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On the Daróczy–Kátai-Birthday expansion

By MIN-YOUNG LEE (Seoul)

Abstract. The recently introduced Daróczy–Kátai-Birthday (DKB) expansion
is a special Oppenheim expansion with fundamental inequality dn+1 ≥ d3

n − d2
n + 1

for the denominators. We refer to expansions in which ultimately equation holds in
the fundamental inequality as series with minimal growth rate. It is shown that the
minimum growth rate is the same magnitude as the growth rate valid with probability
one. Furthermore, we establish the surprising result that, for almost all x in (0, 1),

dn+1 ≥ d3
n +

d3
n

(log dn)c with some constant c > 0.

Introduction

The Oppenheim series expansion of real numbers 0 < x ≤ 1 is defined
by the algorithm: dn, n ≥ 1 are integers

(1) x = x1,
1
dn

< xn ≤ 1
dn − 1

and

(2) xn+1 =
(

xn − 1
dn

)
1

rn(dn)
,

where rn(j) = hn(j)
j(j−1) , and hn(j) ≥ 1 is an integer valued function, n ≥ 1,

j ≥ 1. The integers dn = dn(x) are called the digits of the expansion, and
they satisfy the fundamental inequality:

(3) dn+1 ≥ hn(dn) + 1, n ≥ 1.
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The theory of Oppenheim series was developed by J. Galambos in a
series of papers, which is presented in a unified way in the book Galam-
bos [1]; see particularly sections 1.3, 2.2, 5.3, and all sections of Chap-
ter VI.

In a recent paper, Galambos [2] introduced and studied the special
case hn(j) = j2(j − 1), and called the resulting algorithm and series ex-
pansion Daróczy–Kátai-Birthday expansion, or DKB-expansion. Repeated
applications of (1) and (2) lead to the series representation.

(4) x =
1
d1

+
d1

d2
+

d1d2

d3
+ · · ·+ d1d2 · · · dn

dn+1
+ · · ·

in which (3) takes the form

(3a) dn+1 ≥ d2
n(dn − 1) + 1 = d3

n − d2
n + 1.

It also follows from the cited general theory of Oppenheim series that
if x is given by a series of the form of (4) satisfying (3a) then (4) is produced
by the algorithm (1) and (2). In particular, if at (4) dn = Vn with Vn0

fixed,

(5) Vn+1 = V 3
n − V 2

n + 1 for all n ≥ n0

and (3a) holds for n < n0, then (4) is a DKB-expansion.

The sequence generated in (5) will be referred to as a DKB-series with
minimum growth rate. In the present paper I study the sequence Vn of
minimal growth rate as defined at (5) and compare with the result

(6) lim
n→∞

log dn(x)
3n

= G(x), G(x) > 0 finite,

(see Galambos [1], Theorem 6.13).
In contrast to the minimal growth for dn, one can consider the ex-

tent to which the fundamental inequality (3a) governs the growth rate for
almost all x. In this direction I shall show that, for almost all x,

(7) dn+1 ≥ d3
n +

d3
n

(log dn)c
for all n ≥ n0,

with some constant c = c(x) > 0. For proving (7), a general representation
of dn+1, as quoted in Galambos [2] at (12), p. 380, will be the major
tool, together with a Borel–Cantelli-type of argument. In all statements,
probability is Lebesgue measure on the Borel sets of (0, 1].
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The results and proofs

Theorem 1. For the sequence Vn of integers, defined at (5) with n0 =1
and V1 = 2, we have, as n → +∞

0 < lim
n→∞

3−n log Vn < +∞.

Proof of Theorem 1. From

3−(n+1) log Vn+1 − 3−n log Vn = 3−(n+1) log
(

1− V 2
n − 1
V 3

n

)
< 0

it follows that 3−n log Vn decreases for increasing n and converges to a
positive limit V . Furthermore

Vn+1 − 2
3

>

(
Vn − 2

3

)3

so

log Vn > log
(

Vn − 2
3

)
> 3n−k log

(
Vk − 2

3

)
for k = 1, 2, . . . , n.

Applying this formula k = 1 we obtain

log Vn > 3n 1
3

log
4
3

so
V = lim

n→∞
3−n log Vn ≥ 1

3
log

4
3

> 0.

This completes the proof. ¤
For the next result I quote a representation of dn from Galambos [2],

p. 380. The sequence dn = dn(x) has the same distributional properties
as the stochastic sequence Dn, n ≥ 1, defined as D1 = [exp(x1)] + 1, and

(8) Dn+1 =
[
(D3

n −D2
n) exp(xn+1)

]
+ 1, n ≥ 1,

where x1, x2, . . . are independent unit exponential variables, that is, F (x)=
P (xj ≤ x) = 1 − e−x, x ≥ 0, where P is any probability measure on an
arbitrary abstract probability space. The space, of course, can be chosen
as Borel sets of (0, 1], P as Lebesgue measure and xj = − log uj , where
0 < uj ≤ 1 are independent uniformly chosen points in (0, 1]. So, we can
use the same underlying probability space for (8) as for (1) and (2).
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Theorem 2. For almost all x, there is an n0 = n0(x) such that

dn+1 ≥ d3
n +

d3
n

(log dn)c
, for all n ≥ n0

with some constant c > 0.

Proof of Theorem 2. In order to emphasize the role of the funda-
mental inequality (3a), we determine ck = ck(x) such that ck is of smaller
magnitude than d3

n and

(9) dk+1 ≤ d3
k − d2

k + ck + 1

should not hold for infinitely many k. We turn to (8), and calculate the
probability of

(10) Dk+1 =
[
(D3

k −D2
k) exp(xk+1)

]
+ 1 ≤ D3

k −D2
k + ck + 1.

From the above inequality we obtain

xk+1 ≤ log
(

1 +
ck

D3
k −D2

k

)
.

Since Dk is defined through (8) by x1, x2, . . . , xk, the random variable Dk

and xk+1 are independent. Consequently, upon conditioning on Dk, xk+1

remains exponential, and thus

P

(
xk+1 ≤ log

(
1 +

ck

D3
k −D2

k

) ∣∣∣ Dk = y

)

= 1− exp
{
− log

(
1 +

ck

y3 − y2

)}
= 1− 1

1 + ck

y3−y2

.

Let us take expectations; we get

P

(
xk+1 ≤ log

(
1 +

ck

D3
k −D2

k

))
= E

(
1− 1

1 + ck

D3
k−D2

k

)
.

But Dk and dk are identically distributed, which entails

(11) P

(
xk+1 ≤ log

(
1 +

ck

D3
k −D2

k

))
= E

(
1− 1

1 + ck

d3
k−d2

k

)
.
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Let us choose ck = d3
k

(log dk)c , with some c > 0. Then (11) implies

P

(
xk+1 ≤ log

(
1 +

ck

D3
k −D2

k

))
= E

(
ck

d3
k − d2

k

(1 + o(1))
)

,

and thus

(12)
+∞∑

k=1

P

(
xk+1≤ log

(
1+

ck

D3
k −D2

k

))
= E

{+∞∑

k=1

ck

d3
k − d2

k

(1 + o(1))
}

,

where we interchanged summation and taking expectation on the right
hand side (allowed because the terms are positive) and we note that the
error terms o(1) are irrelevant for our purposes since our only aim with (12)
is to establish that the right hand side of (12) is finite (so, the boundedness
of o(1) suffices for us). Now, if we put

ak =
ck

d3
k − d2

k

=
d3

k

(d3
k − d2

k)(log dk)c
,

we apply the ratio test. We have from (6),

ak+1

ak
=

ck+1

d3
k+1 − d2

k+1

d3
k − d2

k

ck

=
1− 1

dk

1− 1
dk+1

(
log dk

3k

log dk+1
3k+1

)c (
1
3

)c

−→
(

1
3

)c

< 1 as k → +∞.

This rate of convergence guarantees not only that the sum on the right
hand side of (12) converges but that its integral (expectation) is finite as
well. We thus have that the left hand side of (12) is finite, implying via the
Borel–Cantelli lemma that, with our choice of ck, (10) can occur only a
finite number of times with probability one. Since Dk and dk are identically
distributed, the theorem is established since

dk+1 ≥ d3
k − d2

k + ck + 1

with some c > 0 in ck = d3
k

(log dk)c implies that

dk+1 ≥ d3
k +

d3
k

(log dk)c

with another c > 0.
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