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Geometry of Riemannian manifolds
and their unit tangent sphere bundles

By E. BOECKX (Leuven) and L.VANHECKE (Leuven)

Abstract. We review some aspects of the geometry of the tangent bundle and
the unit tangent sphere bundle of a Riemannian manifold and focus on the relationship
between this geometry and that of the manifold.

1. Introduction

It is an approved method in Riemannian geometry to study the ge-
ometry of a Riemannian manifold (M, g) via geometric objects naturally
associated to it. As an example, one considers the family of small geo-
desic spheres or tubes and investigates how the geometry of the ambient
space (M, g) influences the geometric properties of these hypersurfaces,
and conversely, how geometric conditions on the geodesic spheres or tubes
are reflected in the geometry of (M, g). The reference [24] gives but one
example of this procedure. See also [58], [59] and [60] for more informa-
tion and further examples and references. Within this framework, we now
take the tangent bundle TM and the unit tangent sphere bundle T1M of
a Riemannian manifold (M, g), equipped with a particular metric, as the
major object of study, i.e., we investigate to what extent the geometry of
the tangent bundle or the unit tangent sphere bundle influences or even
determines the geometry of (M, g).
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The use of bundles over (M, g) to study its geometric properties is
far from new. As an example, the geodesics on (M, g) can be studied
via the geodesic flow on T1M . In the same vein, A. L. Besse uses the
unit tangent sphere bundle with this flow as his basic tool in [4]. Here
we report on recent results in the study of both the tangent and the unit
tangent sphere bundle, equipped with natural metrics and other “natural”
structures (such as an almost complex structure on TM and a contact
metric structure on T1M). By “natural” we mean that these structures are
canonically determined by the geometric structure of M (i.e., the metric g

and possibly other structural tensors). The reader can consult the original
papers [14]–[17] and [20] and the earlier survey [18] for additional results
and further references.

One of the best known Riemannian metrics on the tangent bundle
TM is the Sasaki metric gS . As a metric space however, (TM, gS) is not
very interesting for our purposes. For instance, the fairly weak hypothesis
to have constant scalar curvature already implies that (M, g) must be flat
([44]). Other natural metrics on TM have been introduced and studied.
We mention in particular the Cheeger-Gromoll metric (see [41], [44] and
[50]). Other examples can be found in [65].

The unit tangent sphere bundle T1M with the metric induced from the
Sasaki metric gS is more interesting. A result in [62] and also mentioned by
Musso and Tricerri ([44]) says that the unit tangent sphere bundle of a
two-point homogeneous space equipped with this metric is homogeneous.
A fascinating open problem is whether the converse is also true. A first
step towards an answer is to consider when the scalar curvature on T1M

is constant. We give several classes of examples and classify all two- and
three-dimensional and all conformally flat manifolds whose unit tangent
sphere bundle enjoys this property. Next, we investigate when the unit
tangent sphere bundles are Ricci-curvature homogeneous, i.e., they have
the same Ricci curvature tensor at each point. Starting from the earlier
classification results for constant scalar curvature, we only find two-point
homogeneous spaces. This strengthens us in our belief that the converse
of the above result is valid too.

It is well-known that T1M admits a contact metric structure (ξ, η,

ϕ, ḡ), where the metric ḡ is homothetic to the metric induced by the Sasaki
metric gS ([6]). In particular, the results mentioned above still hold for
(T1M, ḡ). It turns out that, for a two-point homogeneous space, the unit
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tangent sphere bundle is not only homogeneous as a metric space, but even
as a contact metric space. Again, it is not known whether the converse
holds. Under various conditions on (M, g) we show the converse statement
to be true. In the proofs, the theory of Osserman spaces plays a major
role.

The final two sections deal with the geodesic flow vector field ξ′

on T1M which is proportional to the characteristic vector field ξ of the
contact metric structure. First, we study the reflections with respect
to the integral curves of ξ′; secondly, we consider ξ′ as an immersion
ξ′ : T1M → T1(T1M) : (x, u) 7→ (x, u, ξ′) and study when ξ′ is a min-
imal or harmonic vector field, i.e., when the map ξ′ satisfies the critical
point conditions for the volume or the energy functional if we equip the
respective bundles with the Sasaki metric. Two-point homogeneous spaces
again play a distinguished role.

Apart from the unit tangent sphere bundle, one could also study tan-
gent sphere bundles of arbitrary radius r equipped with the induced Sasaki
metric. Most of our results have analogues in this setting, but some differ-
ences do occur, especially as far as the curvature is concerned. We refer to
[42], [43] and [21] for the details and for references to other related work.

2. The tangent bundle
and the unit tangent sphere bundle

First, we collect the basic facts about the tangent bundle and the unit
tangent sphere bundle of a Riemannian manifold and give the necessary
formulas. For a more elaborate exposition, we refer to [15], [26], [38], [44],
[49], [64] and [65].

Let (M, g) be an n-dimensional (n ≥ 2) connected, smooth Rie-
mannian manifold and ∇ the associated Levi Civita connection. We take
the Riemann curvature tensor R with the sign convention R(X, Y ) =
[∇X ,∇Y ] −∇[X,Y ] for vector fields X and Y on M . The tangent bundle
of (M, g), denoted by TM , consists of pairs (x, u) where x is a point in M
and u a tangent vector to M at x. The mapping π : TM → M : (x, u) 7→ x
is the natural projection from TM onto M .

Using the Levi Civita connection ∇ on (M, g), one can define a split-
ting of the tangent space to TM at (x, u) into the direct sum of the vertical
subspace V TM(x,u) = kerπ∗|(x,u) and the horizontal subspace HTM(x,u):

T(x,u)TM = V TM(x,u) ⊕HTM(x,u).
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Vertical vectors are tangent to curves γ̃(t) = (γ(t), V (t)) with γ(t) = x for
each t, whereas horizontal vectors are tangent to curves γ̃(t) = (γ(t), V (t))
for which ∇γ̇(t)V (t) = 0 holds.

For X ∈ TxM , there exists a unique vector Xh at the point (x, u) ∈
TM such that Xh ∈ HTM(x,u) and π∗(Xh) = X. Xh is called the hor-
izontal lift of X to (x, u). It is tangent at (x, u) to the curve (γ(t), V (t))
with γ(0) = x and γ̇(0) = X and with V (t) the parallel translate of u

along γ. Similarly, there is a unique vector Xv at the point (x, u) such
that Xv ∈ V TM(x,u) and Xv(df) = Xf for all functions f on M . (Here we
consider df as a function on M .) Xv is called the vertical lift of X to (x, u).
It is tangent at (x, u) to the curve (x, u + tX). The map X 7→ Xh, re-
spectively X 7→ Xv, is an isomorphism between TxM and HTM(x,u),
respectively TxM and V TM(x,u). In a similar way, one lifts vector fields
on M to horizontal or vertical vector fields on TM . The expressions in
local coordinates for these lifts are given in [15], for example.

Further, if T is a tensor field of type (1, s) on M and X1, . . . , Xs−1

are vector fields on M , then we denote by (T (X1, . . . , u, . . . , Xs−1))v (re-
spectively, (T (X1, . . . , u, . . . ,Xs−1))h) the vertical (respectively, horizon-
tal) vector field on TM which, at a point (y, w) takes the value T (X1y, . . .

. . . , w, . . . ,Xs−1 y)v (respectively, T (X1y, . . . , w, . . . ,Xs−1 y)h). Note that
this is not the vertical (respectively, horizontal) lift of a vector field on M .

The tangent bundle TM of a Riemannian manifold (M, g) can be
equipped with a natural Riemannian metric gS , the Sasaki metric, which
depends only on the metric structure g of the base manifold M . It is
determined explicitly by

gS(Xh, Y h) = gS(Xv, Y v) = g(X, Y ) ◦ π, gS(Xh, Y v) = 0

for vector fields X and Y on M .
As far as curvature theory is concerned, TM with the Sasaki metric gS

is not very interesting unfortunately. Indeed, E. Musso and F. Tricerri

proved

Theorem 2.1 ([44]). The tangent bundle (TM, gS) has constant scalar

curvature if and only if (M, g) is flat.

This result shows that the Sasaki metric, though a very natural Rie-
mannian metric on TM , is “extremely rigid” ([44]). There are at least two
possible alternatives: either one studies other interesting metrics on TM
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(see, e.g., [41], [44], [50], [65]) or one considers the unit tangent sphere
bundle T1M with the metric induced from gS . We concentrate on the
second option.

The hypersurface T1M of TM consists of the unit tangent vectors
to (M, g) and is given implicitly by the equation gx(u, u) = 1. A unit
normal vector N to T1M at (x, u) ∈ T1M is given by the vertical lift of u

to (x, u): N|(x,u) = uv.
As the vertical lift of a vector (field) is not tangent to T1M in general,

we define the tangential lift of X ∈ TxM to (x, u) ∈ T1M by

Xt
(x,u) = (X − g(X, u)u)v.

Clearly, the tangent space to T1M at (x, u) is spanned by vectors of the
form Xh and Xt where X ∈ TxM . For the sake of notational clarity, we
will use X̄ as a shorthand for X − g(X, u)u. Then Xt = X̄v.

If we denote the metric on T1M induced from the Sasaki metric gS

on TM also by gS , then we have

ḡS(Xt, Y t) = g(X̄, Ȳ ) = g(X,Y )− g(X,u)g(Y, u),

ḡS(Xt, Y h) = 0,

ḡS(Xh, Y h) = g(X,Y ).

With the metric gS on T1M in place, it is a fairly routine exercise to
calculate the associated Levi Civita connection ∇̄, the Riemann curvature
tensor R̄, the Ricci tensor ρ̄ and the scalar curvature τ̄ in terms of the
curvature of the base manifold (M, g) (see [15], [16] or [64], for instance).
In the sequel, we will need the expressions for R̄, ρ̄ and τ̄ . The Riemann
curvature tensor R̄ is given explicitly by

R̄(Xt, Y t)Zt = −g(X̄, Z̄)Y t + g(Z̄, Ȳ )Xt,(1)

R̄(Xt, Y t)Zh = (R(X̄, Ȳ )Z)h +
1
4
([R(u,X), R(u, Y )]Z)h,

R̄(Xh, Y t)Zt = −1
2
(R(Ȳ , Z̄)X)h − 1

4
(R(u, Y )R(u,Z)X)h,
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R̄(Xh, Y t)Zh =
1
2
(R(X,Z)Ȳ )t − 1

4
(R(X, R(u, Y )Z)u)t

+
1
2
((∇XR)(u, Y )Z)h,

R̄(Xh, Y h)Zt = (R(X,Y )Z̄)t +
1
4
(R(Y, R(u, Z)X)u

−R(X,R(u,Z)Y )u)t

+
1
2
((∇XR)(u, Z)Y − (∇Y R)(u,Z)X)h,

R̄(Xh, Y h)Zh = (R(X,Y )Z)h +
1
2
(R(u,R(X,Y )u)Z)h

− 1
4
(R(u,R(Y,Z)u)X −R(u,R(X, Z)u)Y )h

+
1
2
((∇ZR)(X, Y )u)t;

the Ricci tensor ρ̄ by

ρ̄(Xt, Y t) = (n− 2)
(
g(X,Y )− g(X,u)g(Y, u)

)
(2)

+
1
4

n∑

i=1

g(R(u,X)Ei, R(u, Y )Ei),

ρ̄(Xt, Y h) =
1
2

(
(∇uρ)(X,Y )− (∇Xρ)(u, Y )

)
,

ρ̄(Xh, Y h) = ρx(X, Y )− 1
2

n∑

i=1

g(R(u, Ei)X,R(u,Ei)Y )

where {E1, . . . , En} is a (local) orthonormal frame on (M, g) and the scalar
curvature τ̄ by

(3) τ̄(x,u) = τx + (n− 1)(n− 2)− ξx(u, u)/4.

Here, as in [4] and [24], ξ(u, v) =
∑n

i,j=1 g(R(u,Ei)Ej , R(v,Ei)Ej). Note
that the natural mapping π : (T1M, gS) → (M, g) is a Riemannian submer-
sion, hence these curvature formulas may also be derived using O’Neill’s
formalism. (See, e.g., [5].)
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3. Homogeneous unit tangent sphere bundles

A mapping f : M → M can always be lifted to a mapping f̃ : TM →
TM by putting f̃(x, u) = (f(x), f∗u). A lift to a mapping of T1M into
itself is only possible if f∗ maps unit vectors to unit vectors, i.e., f is a
local isometry. Then the lift of f to T1M it itself an isometry for the
Sasaki metric gS on T1M . In particular, we have

Theorem 3.1 ([44], [62]). If (M, g) is a two-point homogeneous space,

then its unit tangent sphere bundle (T1M, gS) is a homogeneous Riemann-

ian manifold.

It is intriguing that the converse question: “if (T1M, gS) is a (locally)
homogeneous space, is (M, g) then necessarily (locally) isometric to a two-
point homogeneous space?” has, to our knowledge, not yet been answered
in its full generality. The present authors have made some first steps
towards a definitive answer in [16] and [17]. We give a survey of these
results in this section.

First we note that a (locally) homogeneous space has constant scalar
curvature. From the formula (3) for the scalar curvature on T1M it follows
easily

Theorem 3.2. The unit tangent sphere bundle (T1M, gS) has con-

stant scalar curvature τ̄ if and only if on (M, g) it holds

ξ =
|R|2
n

g,(4)

4nτ − |R|2 = constant.(5)

Remark 1. The algebraic condition (4) has appeared in the literature
before (see, e.g., [4], [24], [36]), but without a clear geometric meaning.
An analytic interpretation is given in [5, p. 134]: an Einstein metric on
a compact manifold is critical for the functional SR(g) =

∫
M
|Rg|2 d vol

restricted to those metrics g such that vol(M) = 1 if and only if ξ =
(|R|2/n) g. We can now give a nice geometric interpretation for Riemann-
ian manifolds satisfying (5): on such manifolds, (4) holds if and only if
their unit tangent sphere bundle has constant scalar curvature.

The case of (locally) reducible manifolds is easy to deal with:
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Corollary 3.3. The unit tangent sphere bundle (T1M, gS) of a (lo-

cal) product manifold (M, g) = (Mn1
1 , g1)× (Mn2

2 , g2) has constant scalar

curvature if and only if the unit tangent sphere bundles of both (M1, g1)
and (M2, g2) have constant scalar curvature and, additionally,

(6)
|R1|2
n1

=
|R2|2
n2

.

As immediate examples of Riemannian spaces whose unit tangent
sphere bundles have constant scalar curvature, we have

0. Spaces of constant curvature.
1. Irreducible symmetric spaces and, more generally, isotropy irreducible

homogeneous spaces.
2. Reducible symmetric spaces (M, g) = (M1, g1) × · · · × (Mk, gk) with

irreducible components (Mi, gi) such that |R1|2/n1 = · · · = |Rk|2/nk.
3. Super-Einstein spaces ([36]): these are Einstein manifolds satisfying

condition (4) with |R|2 constant.
4. Harmonic spaces: as every harmonic space is super-Einstein (see, e.g.,

[4], [24]).
5. Four-dimensional orientable Einstein manifolds which are self-dual or

anti-self-dual. For this result and more in the same direction, we refer
to [16].
In low dimensions, we can give a complete classification.

Proposition 3.4. The unit tangent sphere bundle (T1M, gS) of a two-

dimensional manifold (M, g) has constant scalar curvature τ̄ if and only if

(M, g) has constant curvature.

Proposition 3.5. The unit tangent sphere bundle (T1M, gS) of a

three-dimensional manifold (M, g) has constant scalar curvature τ̄ if and

only if (M, g) has constant curvature or (M, g) is a curvature homogeneous

space with constant Ricci roots ρ1 = ρ2 = 0 6= ρ3.

(We refer to [16] for explicit examples and more information about
this last class of spaces.)

The proofs of these propositions use the explicit expressions for the
curvature tensor R in terms of the scalar curvature τ and the Ricci tensor ρ,
namely

R =
τ

4
g ©∧ g
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in dimension two and

R = ρ ©∧ g − τ

4
g ©∧ g

in dimension three. Here ©∧ is the Kulkarni–Nomizu product of symmetric
two-tensors defined as follows:

(h ©∧ k)(X,Y, Z, V ) = h(X, Z)k(Y, V ) + h(Y, V )k(X,Z)

− h(X, V )k(Y, Z)− h(Y,Z)k(X,V ).

There is another class of Riemannian manifolds where a similar cur-
vature expression exists: for conformally flat manifolds, it holds

R =
1

n− 2
ρ ©∧ g − τ

2(n− 1)(n− 2)
g ©∧ g.

As before, we use this formula for R to express the conditions (4) and (5).
Further, we also use H. Takagi’s classification of conformally flat locally
homogeneous spaces ([51]) which is also valid for curvature homogeneous
manifolds ([39]) to obtain

Theorem 3.6. Let (Mn, g) be conformally flat and n ≥ 4. The unit

tangent sphere bundle (T1M, gS) has constant scalar curvature if and only

if (M, g) has constant curvature or n is even, say n = 2k, and (M, g) is

locally isometric to the product Mk(κ)×Mk(−κ), κ 6= 0, or n = 4, |ρ|2 is

constant and τ = 0.

Next, for a (locally) homogeneous space (M, g), the Ricci curvature is
the “same” at each point. More precisely, the manifold is Ricci-curvature
homogeneous, i.e., for every pair of points x, y ∈ M , there exists a linear
isometry F : TxM → TyM such that F ∗ρy = ρx. As ρ is a symmet-
ric (0, 2)-tensor field and as such diagonalizable at each point, one can
say equivalently that the matrices for ρx, respectively ρy, with respect to
an orthonormal basis of TxM , respectively of TyM , must have the same
eigenvalues (i.e., the same Ricci roots) with the same multiplicities.

Starting from the above classification results for unit tangent sphere
bundles with constant scalar curvature, we find
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Proposition 3.7. Let (M, g) be a two- or three-dimensional Riemann-
ian manifold. Its unit tangent sphere bundle (T1M, gS) is (Ricci-)curvature
homogeneous if and only if (M, g) has constant curvature. In that case,
(T1M, gS) is even locally homogeneous.

Proposition 3.8. Let (M, g) be conformally flat. Then (T1M, gS) is
(Ricci-)curvature homogeneous if and only if (M, g) has constant curva-
ture. In that case, (T1M, gS) is even locally homogeneous.

Another result in this framework deals with harmonic spaces. Up to
local isometries, the only known examples so far, apart from the two-point
homogeneous spaces, are the Damek–Ricci spaces, that have only been
discovered fairly recently. These are solvable Lie groups whose Lie algebras
are solvable extensions of generalized Heisenberg algebras, equipped with a
special left-invariant metric. We refer to [1] for the precise definitions, some
geometric properties of these remarkable spaces and further references.
As harmonic spaces, every Damek–Ricci space has a unit tangent sphere
bundle with constant scalar curvature. Moreover, we have

Proposition 3.9. The unit tangent sphere bundle (T1S, gS) of a Da-
mek–Ricci space S is (Ricci-)curvature homogeneous if and only if S is a
symmetric space. In that case, S is two-point homogeneous and (T1S, gS) is
homogeneous.

A final result deals with the case of product manifolds where at
least one of the factors has a Codazzi Ricci tensor (i.e., (∇Xρ)(Y,Z) =
(∇Y ρ)(X, Z) for all vectors X, Y and Z). In particular, it settles the case
of reducible symmetric manifolds.

Proposition 3.10. Let (M, g) be locally isometric to the Riemannian
product of (M1, g1) and (M2, g2) and suppose that the Ricci tensor ρ1

of (M1, g1) is a Codazzi tensor. If (T1M, gS) is (Ricci-)curvature homoge-
neous, then (M, g) is flat.

The case of irreducible symmetric spaces of rank greater than one
is as yet undecided. (The symmetric spaces of rank one are two-point
homogeneous.)

The proofs of these propositions consist typically in comparing the
matrices for ρ̄ at different points (x, u) ∈ T1M in the same fiber , using
the formulas (2), and requiring that they have the same characteristic
polynomial.

To the authors’ knowledge, this is the state of things at the present
time. A logical next step would be to express that (locally) homogeneous
spaces are curvature homogeneous and use the constancy of the curvature
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invariants. However, a quick glimpse at the formulas (1) for the Riemann
curvature R̄ of (T1M, gS) shows that this is a very complicated task indeed.

4. The natural contact metric structure
on the unit tangent sphere bundle

Apart from the naturally defined metric gS on T1M , there exists a
contact metric structure on T1M which also only depends on the metric g

on the base manifold M . (We refer to [6] for the basic concepts of contact
geometry.) In order to define it, we consider first the almost complex
structure J on TM given by

JXh = Xv, JXv = −Xh

for vector fields X on M . For this structure, we have

Theorem 4.1 ([26)]. The tangent bundle (TM, gS , J) is almost

Kählerian. It is a Kähler manifold only when (M, g) is flat.

Using the almost complex structure J on TM , we define a unit vector
field ξ′, a one-form η′ and a (1, 1)-tensor field ϕ′ on T1M by

ξ′ = −JN, JX = ϕ′X + η′(X)N.

It is easily checked that (T1M, ξ′, η′, ϕ′, gS) is an almost contact metric
manifold. However, gS(X, ϕ′Y ) = 2 dη′(X, Y ), so (ξ′, η′, ϕ′, gS) is not a
contact metric structure. This defect can be rectified by taking

ξ = 2ξ′, 2η = η′, ϕ = ϕ′, 4ḡ = gS .

Explicitly, the structure tensors ξ, η and ϕ are given by

ξ = 2 uh,

η(Xt) = 0, η(Xh) =
1
2
g(X, u),

ϕXt = −X̄h, ϕXh = Xt

for vector fields X on M .
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Note that the metric ḡ is obtained from the one induced from the
Sasaki metric gS on TM by a homothetic change. In particular, the Rie-
mann curvature tensor in its (1, 3)-form and the Ricci tensor of (T1M, ḡ)
are the same as those of (T1M, gS), while the scalar curvature functions
for both metric spaces differ by a factor 4.

The integral curves of the characteristic vector field ξ are geodesics.
In what follows, we refer to them as characteristic curves. Note also that
ξ′ describes the geodesic flow on the unit tangent sphere bundle (see [4]).

Two other symmetric operators play an important role in contact
geometry, namely h = (1/2)Lξϕ and ` = R(· , ξ)ξ where L denotes Lie
differentiation. For the contact structure of the unit tangent sphere bundle,
these are given explicitly by

(7)

hXt = Xt − (RuX)t,

hXh = −X̄h + (RuX)h,

`Xt = (R2
uX)t + 2(R′uX)h,

`Xh = 4(RuX)h − 3(R2
uX)h + 2(R′uX)t

for vector fields X on M . Here, Ru = R(· , u)u is the Jacobi operator for
the unit vector u and R′u = (∇uR)(· , u)u.

It is well-known that a contact metric manifold is a K-contact man-
ifold, i.e., ξ is a Killing vector field, if and only if h = 0. From the above
expressions for the operator h we then easily deduce the following standard
result:

Theorem 4.2 ([54]). The natural contact metric structure on T1M is

K-contact if and only if (M, g) has constant curvature 1, in which case the

structure on T1M is Sasakian.

5. Contact homogeneous unit tangent sphere bundles

We start with a strengthening of Theorem 3.1.

Theorem 5.1. If (M, g) is a two-point homogeneous space, then its

unit tangent sphere bundle (T1M, ξ, η, ϕ, ḡ) is a homogeneous contact met-
ric Riemannian manifold, i.e., the automorphisms of the contact metric

structure (ξ, η, ϕ, ḡ) act transitively on T1M .
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Proof. It suffices to show that the lift f̃ of an isometry f of (M, g)
preserves the characteristic vector field ξ = 2uh. Let f : M → M map a
unit vector u at x to a unit vector v at y. The vector ξ at (x, u) is tangent
to the curve γ̃(t) = (γ(t), γ̇(t)) where γ(t) is the geodesic through x = γ(0)
tangent to 2u. The isometry f maps the geodesic γ to the geodesic f ◦ γ
through y tangent to 2v. Hence, f̃∗ξ(x,u) = f̃∗2uh = 2vh = ξ(y,v). ¤

In [14], the authors have proved the converse of this theorem under
various conditions on the base manifold (M, g), though not for a general
base space. That problem is still open. A first approach leads via Osserman
spaces; in a second approach we study the isometries of the unit tangent
sphere bundle in some more detail.

Recall that a Riemannian manifold (M, g) is pointwise Osserman if
the eigenvalues of the Jacobi operator Ru only depend on x and not on the
choice of unit vector u at x. It is globally Osserman if the eigenvalues do
not depend on x either, but are global constants. The Osserman conjecture
claims that a globally Osserman space is locally isometric to a two-point
homogeneous space. Q.-S. Chi ([25]) has shown this conjecture to hold in
dimensions n = 2m+1, n = 4m+2 and n = 4. It also holds when (M, g) is
locally reducible (in which case (M, g) is flat), or locally symmetric, or
a P-space. (In a P-space, the eigenspaces of the Jacobi operator are
parallel along each geodesic, see [2].) Moreover, in [27], it is shown that it
holds for homogeneous manifolds with negative curvature. Finally, in [25]
it is proved that the conjecture also holds when (M, g, J) is a Kähler
manifold with non-positive or non-negative sectional curvature. To prove
the conjecture, one still needs to consider the case of 4k-dimensional spaces
for k > 1. But up to now, this remains an open problem. We refer to [1],
[3] and [40] for more details and further information.

Using the expression (7) for the operator h on T1M , we see that
Osserman spaces can be easily recognized from their unit tangent sphere
bundle.

Proposition 5.2. Let (M, g) be an n-dimensional Riemannian man-
ifold. Then (M, g) is a pointwise (resp. globally) Osserman space if and
only if the eigenvalues of h on T1M are constant on the fibers (resp. are
global constants).

Clearly, for a homogeneous contact metric manifold, the eigenvalues
of h are constant. Combining this with results on Osserman spaces, we
get some first results concerning the converse of Theorem 5.1.
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Theorem 5.3. Let (M, g) be a Riemannian manifold of dimension n =
2m+1, n = 4m+2 or n = 4, or a P-space. Then (M, g) is locally isometric

to a two-point homogeneous space if and only if (T1M, ξ, η, ϕ, ḡ) is a locally

homogeneous contact metric manifold.

Proposition 5.4. Let (M, g)be locally reducible. Then (T1M, ξ, η, ϕ, ḡ)
is a locally homogeneous contact metric space if and only if (M, g) is locally

flat.

Finally, the work on the Osserman conjecture leads to a characteri-
zation of two-point homogeneous spaces using the fundamental tensors h

and ` on the unit tangent sphere bundle.

Theorem 5.5. A Riemannian manifold (M, g) is locally isometric to

a two-point homogeneous space if and only if on its unit tangent sphere

bundle we have both

(1) the eigenvalues of the operator h are constant along the fibers;

(2) the operator ` sends vertical vectors into vertical vectors (or equiva-

lently, horizontal vectors into horizontal vectors).

Note that the second condition, by the expression (7), is equivalent
to (M, g) being locally symmetric.

In a second approach we find necessary conditions for an isometry of
the unit tangent sphere bundle to be the lift of an isometry on the base
manifold.

Proposition 5.6. A (local) isometry F : T1M → T1M is the lift of a

(local) isometry f : M → M if and only if

(a) F maps fibers into fibers; and

(b) F preserves the geodesic flow, i.e., F∗ξ = ξ.

Remark 2. An isometry of (T1M, g) need not satisfy these two condi-
tions. If we consider the unit tangent sphere bundle of a two-dimensional
sphere of radius 1, then the rotation over a right angle around a character-
istic curve preserves the geodesic flow, but not the fibers. On the other
hand, for T1Rn = Rn × Sn−1, an isometry of the second factor gives rise
to an isometry of T1Rn which preserves fibers, but not the geodesic flow.
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With this characterization we can now prove

Theorem 5.7. Let (M, g) be a Riemannian manifold and suppose that

(T1M, ξ, η, ϕ, ḡ) is a (locally) homogeneous contact metric manifold. If one

of the following conditions holds:

(1) the Ricci tensor of (M, g) is a Codazzi tensor and non-positive, or

(2) the sectional curvature K of (M, g) satisfies either K > 1 or K < 1,

then (M, g) is (locally) isometric to a two-point homogeneous space.

Proof. Consider a (local) isometry F : T1M → T1M mapping (p, v)
to (q, w) and preserving the geodesic flow. We will show further on that
each of the curvature conditions above implies that F preserves fibers. But
then the previous proposition gives a (local) isometry f : M → M such
that F (x, u) = (f(x), f∗u). In particular, f(p) = q and f∗v = w. So,
(M, g) is (locally) isometric to a two-point homogeneous space.

It remains to show that any isometry of (T1M, g) preserves the fibers
under each of the additional conditions stated above. F. Podestà proves
in [47]: if (M, g) is a Riemannian manifold whose Ricci tensor is parallel
and non-positive, then every isometry of (T1M, ḡ) preserves the horizon-
tal and vertical distribution, and in particular the fibers. His proof goes
through unaltered when the Ricci tensor is only a Codazzi tensor and non-
positive. (See the formulas (2) for the Ricci tensor of (T1M, ḡ).) This
takes care of the first case.

For the second case, we consider the eigenvalues of h on T1M . As
(T1M, ξ, η, ϕ, ḡ) is a locally homogeneous contact metric space, the eigen-
values of h are global constants and by Proposition 5.2 (M, g) is a global
Osserman space. Let λ1, . . . , λn−1 be the eigenvalues of (any) Jacobi oper-
ator Ru for a unit vector u. Then, from (7), h has eigenvalues λ1 − 1,

. . . , λn−1 − 1 on H(T1M) ∩ ξ⊥ and eigenvalues 1 − λ1, . . . , 1 − λn−1

on V (T1M).
Now consider an isometry F of T1M preserving ξ. Then F∗ maps

eigenspaces of h into eigenspaces of h with the same eigenvalue. In particu-
lar, if for all i, j ∈ {1, . . . , n− 1} it holds λi − 1 6= 1− λj , i.e., λi + λj 6= 2,
then F∗ will map both V (T1M) and H(T1M) into itself. So, F preserves
fibers. The conditions λi +λj 6= 2 are obviously satisfied when all sectional
curvatures are either strictly smaller or strictly greater than 1. ¤
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6. Characteristic reflections
on unit tangent sphere bundles

In this section, we review some results about symmetry properties
of unit tangent sphere bundles. We start with some observations about
Sasakian manifolds.

Local symmetry is a very strong condition for the class of K-contact
or Sasakian manifolds. Indeed, such spaces must have constant curvature
equal to 1 ([45], [53]). For this reason, T. Takahashi introduced the
weaker notion of a (locally) ϕ-symmetric space in the context of Sasakian
geometry ([52]): a Sasakian space is locally ϕ-symmetric if it satisfies the
curvature condition

(8) g((∇XR)(Y, Z)V,W ) = 0

for all vector fields X, Y , Z, V and W orthogonal to the characteristic
vector field ξ. Takahashi proves that this condition is equivalent to having
characteristic reflections (i.e., reflections with respect to the integral curves
of ξ) which are local automorphisms of the Sasakian structure. In [10],
the authors prove that the isometry property of the reflections is already
sufficient. (For the case of K-contact spaces, see [22].)

An analogous situation presents itself for unit tangent sphere bundles,
which in general are only contact metric spaces. Also here, local symmetry
is a very restrictive property.

Theorem 6.1 ([7], [16]). The unit tangent sphere bundle (T1M, ḡ) of

a Riemannian manifold (M, g) is locally symmetric if and only if (M, g) is

flat or is a surface of constant curvature 1.

(In [16], this theorem is obtained as a consequence of the analogous
result for the case of a parallel Ricci tensor on (T1M, ḡ). The proof uses
only metric information. The proof of the above theorem in [7] on the
other hand uses the contact metric structure in an essential way.)

For this reason, the present authors generalized the notion of a locally
ϕ-symmetric space to the class of contact metric manifolds.

Definition 6.2. A contact metric manifold (M, ξ, η, ϕ, g) will be called
a locally ϕ-symmetric space if and only if all characteristic reflections are
(local) isometries.



Geometry of Riemannian manifolds and their unit tangent sphere bundles 525

We note that in [9], the authors define a contact metric space to be lo-
cally ϕ-symmetric if it satisfies the curvature condition (8). This notion is
strictly weaker than ours: explicit examples of three-dimensional homoge-
neous contact metric spaces satisfying (8) but for which the characteristic
reflections are not isometric are presented in [13].

Definition 6.2 gives rise to an infinite number of conditions on the
Riemann curvature tensor R and its covariant derivatives.

Theorem 6.3. Let (M, ξ, η, ϕ, g) be a contact metric manifold. If it

is a locally ϕ-symmetric space, then the following hold:

1) g
(
(∇2k

X...XR)(X, Y )X, ξ
)

= 0,

2) g
(
(∇2k+1

X···XR)(X, Y )X, Z
)

= 0,

3) g
(
(∇2k+1

X···XR)(X, ξ)X, ξ
)

= 0

for all vectors X, Y and Z orthogonal to ξ and k = 0, 1, 2, . . . . Moreover,

if (M, g) is analytic, these conditions are also sufficient for the contact

metric manifold to be a locally ϕ-symmetric space.

With this criterion, we can show

Theorem 6.4. The unit tangent sphere bundle (T1M, ξ, η, ϕ, ḡ) is lo-

cally ϕ-symmetric if and only if (M, g) has constant curvature.

Proof. A complete proof can be found in [15]. Here we only outline
the major steps. We use the explicit expressions for the curvature tensor R̄

of (T1M, ḡ) in terms of the curvature tensor R of (M, g) and its covariant
derivatives (see (1)).

If we suppose that (T1M, ξ, η, ϕ, ḡ) is locally ϕ-symmetric, it follows
already from the condition ḡ(R̄(X̄, Ȳ )X̄, ξ) = 0 for X̄ and Ȳ orthogonal
to ξ that (M, g) has constant curvature (via Cartan’s criterion, see [23]).

Conversely, for a space of constant curvature, the tangent unit sphere
bundle is analytic and the expressions (1) simplify considerably. By an
induction argument, we then show that the infinite list of curvature con-
ditions holds. ¤

Recently, another subclass of the contact metric spaces has attracted
quite some attention. The (κ, µ)-spaces were introduced in [8] as contact
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metric manifolds for which the characteristic vector field ξ belongs to the
(κ, µ)-nullity distribution for some real numbers κ and µ, i.e.,

(9) R(X, Y )ξ = κ
(
η(Y )X − η(X)Y

)
+ µ

(
η(Y )hX − η(X)hY )

for all vector fields X and Y . Sasakian spaces satisfy this condition for
κ = 1 and µ arbitrary. For unit tangent sphere bundles, we have

Proposition 6.5 ([8]). A unit tangent sphere bundle (T1M, ξ, η, ϕ, ḡ)
is a (κ, µ)-space if and only if (M, g) is a space of constant curvature c. In

that case κ = c(2− c) and µ = −2c.

Moreover, several of the properties of unit tangent sphere bundles of
spaces of constant curvature also hold for the broader class of (κ, µ)-spaces.

Theorem 6.6 ([11]). A non-Sasakian (κ, µ)-space is a locally homo-

geneous contact metric space.

Theorem 6.7 ([11]). A non-Sasakian (κ, µ)-space is locally ϕ-sym-

metric.

The first author has recently succeeded in fully classifying the non-
Sasakian contact metric (κ, µ)-spaces in [12]. The unit tangent sphere
bundles of spaces of constant curvature feature prominently in this clas-
sification, together with specific Lie groups equipped with a left-invariant
contact metric structure.

7. Unit vector fields
on the unit tangent sphere bundle

On the unit tangent sphere bundle of any Riemannian manifold, there
is a distinguished vector field, the geodesic flow vector field ξ′ = uh. If we
consider the Sasaki metric gS on T1M , ξ′ is unit and its integral curves are
geodesics. In this section, we comment on some special properties of ξ′.

For that purpose, we first need to introduce some additional concepts.
Consider a unit vector field U on a Riemannian manifold (M, g). U can
be regarded as the immersion U : M → T1M : x 7→ Ux of M into its unit
tangent sphere bundle. As the pull-back metric U∗gS is given by

(U∗gS)(X,Y ) = g(X, Y ) + g(∇XU,∇Y U),
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the mapping U is an isometry if and only if the vector field U is parallel.
If the manifold M is compact and orientable, we can define the energy

of U as the energy of the corresponding map ([63]) and the volume of U

as the volume of the immersion. If we define operators AU and LU as

AUX = −∇XU, LUX = X + At
U (AUX),

then the energy E(U) and the volume Vol(U) are given by

E(U) =
1
2

∫

M

tr LU d vol =
n

2
Vol(M) +

1
2

∫

M

|∇U |2 d vol,

Vol(U) =
∫

M

√
detLU d vol .

Note that E(U) is equal, up to constants, to the quantity
∫

M
|∇U |2 d vol,

which is known as the total bending of U ([61]).
In this way, two functionals are defined on the space X1(M) of unit

vector fields on (M, g), which we suppose to be non-empty. In analogy
with the notions of harmonic maps and minimal immersions, we define

Definition 7.1. A unit vector field which is critical for the energy
functional E is called a harmonic vector field; one which is critical for the
volume functional Vol is called a minimal vector field.

The critical point conditions for the functionals E and Vol have been
derived in [61] and [30], respectively. For the energy (or total bending),
we have: U is a harmonic unit vector field on (M, g) if and only if the
one-form νU , given as

(10) νU (X) = tr(Z 7→ (∇ZAt
U )X),

vanishes on U⊥. It is worth pointing out that a harmonic vector field
need not correspond to a harmonic map, i.e., a unit vector field which is
critical for the energy functional on vector fields is not necessarily critical
for the energy functional on all maps from (M, g) to (T1M, gS) ([29]).
U determines a harmonic map from (M, g) to (T1M, gS) if and only if it
is a harmonic vector field and in addition the one-form ν̃U , given as

(11) ν̃U (X) = tr(Z 7→ R(AUZ,U)X),
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vanishes for all vectors X.
To describe the critical point condition for the volume functional, we

first define the function fU on M by fU = (detLU )1/2 and the operator KU

by KU = −fUL−1
U ◦ At

U . Then U is a minimal vector field on M if and
only if the one-form ωU given as

(12) ωU (X) = tr(Z 7→ (∇ZKU )X)

vanishes on U⊥. Here we mention that a minimal vector field does corre-
spond to a minimal submanifold of the unit tangent sphere bundle (T1M,
gS), i.e., minimal vector fields are also critical points for the volume func-
tional on the larger space of all immersions of M into T1M ([30]).

Clearly the three critical conditions above make sense also if M is
non-orientable or non-compact. Therefore, the definitions of harmonic and
minimal vector fields have been extended to include those unit vector fields
on possibly non-compact or non-orientable manifolds which satisfy the
respective critical point conditions.

For more information and further references on minimal and har-
monic vector fields, we refer to [29]–[32], [37], [46], [48], [61] and [63].
We specifically mention that the Hopf vector fields on odd-dimensional
spheres S2n+1, n ≥ 1, are minimal, but they do not have minimal volume
except for the Hopf vector fields on S3. Recently, whole families of new
minimal and harmonic vector fields have been found. See [19], [20], [28],
[33]–[35], [55]–[57]. Here, we state the major results of [20] about minimal
and harmonic vector fields on the unit tangent sphere bundle.

The geodesic flow vector field ξ′ is the primary candidate on the unit
tangent sphere bundle (T1M, gS). For this vector field, the associated
operator Aξ′ can be calculated easily:

Aξ′X
h =

1
2
(RuX)t, Aξ′X

t = −X̄h +
1
2
(RuX)h,

where, as before, Ru denotes the Jacobi operator associated to the unit
vector u. We can then explicitly compute the critical conditions for mini-
mality and harmonicity and use these to show

Theorem 7.2. Let (M, g) be a two-point homogeneous space. Then the
geodesic flow vector field ξ′ on the unit tangent sphere bundle (T1M, gS)
is both minimal and harmonic and determines a harmonic map.

An essential ingredient of the proof is the following curvature property
of two-point homogeneous spaces: if u and v are orthogonal unit vectors
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such that Ruv = λ v, then also Rvu = λ u. (See, e.g., [25].) In view of the
expressions above for Aξ′ , it is not surprising that properties of the Jacobi
operator and earlier work on the Osserman conjecture are useful here.

For low dimensions, we can prove the converse.

Proposition 7.3. Suppose that the geodesic flow vector field ξ′ on

(T1M, gS) is either harmonic or minimal or determines a harmonic map.

If the dimension of M equals two or three, then (M, g) has constant cur-

vature.

The proof goes by explicit calculation, which for the three-dimensional
case is rather tedious.

Theorem 7.2 and Proposition 7.3 naturally lead to the (as yet unan-
swered) question: are the two-point homogeneous spaces the only Riemann-
ian manifolds for which the geodesic flow vector field on the unit tangent
sphere bundle is minimal or harmonic, or determines a harmonic map?

For general manifolds (M, g), the geodesic flow vector field ξ′ is (up
to sign) the only naturally distinguished unit vector field on (T1M, gS).
When (M, g) has more structure, this may give rise to additional naturally
defined vector fields on T1M . If (M, g, J) is an almost Hermitian manifold
for instance, we can consider the vector fields ξ1 = (Ju)t and ξ2 = (Ju)h.
For these, we have

Theorem 7.4. On the unit tangent sphere bundle (T1M, gS) of a com-

plex space form (M, g, J), the unit vector fields ξ1 = (Ju)t and ξ2 = (Ju)h

are both harmonic and minimal and determine harmonic maps.

Actually, we have a one-dimensional family of special horizontal unit
vector fields.

Theorem 7.5. On the unit tangent sphere bundle (T1M, gS) of a com-

plex space form (M, g, J), for every α ∈ R the unit vector field ξα =
cos α uh + sin α (Ju)h is both harmonic and minimal and it determines a

harmonic map.
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