
Publ. Math. Debrecen

57 / 3-4 (2000), 499–508

Local almost contact metric 3-structures

By PAOLA MATZEU (Cagliari) and LIVIU ORNEA (Bucharest)

Abstract. We study an odd-dimensional analogue of quaternion-Kähler geome-
try. We show that such manifolds are Einstein with positive scalar curvature, hence, if
complete, they are compact with finite fundamental group. Moreover, under some reg-
ularity assumption, they fiber with 3-dimensional spherical space forms over Einstein
orbifolds with positive scalar curvature. As a by-product, we derive a non-existence
result for a certain type of real hypersurface of a quaternion-Kähler manifold.

1. Introduction

One could see in recent years a renewed interest concerning (almost)
contact 3-structures, especially motivated and stimulated by the work of
Ch. Boyer, K. Galicki and B. Mann ([Bo-Ga-Ma]). They succeeded
in throwing a new light on 3-Sasakian geometry, constructing a wide class
of compact examples with different homotopy types. On the other hand,
they made precise the relation between 3-Sasakian geometry, quaternionic
geometry and complex (Kähler) geometry. One of their major novelties
was to work in the orbifold category. 3-Sasakian structures are induced
on totally umbilical real hypersurfaces of hyperkähler manifolds. Also,
the cone over a 3-Sasakian manifold can be canonically endowed with a
hyperkähler structure. In the same spirit G. Hernandez was interested
in manifolds carrying three “nested” f -structures ([He]).

In the same time, the study of weaker (than the Sasakian ones) ge-
ometrical conditions imposed to a contact 3-structure was developed by
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other authors: Geiges and Thomas related hypercontact structures to
gauge theory ([Ge-Th]) and A. Banyaga continued this line (cf. [Ba]).

All these structures share some common features: they are global,
thus being odd-dimensional analogues of hyperhermitian or hyperkähler
geometries and they rely on a specific, good definition of normality de-
rived from the structure induced on a real hypersurface (usually totally
umbilical) of an appropriate type of hyperhermitian manifold.

On the contrary, in this note we try to understand the local case.
A previous attempt was made in [Or-Pi] where a notion of local 3-Sasakian
structure was introduced, arising from the study of locally conformal
quaternion-Kähler structures. We also want to propose a natural odd-
dimensional analogue of quaternion-Kähler structures. A similar local
structure was studied by A. Bejancu under the name of generalized 3-
Sasakian structures, [Be], but his viewpoint is that of submanifolds theory.

In the sequel all manifolds we deal with are connected. The manifolds
and the geometric objects they carry on are of differentiability class C∞.

2. The normality conditions

Let us first introduce

Definition 2.1. Let (M, g) be a Riemannian manifold of real dimension
4n+3 endowed with: a rank 3 subbundle Ξ of TM , a rank 3 subbundle Φ
of End(TM) such that, on any trivializing open set U good for both Ξ and
Φ, there exist a local orthonormal basis ξ1, ξ2, ξ3 for Ξ and a local basis
ϕ1, ϕ2, ϕ3 for Φ satisfying the relations (here and in the sequel ηi = ξ[

i ):

ϕiϕj − ηj ⊗ ξi = −ϕjϕi + ηi ⊗ ξj = εijkϕk,(1)

ηiϕj = εijkηk, ϕiξj = εijkξk

ϕ2
i = − Id+ηi ⊗ ξi, ηiϕi = 0, ϕiξi = 0,(2)

g(ϕi · , ϕi · ) = g( · , · )− ηi(·)ηi(·),

where (i, j, k) is any permutation of (1, 2, 3). Then we say that (M, g) has
a local almost contact metric 3-structure.

The global version of this definition was given in [Ku].
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Following the same method as was already done for 3-Sasakian spaces
(cf. [Bo-Ga-Ma]), we now consider the product N = M×R+ endowed with
the cone metric G = t2π∗1g + π∗2dt2 where π1 (resp. π2) is the canonical
projection on M (resp. R+). One can define, locally, three almost complex
structures as follows:

Ii

(
X, f

d

dt

)
=

(
ϕiX +

f

t
ξi,−tηi(X)

d

dt

)

where X ∈ X (M) and f is a real function on N . It is easily seen that

IiIj + IjIi = −2δij , G(Ii · , Ii · ) = G( · , · )

thus, denoting with H the subbundle of End(TN) generated by the Ii,
(N, G, H) is a quaternion Hermitian manifold. We request that this struc-
ture be quaternion-Kähler. Hence, letting D (resp. ∇) be the metric con-
nection of G (resp. g) we must have DH = H. Together with the relations
between D and ∇ (see [On, p. 206]):

(3) D d
dt

d

dt
= 0, D d

dt
X = DX

d

dt
=

1
t
X, DXY = ∇XY − tg(X,Y )

d

dt

this implies the existence of some local one-forms αi satisfying

DIi = αk ⊗ Ij − αj ⊗ Ik.

On the other hand, the well-known relations between D and ∇ imply that
the pulled-back forms π∗αi (for simplicity denoted equally αi) satisfy the
equation:

(4) ∇ϕi = Id⊗ηi − g ⊗ ξi + αk ⊗ ϕj − αj ⊗ ϕk.

This motivates the following

Definition 2.2. A local almost contact metric 3-structure is called nor-
mal if on any trivializing open set good for both Φ and Ξ there exist three
local one forms αi satisfying (4).



502 Paola Matzeu and Liviu Ornea

Remark 2.1. 1) On a quaternionic Hermitian manifold (N, G, H) the
two-forms ωi(X, Y )= G(X, IiY ) are local, but the four-form ω =

∑3
i=1 ωi∧

ωi is global and the quaternion-Kähler condition is equivalent with the
parallelism of ω. Similarly, on a manifold with a local almost contact
metric 3-structure one defines the local two-forms ψi(X,Y ) = g(X, IiY )
and these produce the global four-form ψ =

∑3
i=1 ψi ∧ ψi. One may

directly compute the following expression for the covariant derivative of
ψ : 2∇T ψ = −γ ∧ ∑3

i=1 ψi ∧ ηi, where γ = iT g. Then, for T ∈ Ξ⊥,
(∇T ψ)(ξ1, ξ2, ξ3, T ) = −3. Hence, the normality condition does not imply
the parallelism of ψ.

2) Moreover, let us denote αij := αi ◦ ϕj and, abusing a little, put
αi∧ϕi = αi⊗ϕi−ϕi⊗αi. Now a straightforward computation proves that
the Nijenhuis tensors Nϕi of ϕi on a normal local almost contact metric
3-structure satisfy the following three conditions:

Nϕi + dηi ⊗ ξi = αki ∧ ϕj − αji ∧ ϕk − αj ∧ ϕj − αk ∧ ϕk.

3) The following equations are, also, a consequence of normality:

(5) ∇ξi = ϕi + αk ⊗ ξj − αj ⊗ ξk.

3. Embedding in quaternion-Kähler manifolds

Retracing our steps we immediately find that our manifolds can be
embedded as real hypersurfaces of quaternion-Kähler manifolds.

Proposition 3.1. If M has a normal local almost contact metric 3-

structure, then M × R+ with the cone metric has a natural quaternion-

Kähler structure.

As in [Bo-Ga], this allows us to give the following:

Equivalent definition 3.1. A 4n+3-dimensional Riemannian manifold
(M, g) admits a normal local almost contact metric 3-structure if and only
if the holonomy of the cone metric G on N = M × R+ is included in
Sp(n + 1) · Sp(1).

For the “only if part” one has only to note that the hypothesis on
the holonomy is equivalent to (N,G) being quaternion Kähler. Then,
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identifying M with the slice M × {1} of N , one defines a local almost
contact 3-structure by:

(6) ξi = Ii
d

dt
, ϕiX = (IiX)t

for any X tangent to M (here Y t denotes the tangent part to M of the
vector field Y ). The rest of the proof proceeds as in the previous paragraph.
The “if part” is obvious.

From the third relation in (3) we see that the second fundamental
form of the embedding of M in the cone is h = −tg, hence the embedding
is totally umbilical, with mean curvature vector −t.

On the other hand, let M be an oriented real hypersurface of a
quaternion-Kähler manifold N , with local unit normal vector field C. Then
a local almost contact 3-structure is canonically induced on M by

(7) ϕiX = tan(IiX), ξi = −IiC.

Note that the previous embedding of M in the cone M ×R+ is not of
this type, because in (6) d

dt is not a unit vector field for the cone metric.
Letting A be the shape operator of the hypersurface, the Gauss and

Weingarten formulae imply:

(∇Xϕi)Y = ηi(Y )AX − g(AX, Y )ξi + αk(X)ϕj(Y )−αj(X)ϕk(Y )(8)

∇Xξi = ϕiAX + αk(X)ξj − αj(X)ξk.(9)

If M is totally umbilical, with A = Id, it is trivially normal. Conversely,
suppose the induced structure on M normal. Then there exist the local
one-forms βj such that the equations (4), (5) are satisfied with β instead
of α. Comparing the expressions of (∇ξiϕi)ξi obtained from (4) and (8)
we derive

αk(ξi) = βk(ξi), Aξi = aiξi.

Hence the one-forms αi, βi coincide, respectively, on Ξ. We then let X be
normal to Ξ and using the expressions of (∇Xϕi)ξi as well as the symmetry
of the shape operator we conclude αj(X) = βj(X). Thus, the normality
of the hypersurface implies the equality of the considered one-forms. This
moreover yields ϕiAY = ϕiY for any Y ∈ X (M). Letting Y = ξj we easily
infer that A is the identity on Ξ. If Y is in Ξ⊥, then ϕiY ∈ Ξ⊥, and the
same holds for AY . Finally, from ϕ2

i AY = ϕ2
i Y we obtain that A = Id

on Ξ⊥ too. The two constructions are one-to-one. Summing up we have
proved:
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Theorem 3.1. The local almost contact metric structure induced by
(7) on a real orientable hypersurface of a quaternion-Kähler manifold is
normal if and only if the hypersurface is totally umbilical with constant
mean curvature 1.

Remark 3.1. This result is to be compared with the similar one in
[He], p. 320 and with Theorem 1 in [Be].

Recall that totally umbilical submanifolds with constant mean curva-
ture are particular cases of extrinsic spheres, a type of submanifold studied
by many authors, e.g. [Ch], p. 69 and forward.

4. Main properties

From now on (M, g, Ξ,Φ) will denote a 4n+3-dimensional Riemannian
manifold endowed with a normal local almost contact metric 3-structure.
The embedding procedure in the cone can be used to determine the cur-
vature properties of M .

3-Sasakian manifolds are always Einstein. This is the case for our
structure too. Precisely:

Proposition 4.1. Normal local almost contact metric 3-structures are
Einstein with positive scalar curvature 4n + 2

Proof. We embed M in N = M × R+ as above. Then (N, G) is
warped product with warp function f = t. The Ricci tensor of N is com-
puted in [On], p. 211. Particularly, RicN (X, d

dt ) = 0 for any projectable
X on M . As G is known to be Einstein, this implies RicN = 0. Moreover,

RicM (X, Y ) = RicN (X∗, Y ∗) + G(X∗, Y ∗)F,

where

F =
∆
f

+ (dimM − 1)
G(grad f, grad f)

f2
,

and X∗ are projectable vector fields on X, Y . In our case F = 4n + 2,
hence the desired result. ¤

From Myers’ theorem we now deduce:

Corollary 4.1. Complete manifolds carrying a normal almost contact
metric 3-structure are compact, with finite fundamental group.

Let us now recall the following result of N. Koiso:
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Theorem 4.1 (cf. [Ko]). Let (M, g) be a totally umbilical Einstein hy-
persurface in a complete Einstein manifold (M, g). Then the only possible
cases are:

(a) g has positive Ricci curvature. Then g and g have constant sec-
tional curvature;

(b) g has negative Ricci curvature. If M is compact or (M, g) is
homogeneous, then g and g have constant sectional curvature;

(c) g and g have zero Ricci curvature.

Note that this does not apply to the embedding in the cone, because
the cone metric is not complete.

However, combining Koiso’s theorem with our previous result and
with Theorem 3.1, we obtain the following statement (which can also be
viewed as a non-existence result):

Proposition 4.2. Any totally umbilical real hypersurface, with mean
curvature 1, of a complete quaternion-Kähler manifold is necessarily a
positive space form. Moreover, the ambient space is a space form too.

Hence, more interesting examples can be looked for as hypersurfaces
of non-complete quaternion-Kähler manifolds.

The above is to be compared to other non-existence results for hyper-
surfaces of quaternion-Kähler manifolds, e.g. [Ort-Pe].

We collect some computational facts in the next:

Lemma 4.1. For any trivializing open set U good for both Ξ and Φ
one has:

αj(ξj) = αk(ξk) for any j 6= k,(10)

[ξi, ξj ] = −2(1− αj(ξj))ξk + αk(ξj)ξj + αk(ξi)ξi.(11)

Moreover, ξi are Killing if and only if αk(ξi) = 0 for any k 6= i.

Proof. We compute the Lie derivative of the metric on the direction
of ξi. The result is:

(12) Lξig = αk ⊗ ηj − αj ⊗ ηk + ηj ⊗ αk − ηk ⊗ αj .

Applying on (ξj , ξk) we get:

(Lξig)(ξj , ξk) = −αj(ξj) + αk(ξk).

Now the left hand side of the above is symmetric and the right hand side
is antisymmetric. This proves (10) and the last assertion. As for (11), it
is a direct consequence of (5). ¤



506 Paola Matzeu and Liviu Ornea

5. The leaves of Ξ

From (11) it is clear that Ξ determines a 3-dimensional foliation on M .
Let F be any of its leaves. From (5) we see that F is totally geodesic in M .
A direct computation of the curvature tensor of M shows that R(X, Y )ξi

is tangent to F for X, Y ∈ X (M) any i. On the other hand, for any
totally geodesic submanifold P p of a Riemannian manifold P

p+k
one has

the relation:

RicP (X, Y ) = RicP (X,Y )−
p+k∑
p+1

g(RP (X, Ei)Y,Ei)

where {Ei} is a local orthonormal basis adapted to the submanifold. Hence,
if one knows that RP (X,Ei)Y is tangent to the submanifold, the last term
vanishes and the two Ricci tensors are equal on the submanifold. It is the
case for F in P (just put X = ξi, Y = ξj). As any 3-dimensional Einstein
manifold has constant scalar curvature we may state:

Proposition 5.1. The leaves of the foliation generated by Ξ are space
forms of positive sectional curvature 2n + 1.

Hence, if compact, the leaves are spherical space forms S3/Γ.
A direct computation of the curvature tensor of M gives

RicM (Y, ξi) = 2(2n + 1)ηi(Y ) + 2 {dαk + (αi ∧ αj)} (ξj , Y )

− 2 {dαj − (αi ∧ αk)} (ξk, Y ).

Together with the above proposition, this proves that the local one-
forms αi are subject to some conditions, their restrictions to F (denoted
by the same letters) must satisfy the following equations:

(dαi + αk ∧ αj)(ξj , ξi) = 0

(dαi + αk ∧ αj)(ξk, ξi) = 0

(dαi + αk ∧ αj)(ξk, ξj) = λ

and similar ones for dαj , dαk (here and in the sequel, (ijk) is a circular
permutation of (123)), where λ = 1

2 ScalM −(2n + 1). Altogether, this
group of 9 formulae is equivalent with:

dαi + αk ∧ αj = ληk ∧ ηj .
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From (11) we see that Lξg(X, Y ) = 0 for any X, Y orthogonal to Ξ.
Hence the metric is projectable on the leaf space, when this exists. How-
ever, we can say nothing about other projectable structures on the eventual
leaf space. We can only state:

Proposition 5.2. Let M be a Riemannian manifold carrying a normal

almost contact metric 3-structure. If the leaves of the foliation Ξ are

compact, then the projected metric on the orbifold P = M/Ξ is Einstein

with positive scalar curvature. The canonical projection is a Riemannian

totally geodesic submersion whose leaves are 3-dimensional spherical space

forms.

Proof. Everything has been already proven except for the Einstein
property of P . We use the following formula connecting the Ricci tensors
of the total space and of the base space in a Riemannian submersion with
totally geodesic fibers, cf. [Bes], p. 250:

RicM (X, Y ) = RicP (X∗, Y ∗)− 2g(AX∗ , AY ∗).

Here ∗ denotes horizontal lift of vector fields and A is the O’Neill tensor
defined by 2AEF = V[E,F ].

A local orthonormal basis for the vertical space is {ξ1, ξ2, ξ3}, hence:

g(AX∗ , AY ∗) =
∑

g(AX∗ξi, AY ∗ξi) =
∑

g(H∇X∗ξi,H∇Y ∗ξi)

=
∑

g(ϕiX
∗, ϕiY

∗) = 3g(X∗, Y ∗).

Finally this yields:

RicP = (ScalM +6)g = (4n + 8)g

and the proof is complete. ¤
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