n) onto the 0-homogeneous vector fields ∂
∂yi ,

(i = 1, . . . , n).
We can eliminate this inconvenient by defining a new kind of almost

complex structure F : χ(T̃M) → χ(T̃M), setting

(3.1) F
(

δ

δxi

)
= −‖y‖

a

∂

∂yi
, F

(
∂

∂yi

)
=

a

‖y‖
δ

δxi
, (i = 1, . . . , n).

Taking into account that the norm of the Liouville vector field, ‖y‖,
and the Cartan nonlinear connection N are defined on T̃M , it is not diffi-
cult to prove

Theorem 3.1. The following properties hold:

1◦ F is a tensor field of type (1.1) on T̃M .

2◦ F ◦ F = −I.

3◦ F depends only on the fundamental function F of the Finsler

space Fn.

4◦ The F(T̃M)-linear mapping F : χ(T̃M) → χ(T̃M) preserves the

property of homogeneity of the vector fields from χ(T̃M).

It is important to know when is F a complex structure.

Theorem 3.2. F is a complex structure on T̃M if and only if the

Finsler space Fn has the following property:

(3.2) Rh
ij =

1
a2

(yiδ
h
j − yjδ

h
i ).
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Proof. The Nijenhuis tensor NF:

NF(X, Y ) = F2[X, Y ] + [FX,FY ]− F[FX, Y ]− F[X,FY ]

vanishes if and only if the previous equations hold. ¤

Remark. If Fn is reducible to a Riemannian space, then the equation
(3.2) says that it is of constant sectional curvature.

The pair (G,F) has remarkable properties:

Theorem 3.3. We have:

1◦ (G,F) is an almost Hermitian structure on T̃M and depends only on

the fundamental function F of the Finsler space Fn.

2◦ The associated almost symplectic structure θ has the expression

(3.3) θ =
a

‖y‖
◦
θ

where
◦
θ is the symplectic structure (1.6).

3◦ The following formula holds:

(3.3)’ dθ = − a

‖y‖d‖y‖ ∧ θ.

4◦ Consequently, (G,F) is a conformal almost Kählerian structure and

we have

dθ = 0 (modulo θ).

The conformal almost Kählerian space (T̃M,G,F) is the geometrical
model of the Finsler space Fn with respect to the homogeneous lift G.

The previous considerations are important for the study of Finsle-
rian gauge theory, [1]–[3], and in general in the Geometry of the Finsler
space Fn.
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The homogeneous lift to the tangent bundle of a Finsler metric 453

References

[1] P. L. Antonelli and B. C. Lackey, The Theory of Finslerian Laplacians and
Applications, Kluwer Academic Publ. 459 (1998).

[2] P. L. Antonelli and R. Miron (eds), Lagrange and Finsler Geometry, Applica-
tions to Physics and Biology, Kluwer Acad. Publ. FTPH no. 76, 1996.

[3] G. S. Asanov, Finsler geometry, Relativity and Gauge theory, D. Reidel Publ.
Co., Dordrecht, 1985.

[4] D. Bao, S. S. Chern and Z. Shen, Contemporary Mathematics, vol. 196, A.M.S.,
1996.

[5] M. P. do Carmo, Riemannian geometry, Birkhäuser, Boston, 1992.
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