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Full powers in arithmetic progressions

By I. PINK (Debrecen) and SZ. TENGELY (Debrecen)

Dedicated to Professor Kálmán Győry on his 60th birthday

Abstract. For given positive integers a and n, we consider the three-term arith-
metic progressions a2, yn, x2, where x and y are unknown integers. We give explicit
upper bounds both for the number of such arithmetic progressions and for max{|x|, |y|}.
Moreover, we find all such progressions with 1 ≤ a ≤ 1000, and 3 ≤ n ≤ 80.

1. Introduction

Let a and n be given integers with a > 0 and n ≥ 3. In this paper we
investigate the arithmetic progressions a2, yn, x2, where x, y are coprime
positive integers. Clearly, these three terms form an arithmetic progression
if and only if (x, y) is a solution to the equation

(1) x2 + a2 = 2yn, in x, y ∈ N with gcd(x, y) = 1.

Note that if a is also considered as a variable, then (1) has infinitely many
solutions. There are many results in the literature concerning similar equa-
tions. In the case n = 4 equations of the form

aX2 − bY 4 = c
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are of particular interest, cf. [3], [14], [21], [24], [28], [30], [32], [33]. There
are also a lot of interesting papers dealing with equations of the form

aX2 + b = cY n,

we refer to [10], [12], [13], [18], [19], [22], [23], [25], [31].
Equation (1) is a special hyperelliptic equation. In 1969, Baker [2]

gave an explicit bound for the solutions of hyperelliptic equations, i.e. of
equations of type

(2) f(x) = byn in x, y ∈ Z,

where f is a polynomial with integer coefficients and non-zero discrimi-
nant, and b and n are given positive integers with n ≥ 2. This result of
Baker was improved and generalized by several authors, see e.g. [8] and
the references given there. Moreover, in 1998 Bilu and Hanrot (see [5])
gave an algorithm for the practical solution of hyperelliptic equations.

On the other hand, it is possible to derive in (2) an upper bound for
the exponent n in terms of f and b. The first result in this direction was
obtained in [27]. This result also was improved and generalized, see e.g.
[4] or [7] and the references given there.

In our paper we give an upper bound for max{|x|, |y|} (cf. Theorem 1),
where (x, y) is an arbitrary solution to (1). Using the special form of
our hyperelliptic equation, our bound will be much sharper than those
provided by the general estimates. Further, we provide an algorithm for
the practical solution of equations of type (1). This algorithm in this
special case is much more efficient than that of Bilu and Hanrot [5]. In
the last section, we use our algorithm to give a complete list of solutions of
equation (1) for the ranges 1 ≤ a ≤ 1000 and 3 ≤ n ≤ 80. We also derive
an upper bound for n (see also Theorem 1), by specializing an estimate of
Bugeaud and Hajdu [9] to (1). Finally, we give an explicit upper bound
for the number of solutions of (1), too (cf. Theorem 2).

2. Results

The following theorem provides an upper bound for the solutions
of (1). Moreover, an estimate for n is also given.
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Theorem 1. Consider the diophantine equation

(1) x2 + a2 = 2yn, in x, y ∈ N with gcd(x, y) = 1,

where a and n are given positive integers with n ≥ 3. Then the following
inequalities hold.

(i) If n is a power of 2 then

max{x2, yn} < 28 · (45a)10
64

.

(ii) If n is not a power of 2 and p denotes the smallest odd prime divisor
of n, then

max{x2, yn} < 2 · 3pa2p(p−1).

(iii) We have in both cases

n ≤ 291 · 527 · a10.

As was mentioned above, (i) and (ii) of Theorem 1 give better bounds
than the best known general bonds for (2).

It follows from a general theorem of Evertse and Silverman [15]
concerning the number of solutions of (2), that our equation (1) has at
most 1716n8 solutions. Using our approach, we prove Theorem 2 below.
We denote by d(a) the number of positive divisors of a, and by ω(a) the
number of distinct prime divisors of a.

Theorem 2. If p denotes the smallest odd prime divisor of n, then
the number of solutions of (1) is at most

2(p− 1)d(a).

Further, if n is a power of 2 then this number is at most

2800 · 4ω(a)+1.

Our bounds are better than that of [15] when d(a) and ω(a) are small.

Remark. It follows from the proof of Theorem 1 that this theorem is
valid also for the more general equation

x2 + z2 = 2yn in x, y, z ∈ N,

with gcd(x, y) = 1, |z| ≤ a, where a and n ≥ 3 are given positive integers.
Further, Theorem 1 of Győry [16] concerning Thue inequalities implies
that if n is a power of 2 then the number of solutions with |x| ≥ 3 · 109a

9
4

is at most 100.
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3. Proofs

To prove Theorem 1, we need some lemmas. Let n ≥ 3 be an integer,
and denote by Fr(u, v) the real part of the polynomial ir(1 + i)(u + iv)n

in u, v for r = 0, 1, 2, 3. Further, let F−1(u, v) = F3(u, v). It is clear that
Fr(u, v) is a homogeneous polynomial in Z[u, v].

Lemma 1. The pair x, y ∈ Z with y > 0, gcd(a, x) = 1 is a solution to

(1) if and only if there exist integers u, v such that for some r ∈ {0, 1, 2, 3},

(3) a = Fr(u, v), x = Fr−1(u, v), y = u2 + v2.

Proof. This lemma can be easily proven by means of Gaussian in-
tegers; see e.g. [26] or [31]. ¤

Lemma 2. Let n and Fr(u, v) be as in Lemma 1. If n is odd then in

Z[u, v] we have

(u + (−1)rv) | Fr(u, v), if n ≡ −1 (mod 4)

(u− (−1)rv) | Fr(u, v), if n ≡ 1 (mod 4).

Proof. If n ≡ 1 (mod 4) then

Fr((−1)rv, v) =
ir(1 + i)((−1)rv + iv)n + (−i)r(1− i)((−1)rv − iv)n

2

= ir(1 + i)((−1)r + i)nv

(
1 + (−1)n(r+1)+r

2

)
= 0,

since n(r + 1) + r is odd. Hence it follows that (u− (−1)rv)|Fr(u, v). The
proof of the other case is similar. ¤

The following lemma which is due to Bugeaud and Győry [11] pro-
vides an upper bound for the solutions of Thue equations. Throughout
the paper we write log∗ a for max{log a, 1}.

Lemma 3. Let F ∈ Z[X,Y ] be an irreducible binary form of degree

n ≥ 3, and let b be a non-zero integer. Then all solutions of the equation

F (x, y) = b in x, y ∈ Z
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satisfy

max {|x|, |y|} < exp {cR(log∗R)(R + log(H · |b|))} ,

where c = 3r+27 · n2n+13r+33 and r, R denote the unit rank and the

regulator of the field Q(α), where α is a zero of F (x, 1), and H is the

maximum of the absolute values of the coefficients of F .

Finally, we use the following result of Bugeaud and Hajdu [9] to
derive an upper bound for n in (1).

Lemma 4. Let a and k be non-zero integers and put f(x) = axm−k.

Let b denote a non-zero integer and n a positive integer. Using the previous

notation, the equation

f(x) = byn

in integers x, y with |y| > 2 implies

n ≤ 205m+17m5m+27|ak| 5m
2 (log∗ |b|) 7

3 .

Proof of Theorem 1. (i) If n = 2m, m ≥ 2 then we have

x2 + a2 = 2z4,

where z = y2m−2
. For the binary forms defined in Lemma 1, we get

F0(u, v) = u4 − 4u3v − 6u2v2 + 4uv3 + v4

F1(u, v) = −F0(u,−v)

F2(u, v) = −F0(u, v)

F3(u, v) = F0(u,−v).

It is easy to see that F0, F1, F2 and F3 are irreducible over Q. According
to (3), to obtain an upper bound for max{|x|, |z|} it is sufficient to derive
an upper bound for the solutions u, v of the quartic Thue equation

F0(u, v) = ±a.

We note that for a = ±1 and a = ±4, this equation was completely solved
earlier by Lettl and Pethő in [20]. Using the notation of Lemma 3, we
have

R ≤ 2.4418, r = 3, n = 4, H = 6,
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and by (4) we get
max{|u|, |v|} ≤ (45a)2

160·331
.

This implies that

x2 ≤
(

16
(
(45a)2

160·331
)4

)2

,

and
yn ≤ 16(45a)2

163·331
,

which prove (i).

(ii) Let now a, n be given positive integers with n > 1, and suppose
that n is not a power of 2. If p is the smallest odd prime dividing n, then
(1) can be written in the form

x2 + a2 = 2(y
n
p )p.

Applying Lemma 1, we get

(5) a = Fr(u, v), x = Fr−1(u, v), y
n
p = u2 + v2,

where r ∈ {0, 1, 2, 3} and u, v are integers. By Lemma 2 we deduce that
the polynomial Fr(u, v) is divisible by u + v or u− v. Hence a = Fr(u, v)
implies that for some integer a0 with a0 | a we have u = a0 ± v. Further,
(F (a0 ± v, v)− a)/a0 is a polynomial in v with integral coefficients whose
constant term in absolute value is at most ap−1 + 1. Thus we infer that

|v| ≤ ap−1 + 1 and so |u| ≤ ap−1 + a + 1.

Finally, it follows that

yn/p = u2 + v2 ≤ 2a2(p−1) + 2ap + 4ap−1 + a2 + 2a + 2 ≤ 3a2(p−1),

and the assertion is proved.

(iii) Applying Lemma 4 to (1) we obtain

n ≤ 291527a10. ¤

Proof of Theorem 2. First consider the case when n is not a power
of 2. We follow a similar argument as in part (ii) of the proof of Theorem 1.
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Denote by p the smallest odd prime divisor of n. It is clear that it sufficies
to give a bound for the number of solutions in the particular case when
n = p is an odd prime.

First suppose that n ≡ 1 (mod 4). The case n ≡ −1 (mod 4) can
be treated similarly. Denote by Fr(u, v) the binary form in Z[u, v] defined
above. By Lemma 2 it follows that

(u− (−1)rv) | Fr(u, v) in Z.

Let x, y be an arbitrary but fixed solution of (1). Then Lemma 1 implies
that a = Fr(u, v) and x = Fr−1(u, v) for some r ∈ {0, 1, 2, 3} and some
u, v ∈ Z. Hence, by Lemma 2, we have u − (−1)rv | a in Z. Further, it
follows from Lemma 2 that there is a homogeneous polynomial F (u, v) in
Z[u, v] with deg F = p − 1 such that Fr(u, v) = (u − (−1)rv)F (u, v) in
Z[u, v]. Hence, for the above u, v ∈ Z we obtain that u− (−1)rv = a0, and
so

(6) a = a0F (a0 + (−1)rv, v).

The possible values of a0 is 2d(a). Further, for fixed a0 equation (6) has
at most p − 1 solutions in v. Thus equation (1) has at most 2(p − 1)d(a)
solutions.

Next consider the case when n is a power of 2. Then we may assume
that n = 4. Let again x, y be an arbitrary but fixed solution of (1). Then

(7) a = Fr(u, v),

and x = Fr−1(u, v) for some r ∈ {0, 1, 2, 3} and some u, v, where Fr is a
quartic binary form in Z[u, v]. We have seen above that Fr is irreducible
over Q. Equation (7) is a quartic Thue equation. We can now apply
a well-known theorem of Bombieri and Schmidt [6] on the number of
solutions of Thue equations and we get that the number of solutions of
(7) in u, v ∈ Z is at most C4ω(a)+1, where C is an absolute constant.
Further, by a theorem of Stewart [29] one may take C = 2800. This
gives immediately that in this case equation (1) has at most 2800 · 4ω(a)+1

solutions. ¤
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4. Numerical results

In this section we list all solutions of equation (1), with 3 ≤ n ≤ 80
and 1 ≤ a ≤ 1000. We used the method applied in the proof of our
Theorem 1 to obtain these results. Namely, we reduced equation (1) in
each concrete case to a quartic or to a reducible Thue equation, according
as n is a power of 2 or not. In the first case we used the program package
Kant [17] to solve the Thue equation in question. In the reducible case
we reduced the Thue equation to systems of equations of lower degree and
utilized elimination theory to find the solutions.

As (a, x, y) = (1, 1, 1) is a trivial solution for all n, we will indicate
only those values of n for which there are other solutions, too.

a x y

1 1 1

5 99 17

9 13 5

13 9 5

19 5291 241

27 545 53

37 55 13

55 37 13

71 275561 3361

73 161 25

77 207 29

91 305 37

99 5 17

99 27607 725

121 351 41

143 1099 85

143 1603 109

161 73 25

181 649 61

207 77 29

253 845 73

a x y

253 1079 85

253 9217 349

265 14325849 46817

297 679 65

305 91 37

337 1665 113

351 121 41

369 1432283 10085

377 18989 565

391 3537 185

433 2431 145

481 1917 125

517 531 65

517 79623 1469

531 517 65

541 3401 181

545 27 53

559 61525 1237

585 2191 137

611 1205 97

629 4103 205

a x y

649 181 61

661 4599 221

671 1269 101

679 297 65

693 7501 305

747 923 89

793 6049 265

819 6611 281

845 253 73

851 38493 905

923 747 89

935 472213 4813

937 7775 313

989 744675931 652081

The case n = 3
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a x y

1 1 1

1 239 13

17 31 5

31 17 5

79 401 17

191 863 25

239 1 13

241 1921 37

401 79 17

799 881 29

863 191 25

881 799 29

911 10177 85

The case n = 4

a x y

1 1 1

3 79 5

79 3 5

475 719 13

719 475 13

The case n = 5

a x y

1 1 1

73 161 5

161 73 5

The case n = 6

a x y

1 1 1

249 307 5

307 249 5

The case n = 7

a x y

1 1 1

191 863 5

863 191 5

The case n = 8

a x y

1 1 1

481 1917 5

The case n = 9

Remark. We note that the case n = 4 with a = 1 was earlier solved
by Ljunggren [21].
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