
Publ. Math. Debrecen

58 / 1-2 (2001), 49–56

A note on equivalence of means

By LUCIO R. BERRONE (Rosario) and
ARIEL L. LOMBARDI (Buenos Aires)

Abstract. Given a real interval I, a relation, denoted by ‘∼’, is defined on the set
of means on I × I by setting M ∼ N when there exists a surjective continuous function
f solving the functional equation

f(M(x, y)) = N(f(x), f(y)), x, y ∈ I.

A surjective and continuous solution to this equation turns out to be injective and so,
‘∼’ is an equivalence. This fact seems to be not properly noticed in the literature on
means.

1. Introduction

Let I be a real interval. A function M : I2 → I is said to be internal
on I ([1]) when

x < M(x, y) < y, x, y ∈ I, x < y.

Throughout this note, a continuous function M which is internal on I is
called a continuous mean on I. Given two functions M and N defined on
the square I2 ⊆ R2, the functional equation

(1) f (M(x, y)) = N (f(x), f(y)) , x, y ∈ I,

has been studied by a huge number of authors from the first decades of
the present century. For a related bibliography we refer to the classical
book [1], ps. 62, 79, 145. When M and N are continuous means on I,
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equation (1) is implicit in the paper [6] (cited in [5], p. 353) by G. Pietra,
where M and N are called corresponding means (“medie corrispondenti”)
provided that a (continuous and) strictly monotone solution f to equation
(1) exists on I. Indeed, equation (1) is not formulated by Pietra, who
is mainly interested in particular correspondences: the arithmetic mean
corresponds to the geometric mean through f(x) = exp x, x > 0; to the
harmonic mean through f(x) = 1/x, x > 0, and so on.When f is bijective,
equation (1) can be rewritten in the form

(2) M = f−1 ◦N ◦ (f × f),

where f ×f denotes the Cartesian product of f by itself. In [2], two means
M and N satisfying (2) for a bijective f have been named conjugated means
and invariance under conjugacy of important classes of means is studied.
On the other hand, the simultaneous existence of continuous solutions to
equation (1) and to the following one

(3) g (N(x, y)) = M (g(x), g(y)) , x, y ∈ I,

(without any monotonicity requirement on f or g) is taken by J. M. Bor-

wein and P. B. Borwein as a starting point for defining an equivalence
relation on the set of means on R+. As a matter of fact, in p. 239 of [3],
a mean N on R+ is said to dominate another mean M (written N Â M)
when there exists a continuous solution f to (1) with I = R+. Since dom-
ination relation is transitive, an equivalence “∼” is then introduced on the
set of means by defining N ∼ M if and only if N Â M and M Â N but,
with the purpose of proving interesting results, a more restrictive notion
of equivalence is proposed soon after by requiring the function f to be one
to one; i.e., injective. The same authors then consider ([3], p. 241) the
notion of strong equivalence of means, so calling two means M and N on
R+ when there exists a bijective and continuous solution to equation (1)
(with I = R+).

In this regard, first we observe that, without injectivity, the definition
of domination relation is meaningless because constants are trivial con-
tinuous solutions to (1) whatever be the means M and N . However, this
inconvenience can be quickly remedied by excluding the constant solutions
to (1). In fact, we will show in this note that if constant solutions are put
aside, a continuous solution to equation (1) must be injective, so that only
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surjectivity needs to be required in order to obtain an equivalence. In other
words, domination by continuous and onto functions is a concept that does
not really differ from the notion of conjugacy of means as considered in [2].

In finishing this introduction, we would like to stress the interesting
problem of finding conditions on the means M and N in order that equa-
tion (1) admits a continuous solution. As far as we know, this problem have
been not solved up to date in its full generality. However, some particular
conditions for existence of continuous solutions are known. For instance, it
follows from Theorem 4, p. 79, of [1], that if any mean in equation (1), say
M , is a quasiarithmetic mean, then a continuous (and strictly monotone)
solution f exists if and only if N is also a quasiarithmetic mean. Other
results on existence of solutions to equation (1) can be found in [4]. It
should be added that the discussion of the next section does not depend
on any result of existence of solutions for equation (1).

2. Results

Let F be a function defined on I × I such that F (I × I) ⊆ I. We
inductively define a family {F d : d ∈ [0, 1], d dyadic} of “dyadic iterates”
of F as follows. Firstly, we set

(4) F 0(x, y) ≡ x, F 1(x, y) ≡ y.

Now, assume that F
j

2n is known for n ≥ 0 and for every 0 ≤ j ≤ 2n; if
k = 2h with 0 ≤ h ≤ 2n, then we set

(5) F
k

2n+1 (x, y) = F
h
2n (x, y),

while if k = 2h + 1 with 0 ≤ h ≤ 2n − 1,

(6) F
k

2n+1 (x, y) = F
(
F

h
2n (x, y), F

h+1
2n (x, y)

)
.

When F is an internal function, the family {F d} is monotone in the sense
specified by the following lemma.

Lemma 1. Let F be an internal function on I and d1, d2 ∈ [0, 1] be

dyadic numbers with d1 < d2. Then

(7) F d1(x, y) < F d2(x, y)
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for every x, y ∈ I, x < y.

Proof. Without lost of generality, we inductively prove that inequal-
ity (7) holds for d1 = p

2n and d2 = q
2n , with p < q. For n = 0 the statement

is trivial from (4). Suppose the statement is true for a non-negative inte-
ger n. Then, for k = 2h we would have

F
k+1
2n+1 (x, y) = F

(
F

h
2n (x, y), F

h+1
2n (x, y)

)
(8)

> F
h
2n (x, y) = F

k
2n+1 (x, y)

where we have applied the inductive hypothesis and the internality of
F . In a similar way, if k = 2h + 1, we obtain

F
k+1
2n+1 (x, y) = F

2h+2
2n+1 (x, y) = F

h+1
2n (x, y)(9)

> F
(
F

h
2n (x, y), F

h+1
2n (x, y)

)
= F

k
2n+1 (x, y).

Now, if k < l, from (8) and (9) we deduce

F
k

2n+1 (x, y) < F
k+1
2n+1 (x, y) < · · · < F

l−1
2n+1 < F

l

2n+1 (x, y),

which completes the induction. ¤

Our next result links dyadic iterations with the functional equation (1).

Lemma 2. Let M and N be internal functions on I and suppose that

there exists a function f such that

f (M(x, y)) = N (f(x), f(y)) .

Then

f
(
Md(x, y)

)
= Nd (f(x), f(y))(10)

for every dyadic number d ∈ [0, 1].

Proof. The proof follows from a simple inductive argument whose
details are omitted. ¤

The essential property of the set of dyadic iterates {Md(x, y)} is es-
tablished in the following:
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Proposition 3. Let M be a continuous mean on I and x, y ∈ I be

real numbers such that x < y. Then, the set

A =
{
Md(x, y) : 0 ≤ d ≤ 1 is a dyadic number

}

is dense in the interval [x, y].

Proof. If A were not dense in [x, y], there would exist numbers a, b

with x ≤ a < b ≤ y such that

(11) A ∩ (a, b) = ∅,

being (a, b) maximal in the sense that, for every small enough ε,

A ∩ (a− ε, b) 6= ∅ and A ∩ (a, b + ε) 6= ∅.

For n ∈ N, define

kn = max
{

k ∈ N : Md(x, y) ≤ a, d =
k

2n
, 0 ≤ k ≤ 2n

}

and put

dn =
kn

2n
, en =

kn + 1
2n

and fn =
2kn + 1
2n+1

.

Sequences {dn} and {en} turn out to be monotone ones: {dn} is increas-
ing and {en} is decreasing. From these facts and Lemma 1, it follows
that sequences

{
Mdn(x, y)

}
and {Men(x, y)} are convergent; then, by the

maximality of the interval (a, b), we have

lim
n→∞

Mdn(x, y) = a and lim
n→∞

Men(x, y) = b.

On the other hand, from definition of Md(x, y) for dyadic d, we have

Mfn(x, y) = M
(
Mdn(x, y),Men(x, y)

)

and, in view of the continuity of M ,

lim
n→∞

Mfn(x, y) = M(a, b).

Hence, using the internality of M , we obtain

a < lim
n→∞

Mfn(x, y) < b,
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so that there exists n0 such that the inequalities

a < Mfn(x, y) < b

hold for every n ≥ n0, which is in contradiction with (11). This proves
that A is dense in [x, y], as we claimed. ¤

In the next result, density of dyadic iterates of an internal function is
exploited in order to prove a monotonicity property of continuous solutions
to equation (1).

Proposition 4. Let M and N be two continuous means on [x0, y0]
and suppose that there exists a continuous function f such that

(12) f (M(x, y)) = N (f(x), f(y)) , x0 ≤ x < y ≤ y0.

If f(x0) < f(y0) (f(x0) > f(y0)), then f is strictly increasing (decreasing)
on [x0, y0], while f reduces to a constant provided that the equality f(x0) =
f(y0) holds.

Proof. Assume that a continuous function f satisfies equation (12)
and that f(x0) < f(y0). By Lemma 2, equation (10) holds. Then, if
d1 < d2 are dyadic numbers, from Lemma 1 we deduce

f
(
Md1(x0, y0)

)
= Nd1 (f(x0), f(y0))(13)

< Nd2 (f(x0), f(y0)) = f
(
Md2(x0, y0)

)
;

i.e., f is strictly increasing on the set

A =
{
Md(x0, y0) : 0 ≤ d ≤ 1 dyadic number

}

which is dense in [x0, y0] by Proposition 3. Therefore f is increasing on
[x0, y0]. To see that f is strictly increasing, let us take x, y ∈ [x0, y0], x < y,
and two dyadic number d1, d2 such that x < Md1(x0, y0) <Md2(x0, y0) <y;
then we have

f(x) ≤ f(Md1(x0, y0)) < f(Md2(x0, y0)) ≤ f(y).

In the case in which f(x0) > f(y0), inequality (13) is reversed and f turns
out to be decreasing. Finally, if f(x0) = f(y0) = C, then it follows from
Lemma 2 that f(x) = C for every x ∈ A and therefore f ≡ C on [x0, y0].

¤
A sort of converse of Proposition 4 is now established.
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Proposition 5. Let f be a strictly monotone function satisfying equa-

tion (12) for two continuous means M and N . Then f is continuous.

Proof. Assume that f is strictly monotone. From Lemma 3, the set
{
Nd (f(x0), f(y0)) : d dyadic number

}

is dense in the interval [f(x0), f(y0)] and, in view of equation (10), the set

f ([x0, y0]) = {f(x) : x0 ≤ x ≤ y0}

is a fortiori dense in [f(x0), f(y0)]. Hence, the monotone function f has
no gaps; i.e., it is continuous. ¤

For a pair M , N of continuous means on I, we put M ∼ N if and
only if there exist a surjective and continuous solution to equation (1). As
it was asserted in the Introduction, ‘∼’ is an equivalence

Theorem 6. The relation ‘∼’ is an equivalence on the set of continu-

ous means on a real interval I.

Proof. Since the identity map idI is continuous and surjective, rela-
tion ‘∼’ is reflexive. The transitivity of ‘∼’ is a consequence of the fact that
f ◦ g is continuous and surjective when so f and g are. Now, it is a simple
matter to extend Proposition 4 to the case in which the means M and N

are defined on an arbitrary real interval I. To this end, let us consider a
non-constant continuous solution f to equation (1). Assuming that f is not
injective, we can find x0, y0 ∈ I, x0 < y0, such that f(x0) = f(y0) = C. In
view of Proposition 4, we realize that f(x) = C for every x ∈ [x0, y0]. Since
f is not constant on I, there exists z0 ∈ I \ [x0, y0] such that f(z0) 6= C.
Taking, for instance, z0 < x0 and f(z0) < f(x0) = f(y0), a new applica-
tion of Proposition 4 shows that f should be strictly increasing in [z0, y0],
in contradiction with the assumption f(x0) = f(y0) = C. The remain-
ing cases can be analogously treated, thus concluding that a non-constant
continuous solution f to (1) must be injective. With this result at hand,
the symmetry of ‘∼’ is easily proved. In fact, if M ∼ N then a surjective
and continuous solution f to equation (1) exists. But f turns out to be
injective so that f−1, which is also surjective and continuous, satisfies

f−1 (N(x, y)) = M
(
f−1(x), f−1(y)

)
, x, y ∈ I;

and therefore N ∼ M . ¤
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