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On the characterization of additive functions
on Gaussian integers

By KATALIN KOVÁCS (Budapest)

Abstract. Let f denote an additive function on the Gaussian integers. We prove
some theorems of characterization with linear and quadratic arguments. If e.g. for a
completely additive function f(aα + b)− tf(α) = c or f(α2 + 1) + f(α2 − 1) = c, then
f(α) = 0 for all nonzero Gaussian integers α.

In 1946 Erdős [2] proved the following theorems:

Theorem 1 (Erdős). Let f be a real valued additive function. If
f(n + 1)− f(n) → 0, then f(n) = c log n for all n ∈ N.

Theorem 2 (Erdős). If a real valued additive function f is mono-
tonically increasing, then f(n) = c log n for all n ∈ N.

I. Kátai [3] generalized Theorem 1 for completely additive functions
using a result of E. Wirsing [6]:

Theorem 3 (Kátai). Let f be a completely additive function. If∑m
i=1 cif(n + ai) = o(log n), then f(n) = c log n for all n ∈ N or f = 0.

The following generalizations are due to P.D.T.A. Elliott [1] and
myself ([4], [5]):

Theorem 4 (Elliott, [1]). Let f be an additive function, A > 0,
C > 0, B, D integers and ∆1 = AC(AD − BC) 6= 0. If f(An + B) −
f(Cn + D) → c, then f(n) = c′ log n for all (n,∆1).
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Theorem 5 [5]. Let f be a completely additive function. If f(2n +A)−
f(n) is monotonic from some number on, then f(n) = c log n for all n ∈ N.

Theorem 6 [4]. Let f denote a completely additive function. If

f(n2 + 1) = s1f(n) + s2f(n − 1) + o(log n) (s1, s2 are not both zero),

then f(n) = c log n.

In this article we intend to prove some similar results on the set of the
Gaussian integers. Let G∗ denote the set of the nonzero Gaussian integers.
Let α, β be the elements of this set and N(α) := αα.

Definition 1. The function f is G-additive, if f(αβ) = f(α) + f(β)
for all relatively prime α, β ∈ G∗.

Definition 2. The function f is completely G-additive, if f(αβ) =
f(α) + f(β) for all α, β ∈ G∗.

Remark. We can prove easily that f(ε) = 0 for any additive f and
arbitrary Gaussian unit ε.

We prove the following results:

Theorem 7. Let a, b denote some fixed elements of G∗ and let

t ∈ C \ {0}.
(i) If for a G-additive function

(1) f(aα + b)− tf(α) → c,

then f(n) = c′ log n for all n ∈ N+ coprime to 2N(ab).

(ii) If for a completely G-additive function

(1’) f(aα + b)− tf(α) = c,

then f(α) = 0 for all α ∈ G∗.

Theorem 8. If for a completely G-additive function

f(α2 + 1) + f(α2 − 1) = c,

then f(α) = 0 for all α ∈ G∗.
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Theorem 9. (i) If for a completely G-additive function

f(α2 +1) = s1f(α)+s2f(α−1)+o(log N(α)) (s1, s2 are not both zero),

then f(z) = 0 for all z ∈ Z \ {0}.
(ii) If for a completely G-additive function

f(α2 + 1) = s1f(α) + s2f(α− 1) + c (s1, s2 are not both zero),

then f(α) = 0 for all α ∈ G∗.

Proofs

Proof of Theorem 7. (i) If f is G-additive, then by substituting
abN(b)α into (1) we have

(2) f(N(ab)α + 1)− tf(α) → C ′,

for all α coprime to N(ab) with C ′ = c+tf(abN(b))−f(b). By substituting
2α into (2) we have

(3) f(2N(ab)α + 1)− tf(α) → C ′′

for all α coprime to 2N(ab) with C ′′ = c + tf(2abN(b)) − f(b). The
difference of (3) and (2) shows that

(4) f(2N(ab)α + 1)− f(N(ab)α + 1) → C ′′′

for all α coprime to 2N(ab). By substituting 2N(ab)α+1 into (4) we have
that

f(4N2(ab)α + 2N(ab) + 1)− f(2N2(ab)α + N(ab) + 1) → C ′′′

for all α ∈ G∗. Applying Theorem 4 we get that f(n) = c′ log n for all
n ∈ N coprime to 2N(ab).

(ii) Let f be a completely G-additive function.
By substituting bα into (1’) we have

(5) f(aα + 1) = tf(α) + c1
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with c1 = c + (t− 1)f(b). Therefore

f((aα + 1)2) = f(a[α(aα + 2)] + 1) = tf(α) + tf(aα + 2) + c1

and

f((aα + 1)2) = 2f(aα + 1) = 2tf(α) + 2c1,

i.e.

(6) f(aα + 2) = f(α) + c1/t.

By substituting 2α into (6) we get

(7) f(aα + 1) = f(α) + c1/t.

By the comparison of (5) and (7) f is constant, i.e. f(α) = 0 for all α ∈ G∗

or t = 1. If t = 1, then we also prove , that f(α) = 0 for all α ∈ G∗. First
we prove by induction, that

(8) f(aα + s) = f(α) + c1

for all s ∈ N+. For s = 1 it is true by (7). By the assumption of induction
for s ≤ z we have

f((aα + 1)(aα + z)) = f(aα + 1) + f(aα + z) = 2f(α) + 2c1

and

f(a[α(aα + z + 1)] + z) = f(α) + f(aα + z + 1) + c1,

which follow f(aα + z + 1) = f(α) + c. By substituting s = a into (8) we
have f(α+1) = f(α)+ c1− f(a). By restricting α to the natural numbers
f(n)− f(n−1) = c1− f(a) for all n ∈ N. By substituting n2 here we have
c1−f(a) = f(n2)−f(n2−1) = [f(n)−f(n−1)]− [f(n+1)−f(n)] = 0, i.e.
c1 = f(a). Applying Theorem 1 f(n + 1) = f(n) follows f(n) = 0 for all
n ∈ N . Using that f(α + 1) = f(α) for all α ∈ G∗, we prove by induction
that f(δ) = 0 also for all not real Gaussian primes δ. By the Remark it is
enough to consider the Gaussian primes of form π = 1 + i and π = x + yi

with even number x and odd number y as f(π) + f(π) = f(N(π)) = 0
and f(iπ) = f(−iπ) = f(−π) = f(π). We have 0 = f(2) = 2f(1 + i). For
any other π the Gaussian integer π − 1 is divisible by 1 + i, i.e. it is not a
Gaussian prime. We assume that f(γ) = 0 for all Gaussian-primes which
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norm is less then f(π). As f(π) = f(π − 1) and f(β) = 0 for all prime
divisors β of π− 1 by the hypotesis of the induction, therefore f(π) = 0 is
also satisfied as f is a completely G-additive function. ¤

Proof of Theorem 8. As α2 + 1 = (α + i)(α− i), we have

(9) f(α + i) + f(α− i) + f(α + 1) + f(α− 1) = c.

By substituting α − i into (9), (1 + i)α into (10), 2α + i and (1− i)α + i

into (11) we have that

f(α) + f(α− 2i) + f(α + 1− i) + f(α− 1− i) = c,(10)

f(α) + f(α− 1− i) + f(α− i) + f(α− 1) = c1,(11)

f(2α + i) + f(2α− 1) + f(α) + f(2α− 1 + i) = c2(12)

and

f(2α− 1 + i) + f(2α− 1− i) + f(α) + f(α− 1) = c3.(13)

The difference of (12) and (13) shows that

(14) f(2α + i)− f(2α− 1− i) + f(2α− 1)− f(α− 1) = c4.

By substituting 2α into (11) and (9) we have

f(α) + f(2α− 1− i) + f(2α− i) + f(2α− 1) = c1(15)

and

f(2α + i) + f(2α− i) + f(2α + 1) + f(2α− 1) = c.(16)

The difference of (15) and (16) shows that

(17) f(2α + i)− f(2α− 1− i) + f(2α + 1)− f(α) = c5.

By the comparison of (14) and (17) we get

(18) f(2α + 1)− f(α) = f(2α− 1)− f(α− 1) + c6.

By restricting α to natural numbers (18) follows that f(2n + 1)− f(n) is
monotonic. Applying Theorem 5 we obtain f(n) = 0 for all n ∈ N and
also that c6 = 0. We prove by induction that f(π) = 0 also for all not
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real Gaussian primes. As the norm of 2α + 1 is greater than the norm of
any other argument in (18) and the minimal value of N(2α + 1) is 13, it
is enough to verify that f(1 + i) = f(2 + i) = f(2 + 3i) = 0 using the
Remark. It is true as 0 = f(2) = 2f(1+ i) and α = 1+ i and α = i in (18)
imply f(1 + 2i) = f(3 + 2i) and f(1 + 2i) = f(1 + i). ¤

Proof of Theorem 9. (i) is a direct consequence of Theorem 6 and
the Remark.

(ii) By induction we prove that f(x+ yi) = 0 for all x ∈ Z and y ∈ N.
For y = 0 it is true by (i) (x can be arbitrarily choosen). Let us assume
that it is true for all 0 ≤ y ≤ s. If we substitute x + si in the condition of
the theorem we get

f(x + (s + 1)i) + f(x + (s− 1)i) = sf(x + si) + tf(x− 1 + si),

i.e. by the assumption of the induction f(x + (s + 1)i) = 0. If y < 0, then
f(x + iy) = f(−x− iy) = 0 as −y ∈ N. ¤
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lag, Basel, Boston, Mass., 1983, 415–421.

[4] K. Kov�acs, On total additive solutions of some equations, Acta Math. Hung. 59
(1–2) (1992), 33–38.

[5] K. Kov�acs, On a conjecture concerning additive number theoretical functions II,
Publ. Math. Debrecen. 50 (1-2) (1997), 177–179.

[6] E. Wirsing, Additive and completely additive functions with restricted growth,
Recent Progress in Analytic Number Theory, (Proc. Sympos. Durham, 1979), Vol.2,
Academic Press, London, New York, 1981, 231–280.

KATALIN KOVÁCS
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