Publ. Math. Debrecen
58 /1-2 (2001), 73-78

On the characterization of additive functions
on Gaussian integers

By KATALIN KOVACS (Budapest)

Abstract. Let f denote an additive function on the Gaussian integers. We prove
some theorems of characterization with linear and quadratic arguments. If e.g. for a
completely additive function f(aa 4 b) —tf(a) = cor f(a? + 1)+ f(a? — 1) = ¢, then
f(a) = 0 for all nonzero Gaussian integers a.

In 1946 ERDOS [2] proved the following theorems:

Theorem 1 (ERDOS). Let f be a real valued additive function. If
f(n+1) = f(n) — 0, then f(n) = clogn for all n € N.

Theorem 2 (ERDOS). If a real valued additive function f is mono-
tonically increasing, then f(n) = clogn for all n € N.

I. KATAI [3] generalized Theorem 1 for completely additive functions
using a result of E. WIRSING [6]:

Theorem 3 (KATAI). Let f be a completely additive function. If
St cif(n+a;) = o(logn), then f(n) = clogn for alln € N or f = 0.

The following generalizations are due to P.D.T.A. ErLioTT [1] and
myself (4], [5]):

Theorem 4 (ELLIOTT, [1]). Let f be an additive function, A > 0,
C > 0, B, D integers and Ay = AC(AD — BC) # 0. If f(An+ B) —
f(Cn+ D) — ¢, then f(n) = ¢’ logn for all (n,Ay).
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Theorem 5 [5]|. Let f be a completely additive function. If f(2n+ A)—
f(n) is monotonic from some number on, then f(n) = clogn for alln € N.

Theorem 6 [4]. Let f denote a completely additive function. If
f(n? +1) = s1f(n) + saf(n — 1) + o(logn) (s1, s are not both zero),
then f(n) = clogn.

In this article we intend to prove some similar results on the set of the
Gaussian integers. Let G* denote the set of the nonzero Gaussian integers.
Let a, 8 be the elements of this set and N(«) := aa.

Definition 1. The function f is G-additive, if f(afB) = f(a) + f(5)
for all relatively prime «, 8 € G*.

Definition 2. The function f is completely G-additive, if f(afB) =
fla) + f(B) for all o, 5 € G*.

Remark. We can prove easily that f(e) = 0 for any additive f and
arbitrary Gaussian unit e.

We prove the following results:

Theorem 7. Let a, b denote some fixed elements of G* and let
t e C\ {0}.
(i) If for a G-additive function

(1) flaa+b) —tf(a) =,

then f(n) = ¢’logn for all n € NT coprime to 2N (ab).
(ii) If for a completely G-additive function

(1) flaoa+b) = tf(a) = c,
then f(a) =0 for all o € G*.

Theorem 8. If for a completely G-additive function
fl@®+ 1)+ fla® 1) =¢,

then f(a) =0 for all o € G*.
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Theorem 9. (i) If for a completely G-additive function
f(@®+1) = s1f(a)+saf(a—1)4+0(log N(a)) (s1,s2 are not both zero),

then f(z) =0 for all z € Z \ {0}.
(ii) If for a completely G-additive function

f(@®4+1) =s1f(a) +saf(a —1)+c¢ (51,89 are not both zero),

then f(a) =0 for all a € G*.

Proofs

PROOF of Theorem 7. (i) If f is G-additive, then by substituting
abN (b)a into (1) we have

(2) f(N(ab)a+1) = tf(a) — €,

for all & coprime to N (ab) with C” = ¢+t f(@bN (b)) — f(b). By substituting
2a into (2) we have

(3) f(2N(ab)a+ 1) —tf(a) — C”

for all a coprime to 2N(ab) with C” = ¢+ tf(2abN (b)) — f(b). The
difference of (3) and (2) shows that

(4) F@N(ab)a + 1) — f(N(ab)a + 1) — C""

for all @ coprime to 2N (ab). By substituting 2N (ab)a+ 1 into (4) we have
that

f(4N?(ab)a + 2N (ab) + 1) — f(2N?*(ab)a + N(ab) + 1) — C"”

for all @ € G*. Applying Theorem 4 we get that f(n) = ¢ logn for all
n € N coprime to 2N (ab).

(ii) Let f be a completely G-additive function.
By substituting ba into (1’) we have

(5) flaa +1) = tf(a) + e
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with ¢; = ¢+ (¢t — 1) f(b). Therefore

f((aa +1)?) = f(a[a(aa +2)] + 1) = tf(a) + tf(aa +2) + ¢

and
f((aa +1)%) = 2f(ace + 1) = 2t f(a) + 2¢1,
(6) flaa+2) = f(a) + /1.

By substituting 2« into (6) we get

(7) flaa+1) = f(a) +c1/t.

By the comparison of (5) and (7) f is constant, i.e. f(a) =0 for all &« € G*
ort =1. If t =1, then we also prove , that f(«) =0 for all &« € G*. First
we prove by induction, that

(8) flaa+s) = fla)+

for all s € NT. For s = 1 it is true by (7). By the assumption of induction
for s < z we have

fllaa+ 1D (aa+ 2)) = faa+ 1)+ flaa + 2z) = 2f(a) + 2¢4
and

flala(aa+z+ 1)+ 2) = f(a) + flaa+ 2z + 1) + 1,

which follow f(aa + z + 1) = f(a) 4+ ¢. By substituting s = a into (8) we
have f(a+1) = f(a)+c1 — f(a). By restricting « to the natural numbers
f(n)— f(n—1) = ¢; — f(a) for all n € N. By substituting n? here we have
c1—fla) = f(n?) = f(n*=1) = [f(n) = f(n=1)] = [f(n+1) = f(n)] = 0, ie.
¢1 = f(a). Applying Theorem 1 f(n+ 1) = f(n) follows f(n) = 0 for all
n € N . Using that f(a+ 1) = f(a) for all @« € G*, we prove by induction
that f(d) = 0 also for all not real Gaussian primes 6. By the Remark it is
enough to consider the Gaussian primes of form # =144 and 7# = x + yi
with even number z and odd number y as f(7) + f(7) = f(N(7)) =0
and f(ir) = f(—im) = f(—m) = f(7w). We have 0 = f(2) = 2f(1 +1). For
any other m the Gaussian integer m — 1 is divisible by 1 + ¢, i.e. it is not a
Gaussian prime. We assume that f(7y) = 0 for all Gaussian-primes which
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norm is less then f(7). As f(n) = f(r — 1) and f(8) = 0 for all prime
divisors (3 of m — 1 by the hypotesis of the induction, therefore f(7) = 0 is
also satisfied as f is a completely G-additive function. O

PROOF of Theorem 8. As a? +1 = (a+i)(a — i), we have
(9) flat+i)+ fla—i)+ fla+1)+ fla—1) =c.

By substituting o — ¢ into (9), (1 + )« into (10), 2ac + ¢ and (1 — i) + ¢
into (11) we have that

(10) fla)+ fla—2)+ fla+1—i)+ fla—1—1i) =c,
(11) fla)+ fla=1=i)+ fla=i)+ fla=1) =,
(12) fRa+1i)+ fRa—1)+ f(a) + fRa—1+41i) =c2
and

(13) fa—1410)+ f2a—1—i)+ f() + fla—1) = c3.
The difference of (12) and (13) shows that

(14)  f2a+i)— fa—1—i)+ fa—1)— fla—1) = e

By substituting 2« into (11) and (9) we have

(15) fla)+fRa—1—0)+ fRa—i)+ f2a—1) =
and
(16) fRa+i)+ fla—i)+ fRa+1)+ f(2a—1) =c.

The difference of (15) and (16) shows that

(17) FQa+i)— f(2a—1—i)+ f(2a+1) — f(a) = cs.
By the comparison of (14) and (17) we get

(18) fRa+1)— fla) = f(2a—1) = fla — 1) +c.

By restricting « to natural numbers (18) follows that f(2n + 1) — f(n) is
monotonic. Applying Theorem 5 we obtain f(n) = 0 for all n € N and
also that ¢g = 0. We prove by induction that f(7) = 0 also for all not
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real Gaussian primes. As the norm of 2« + 1 is greater than the norm of
any other argument in (18) and the minimal value of N(2a + 1) is 13, it
is enough to verify that f(1+1i) = f(2+4) = f(2+ 3i) = 0 using the
Remark. It is true as 0 = f(2) = 2f(1+i) and o« = 1+i and o = 7 in (18)
imply f(1+ 2i) = £(3 +2i) and f(1+ 2i) = f(1+1). O

PRrROOF of Theorem 9. (i) is a direct consequence of Theorem 6 and
the Remark.

(ii) By induction we prove that f(x+yi) =0 for all x € Z and y € N.
For y = 0 it is true by (i) (x can be arbitrarily choosen). Let us assume
that it is true for all 0 < y < s. If we substitute = + s¢ in the condition of
the theorem we get

fla+(s+1)i)+ f(x+ (s—1)i) = sf(x + si) + tf(x — 1 + si),

i.e. by the assumption of the induction f(x + (s+1)i) = 0. If y < 0, then
fle+iy) = f(—x —iy) =0as —y € N. O
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