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Multiply perfect numbers in Lucas sequences
with odd parameters

By FLORIAN LUCA (Praha)

Abstract. Let P > 0 and Q be odd coprime integers such that P 2 + 4Q > 0.
Let (Wn)n≥0 be anyone of the two Lucas sequences with parameters P and Q. In this
paper, we show that there are only finitely many n’s such that Wn is multiply perfect;
that is, Wn | σ(Wn), where σ denotes the divisor sum function. Moreover, all such n’s
are, at least in theory, effectively computable.

1. Introduction

For any positive integer n let σ(n) be the sum of the divisors of n. A
positive integer n is called multiply perfect if σ(n) = kn for some positive
integer k. When k = 2, n is called perfect . Two positive integers m and n

are called amicable if σ(m) = σ(n) = m+n. Notice that a positive integer
n is self-amicable if and only if n is perfect.

In [13], we showed that there are no perfect Fibonacci and Lucas num-
bers and in [14], we showed that no two members of the Pell sequence are
amicable. Various equations and inequalities involving the sum of divi-
sors function σ and the Euler function φ of members of binary recurrence
sequences were studied by us in [6–11] and [12].

In this paper, we study the problem of the occurence of multiply per-
fect numbers in Lucas sequences with odd parameters whose characteristic
equation has real roots.
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Key words and phrases: multiply perfect number, Lucas sequence, primitive divisor,

square class.
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Let P > 0 and Q be odd coprime integers such that P 2 +4Q > 0. Let
(Un)n≥0 and (Vn)n≥0 be the Lucas sequences of the first and second kind
respectively, given by U0 = 0, U1 = 1, V0 = 2, V1 = P and

(1)
Un+2 = PUn+1 + QUn,

Vn+2 = PVn+1 + QVn

for all n ≥ 0.

In what follows, we denote anyone of the two sequences (Un)n≥0 or (Vn)n≥0

by (Wn)n≥0. The above assumption P > 0 is only meant to insure that
Wn is positive for all n > 0. However, the main result of this work applies
when P < 0 as well if one replaces the sequence (Wn)n≥0 by (|Wn|)n≥0.

We have the following:

Theorem. There exists an effectively computable constant C depend-

ing on P and Q, such that if Wn is multiply perfect, then n < C.

Since the classical Fibonacci and Lucas sequences (Fn)n≥0 and
(Ln)n≥0 are simply the two Lucas sequences corresponding to P = Q = 1,
it follows that there are only finitely many effectively computable multi-
ply perfect Fibonacci and Lucas numbers. Unfortunately, by using our
method, the effectively computable constant C (should anyone dare to
compute it) claimed by the Theorem is certainly too large to allow test-
ing.

It is likely that our Theorem holds for Lucas sequences with even PQ

as well. Unfortunately, for such sequences we could not deal with the case
in which n is a power of 2, but we can show that there exist only finitely
many n’s, n 6= 2s for which Wn is multiply perfect.

Finally, notice that the Theorem may certainly fail if one removes the
condition that P and Q are coprime. Indeed, the sequence

2n−1(2n − 1) =
4n − 2n

4− 2

is a Lucas look-alike sequence which, as far as we know, could contain
infinitely many perfect numbers providing that there exist infinitely many
Mersenne primes.
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2. Notations and outline of the paper

Throughout this paper, when we refer at something being bounded in
terms of something else, we mean bounded above.

For us, the number n will usually be written as n = 2sm, where s ≥ 0
and m ≥ 1 is odd.

We use p, q and r to denote prime numbers. To avoid confusion, we
always use p for a prime divisor of Wn, q for a prime divisor of n and r for
a prime number which is, in general, unrelated to either n or Wn.

We use ¤ to denote a perfect square. For two integers a and b such
that b ≥ 1 is odd, we use

(
a
b

)
to denote the Jacobi symbol of a with respect

to b.
For a positive integer n we denote by σ(n), φ(n), Ω(n), ω(n) and

q(n) the sum of divisors function of n, the Euler φ function of n, the total
number of prime divisors of n (counting multiplicities), the number of
distinct prime divisors of n and the smallest prime dividing n, respectively.
We also denote by Ωo(n) and ωo(n) the total number of odd prime divisors
of n and the number of distinct odd prime divisors of n, respectively.
So, in this paper, ω(n) − 1 ≤ ωo(n) ≤ ω(n) and Ωo(n) = Ω(n) − s =
Ω(n)− ord2(n).

A few words about how this paper is organized.

In Section 3, we derive various upper bounds on σ(Wn)/Wn, first
in terms of n, second in terms of the prime divisors of n and finally in
terms of ω(n). In particular, we show that log

(
σ(Wn)

Wn

)
can be bounded

quadratically in log(ω(n)). The arguments employed in this section use
the theory of primitive divisors of (Wn)n≥0 as developed by Carmichael

in [2].

In Section 4, we investigate the equation

(2) Wn = d¤,

where d is some positive integer. We may assume that d is square-free. By
using the finite square-class theory for the sequence (Wn)n≥0 as developed
throughout [3], [4], [17]–[22] and [24]–[25], we show that if n and d satisfy
equation (2), then Ω(n) can be bounded linearly in ω(d), at least when
Wn = Un. Our bound on Ω(n) in terms of ω(d) when Wn = Vn is a bit
worse involving also an extra term which may be exponential in s.
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In Section 5, we give the proof of the Theorem. Assume that Wn

is multiply perfect for some positive integer n. Let k be the ratio of
σ(Wn) to Wn. We begin by analyzing the order at which 2 can divide
σ(Wn). This is certainly bounded by log2 k+δs+C, where C is a constant
and δ = 0 or 1 according to whether Wn = Vn or Un. In particular, if
one writes Wn = d¤, then ω(d) can be bounded linearly in log k and
δs. From the results of Section 4, it follows that ω(n) can be bounded
linearly in log2 k + δs. On the other hand, from the results of Section 3,
we know that log k is bounded quadratically in log(ω(n)). Combining
these two inequalities, we get that ω(n) is bounded. By combining various
other technical inequalities scattered throughout Sections 3 and 4, we show
that all three parameters k, Ω(n) and q(n) are bounded by a computable
constant, call it C. We conclude the proof by presenting an algorithm
which determines, in C steps, a finite set of integers containing all the
possible candidates n.

The constant C above is usually not that bad. Preliminary computa-
tions seem to indicate that C < 200, when P = Q = 1; that is, when one
looks at the classical Fibonacci and Lucas sequences. However, from the
way the final algorithm is designed, the size of the largest returned integer
n is of the order of magnitude at least

exp exp . . . exp︸ ︷︷ ︸
C times

(C).

Thus, if one really wants to compute all the multiply perfect Fibonacci or
Lucas numbers, then one should probably come up with a better argument
than the one presented in this paper.

Throughout the paper, we denote by C1, C2, . . . effectively com-
putable constants depending only on P and Q. Although Sections 3 and
4 are independent of each other and of Section 5, we keep labeling the
constants in an increasing order throughout the whole paper.

The idea of this paper first came to us while listening to the talk
Perfect Number Pairs presented by Professor H. Harborth at the Eigth
International Conference on Fibonacci Numbers (see [5]). In that talk, the
speaker presented some results concerning various arithmetic pairs, some
of them involving terms from some binarry recurrence sequences. At that
point, it occurred to us that maybe combining the primitive divisor theory
with the square-class theory for the Fibonacci sequence, one could prove
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our Theorem at least for the Fibonacci sequence. Thanks to the recent
work [21], we could do this in a very general context.

We would like to thank several people whose input had, in some way
or another, contributed to this work. I especially thank Professors J.H.E.

Cohn, P. Corvaja, H. Harborth, P. Ribenboim, T.N. Shorey,

L. Somer and U. Zannier for helpful correspondence. I also thank
Dr. A. Flammenkamp for an interesting conversation concerning the be-
haviour of the sum (23) in terms of n and Professors Y. Bugeaud and
A. Pethő for helpful advice concerning the proof of Proposition 2. Finally,
I thank Professor A. Dress and the Mathematics Department in Bielefeld
for their hospitality during the period when this paper was written and
the Alexander von Humboldt Foundation for support.

3. Upper bounds for σ(Wn)/Wn

All the results of this section apply to all nondegenerate Lucas se-
quences regardless of the parities of P and Q or of the sign of the dis-
criminant once one replaces Wn by |Wn|. We shall treat only the case of
positive discriminant and we shall point out where the arguments can be
adapted to treat the general case.

Let n ≥ 2. We first treat the sequence (Wn)n≥0 ≡ (Un)n≥0 and we
shall return to the sequence (Vn)n≥0 later.

A primitive divisor p of Un is a prime number p such that p | Un but
p - Um for any m < n. By results of Carmichael (see [2]), we know that
Un has a primitive divisor for all n ≥ 2, except maybe for n = 2, 3, 6, 12.
We note that Carmichael’s result was recently extended to arbitrary
Lucas sequences in [1].

For any positive integer n let Pn be the set of primitive divisors
of Un. It is well-known that if p ∈ Pn, then p ≡ ep (mod n), where

ep =
(

p
P 2+4Q

)
.

Let

(3) α =
P +

√
P 2 + 4Q

2
and β =

P −
√

P 2 + 4Q

2

be the two roots of the characteristic equation

(4) x2 − Px−Q = 0.
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Notice that α > |β| > 0. Since

(5) Un =
αn − βn

α− β
for all n ≥ 0,

it follows, in particular, that

(6) Un < 2αn for all n ≥ 0.

Notice that if (Un)n≥0 is an arbitrary Lucas sequence, then by making the
convention that |α| ≥ |β|, one still has that the inequality |Un| ≤ 2|α|n
holds for all n ≥ 0.

Let d | n be a divisor of n. Assume d > 2. Let l(d) be the cardinality
of Pd and let p1(d) < · · · < pl(d)(d) be all the primes in Pd. Since

l(d)∏

i=1

pi(d) | Ud,

it follows that

(7)
l(d)∑

i=1

log(pi(d)) ≤ log(Ud) < log(2αd) = log 2 + d log α.

Since p1(d) ≥ d− 1, it follows that

l(d) log(d− 1) < log 2 + d log α

or

(8) l(d) <
1

log(d− 1)
(log 2 + d log α).

Now write

(9) Un =
∏

d|n
d>1

∏

p∈Pd

pαp

where αp is the exponent at which p appears in Un. Since

σ(k)
k

≤ k

φ(k)
for all k ≥ 1,
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it follows that

σ(Un)
Un

≤ Un

φ(Un)
=

∏

d|n
d>1

l(d)∏

i=1

(
1 +

1
pi(d)− 1

)
.

Hence,

(10)
σ(Un)

Un
≤ xn

∏

d|n
d>2

l(d)∏

i=1

(
1 +

1
pi(d)− 1

)
,

where

(11) xn =





1 if 2 - n and
U2

φ(U2)
if 2 | n.

By taking logarithms in (10), we get

log
(

σ(Un)
Un

)
≤ log xn +

∑

d|n
d≥3

l(d)∑

i=1

log
(

1 +
1

pi(d)− 1

)
(12)

< log xn +
∑

d|n
d≥3

l(d)∑

i=1

1
pi(d)− 1

.

Fix d ≥ 3. We find an upper bound for the sum

(13)
l(d)∑

i=1

1
pi(d)− 1

.

Notice first that since pi(d) ≡ 0, ±1 (mod d), it follows that p1(d) ≥ d−1,
p2(d) ≥ d, p3(d) ≥ 2d− 1, p4(d) ≥ 2d + 1 and so on. In particular,

(14) pi(d)− 1 >
id− 2

2
for all i = 1, . . . , l(d).
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Hence,

(15)

l(d)∑

i=1

1
pi(d)− 1

< 2
l(d)∑

i=1

1
id− 2

≤ 2

(
1

d− 2
+

∫ l(d)

1

dy

yd− 2

)

= 2
(

1
d− 2

+
1
d

log
(

l(d)d− 2
d− 2

))
.

Hence,

(16)
l(d)∑

i=1

1
pi(d)− 1

< 2
(

1
d− 2

+
1
d

log
(

l(d)d
d− 2

))
.

Combining inequalities (8) and (16), we get

(17)
l(d)∑

i=1

1
pi(d)− 1

< 2
(

1
d− 2

+
1
d

log
(

d(log 2 + d log α)
(d− 2) log(d− 1)

))
.

Let C1 > 2 be such that

(18)
1

x− 2
+

1
x

log
(

x(log 2 + x log α)
(x− 2) log(x− 1)

)
<

log x

x
for x > C1.

It is clear that such a constant exists since the function appearing on the
left side of inequality (18) decreases faster than the one appearing on the
right side of inequality (18).

Let

(19) C2 =
∑

3≤k≤C1

2
(

1
k − 2

+
1
k

log
(

k(log 2 + k log α)
(k − 2) log(k − 1)

))
.

Set

C3 = C2 + log
(

U2

φ(U2)

)
(20)

and

un =
{

0 if q(n) > C1,

C3 otherwise.
(21)
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From inequality (12) and formulae (16)–(21), it follows that

(22) log
(

σ(Un)
Un

)
< un + 2

∑

d|n
d>C1

log d

d
< un + 2

∑

d|n

log d

d
.

Notice that bound (22) depends on n alone.
We now use inequality (22) to find an upper bound for log(σ(Un)/Un)

in terms of the prime divisors of n only. In order to do this, we investigate
the sum

(23)
∑

d|n

log d

d
.

Unfortunately, the function log n/n is not multiplicative, so one should not
expect a nice formula for the sum (23) in terms of n.

For any positive integer m let f(m) = σ(m)/m. For every prime
power qβ let

(24) S(qβ) =
1
q

+
2
q2

+ · · ·+ β

qβ
.

We have the following result:

Lemma 1. Assume that n = qβ1
1 · . . . · qβt

t is the decomposition of n

in distinct prime powers. Then,

(25)
∑

d|n

log d

d
=

t∑

j=1

log(qj)S
(
q

βj

j

)
f

(
n

q
βj

j

)
.

Proof of Lemma 1. When t = 1, one gets

(26)
∑

d|n

log d

d
=

β1∑

l=1

log ql
1

ql
1

= log q1

β1∑

l=1

l

ql
1

= log q1S
(
qβ1
1

)
f(1).

Hence, formula (25) holds for t = 1. One can now easily use induction to
prove that (25) holds for all t ≥ 2. We do not give further details. ¤



130 Florian Luca

By noticing that

S(qβ) =
1
q

+
2
q2

+ · · ·+ β

qβ

<

(
1 +

1
q

+ · · ·+ 1
qβ

)
·
(

1
q

+
1
q2

+ · · ·+ 1
qβ

)
<

2
q − 1

holds for all β ≥ 1 and q ≥ 2, it follows, by Lemma 1, that

(27)
∑

d|n

log d

d
< 2f(n)

(∑

q|n

log q

(q − 1)

)
.

In particular, inequality (27) implies

(28)
∑

d|n

log d

d
< 2

(∑

q|n

log q

q − 1

) ∏

q|n

(
1 +

1
q − 1

)
.

Combining (28) with (22), we get

(29) log
(

σ(Un)
Un

)
< un + 4

(∑

q|n

log q

q − 1

) ∏

q|n

(
1 +

1
q − 1

)
.

This gives an upper bound for log(σ(Un)/Un) in terms of the prime factors
of n.

Finally, we use (29) to derive an upper bound for log(σ(Un)/Un) in
terms of the number ω(n) of prime factors of n.

Suppose that t = ω(n) and that q1 < q2 < · · · < qt are all the distinct
primes dividing n. Then, certainly qi ≥ ri, where ri is the i’th prime.
From Theorems 3, 6 and 8 in [23], we know that there exist two constants
C4 and C5 such that

(30)
t∏

i=1

(
1 +

1
ri − 1

)
< C4 log(t + 1)

and

(31)
t∑

i=1

log ri

ri − 1
< C5 log(t + 1).
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Combining inequalities (29)–(31) with the fact that the function x →
log x/(x− 1) is decreasing for x ≥ 2, we get

(32)
∑

d|n

log d

d
< C6 log2(ω(n) + 1)

and

(33) log
(

σ(Un)
Un

)
< un + C7 log2(ω(n) + 1),

where C6 = C4 · C5 and C7 = 4C6.

This concludes our discussion concerning upper bounds for σ(Un)/Un

in terms of n.
We now treat the sequence (Vn)n≥0. First of all, by the same work of

Carmichael [2], we know that Vn has a primitive divisor for all n ≥ 2,
except maybe for n = 2, 3, 6. Moreover, if p is a primitive divisor of Vn,
then p ≡ 0, ±1 (mod n). Since inequality (6) holds for Un replaced by Vn

as well, it follows that the arguments employed for the sequence (Un)n≥0

extend to the sequence (Vn)n≥0. In particular, inequalities (29) and (33)
translate in

log
(

σ(Vn)
Vn

)
< vn + 4

(∑

q|n

log q

q − 1

) ∏

q|n

(
1 +

1
q − 1

)
(34)

and

log
(

σ(Vn)
Vn

)
< vn + C7 log2(ω(n) + 1),(35)

where vn has the same formula as un (see formulae (20)–(21)) with U2

replaced by V2. Bounds (34) and (35) cannot be much improved (at least
not by using the present method) when n is odd. When 2 ‖n, then in-
equality (34) holds with the factor 4 replaced by the factor 2 in front of
the product appearing at the right side and inequality (35) holds with C7

reduced by a factor of 2. However, the bounds (34) and (35) can be a
lot strengthened when n happens to be divisible with a large power of 2.
Indeed, the arguments employed for dealing with the sequence (Un)n≥0,
were based on the fact that Ud | Un whenever d | n, whereas Vd | Vn if and
only if d | n and n/d is odd.
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Let us assume that n = 2sm where s is large (in a sense that will be
made more precise later) and m is odd. Write

(36) Vm = V2sm = V2s · Vn

V2s

.

For simplicity, denote

(37) V ′
m =

Vn

V2s

=
(α2s

)m + (β2s

)m

(α2s) + (β2s)
.

Using the fact that

(38) f(k1k2) =
σ(k1k2)

k1k2
≤ σ(k1)σ(k2)

k1k2
= f(k1)f(k2) for all k1, k2 ≥ 1,

we get

(39) log
(

σ(Vn)
Vn

)
≤ log

(
σ(V2s)

V2s

)
+ log

(
σ(V ′

m)
V ′

m

)
.

We first analyze the term in V ′
m. Notice that for fixed s and variable m, the

part of the sequence (V ′
m)m≥0 for m odd is a part of a Lucas sequence of

the first kind whose characteristic equation has the roots α2s

and β2s

. Fix
m odd. Let d | m and denote by P ′d to be the set of primitive divisors of V ′

d .
Assume that P ′d consists of l′(d) elements namely p′1(d) < · · · < p′l′(d)(d).
In this case, each one of the primes p′i is congruent to 0 or ±1 modulo
2s+1d. The arguments employed at formulae (13)–(17), show that

l′(d)X
i=1

1

p′i(d)− 1
< 2

�
1

2s+1d−2
+

1

2s+1d
log

�
2s+1d(log 2+2s+1d · 2s log α)

(2s+1d−2) log(2s+1d−1)

��
.(40)

Let C8 and C9 be two constants such that

(41) 2

�
1

2s+1d− 2
+

1

2s+1d
log

�
2s+1d(log 2 + 2s+1d · 2s log α)

(2s+1d− 2) log(2s+1d− 1)

��
<

C8

1.5s
· log d

d
,

for all s ≥ C9 and d ≥ 3. The arguments employed for the sequence
(Un)n≥0 show that

log
(

σ(V ′
m)

V ′
m

)
<

C8

1.5s

(
v′m + 4

(∑

q|m

log q

q − 1

) ∏

q|m

(
1 +

1
q − 1

))
(42)
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and

(43) log
(

σ(V ′
m)

Vm

)
<

C8

1.5s

(
v′m + C7 log2(ω(m) + 1)

)
,

whenever s > C9, where v′m = C3 if q(m) ≤ C1 and v′m = 0 otherwise.
By employing the previous arguments, one can also check easily that

(44) log
(

σ(V2s)
V2s

)
<

C8

1.5s
for s > C10.

Assuming C9 > C10 (if not, simply replace C9 by C10), we get, by inequal-
ities (39), (42) and (43), that

log
(

σ(Vn)
Vn

)
<

1
1.5s

(
C8v

′
m+C11

(∑

q|m

log q

q−1

) ∏

q|m

(
1+

1
q−1

))
(45)

and

log
(

σ(Vn)
Vn

)
<

1
1.5s

(
C8v

′
m + C12 log2(ω(m) + 1)

)
,(46)

for some constants C11 and C12, whenever s > C9.
This ends our discussion about upper bounds for σ(Vn)/Vn. In the

proof of the Theorem, we shall use formulae (34)–(35) to deal with the
case in which s is small (s ≤ C9) and formulae (45)–(46) to deal with the
case in which s is large (s > C9).

We conclude this section by noticing that, in fact, we proved the
following:

Proposition 1. Let (Wn)n≥0 be an arbitrary Lucas sequence. Then,

there exists a constant C such that

(47)
∑

p|Wn

1
p

< C log2(ω(n) + 1) for all n ≥ 1.

4. The equation Wn = d¤

In this section, we analyze the equation

(48) Wn = d¤,
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when d is a square-free positive integer. More precisely, we are interested
in obtaining upper bounds for Ω(n) in terms of ω(d).

We begin by recalling the theory of square-classes of Lucas sequences
as developed throughout [3], [4], [17]–[22] and [24]–[25]. For a fixed positive
integer k, the square class of k with respect to the sequence (Wn)n≥0 is
defined as being the set of all positive integers m such that Wk ·Wm = ¤.
In the above definition, we do not allow the value of m or k to be zero when
working with the sequence (Wn)n≥0 ≡ (Un)n≥0, mainly because otherwise
W0 = U0 = 0 would be in every square-class. A square-class is called
trivial if it consists of only one element. We warn the reader that most
authors consider the square class of k with respect to (Wn)n≥0 as being the
set of all Wm’s such that Wk ·Wm = ¤; that is, they consider the square-
class as consisting of the members of (Wn)n≥0 rather than of the indices
of those members. Since we are interested in arithmetical propertices of
the indices, we adopt the convention that a square-class is a set of indices.

We need several lemmas and propositions.

Lemma 2. 1. There are only finitely many non-trivial square-classes

with respect to the sequence (Wn)n≥0.

2. Each square-class consists of at most three terms.

Proof of Lemma 2. See, for example, [17], [22] or [25].
In fact, in [22], McDaniel and Ribenboim have given a very precise

description of most non-trivial square-classes that (Wn)n≥0 might have.
¤

Proposition 2. Let D and s be any two fixed positive integers such

that s > 1. Then, the equation

(49)
Usm

Um
= D ¤

has only finitely many solutions m and all of them are effectively com-

putable in terms of s, D, P and Q. If s is odd, then the above statement

remains true if in equation (49) one replaces the terms of the sequence

(Un)n≥0 by the corresponding terms of the sequence (Vn)n≥0.

Proof Proposition 2 (based on an idea of Y. Bugeaud). If s = 2,
then one simply obtains the equation Vm = D ¤. The fact that this
equation has only finitely many effectively computable solutions m follows,
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for example, from a result obtained independently by Pethő (see [17]) and
Shorey and Stewart (see [25]).

Assume now that s ≥ 4. Rewrite equation

(50)
Ums

Um
=

αms − βms

αm − βm
= Dx2

as

(51)
Xs − 1
X − 1

= DY 2,

where

(52) X =
(

α

β

)m

and Y =
x

β(m(s−1)/2)
.

Let K = Q[α1/2, β1/2] and let S be the set of all prime ideals in K divid-
ing β. Since s ≥ 4, it follows that the polynomial

(53)
Xs − 1
X − 1

has at least three simple roots. In fact, notice that all the roots of the
polynomial given by formula (53) are precisely e2iπk/s for k = 1, 2, . . . , s−1.
Hence, they are all distinct. Now the fact that equation (51) has only
finitely many effectively computable solutions of the form (52) follows from
the general theory of S-integer points on hyperelliptic curves (see, for
example, [26]).

Assume now that s = 3. In this case, equation (49) is

α2m + (αβ)m + β2m = Dx2,

or

3V 2
m + ∆U2

m = D(2x)2,(54)

where ∆ = P 2 + 4Q = (α− β)2.
We first analyze the equation

(55) 3X2 + ∆Y 2 = DZ2.
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From a result of D.W. Masser (see the Proposition on page 26 in [15]),
we know that if equation (55) has a solution in integers X, Y , Z with
XY Z 6= 0, then it has one satisfying

(56) max(|X|, |Y |, |Z|) < (9 + 3∆ + 3D)1.5.

Let K = (9 + 3∆ + 3d)1.5. If equation (55) does not have any solutions
with

max(|X|, |Y |, |Z|) < K,

then equation (54) does not have any solutions either and the problem is
solved.

Assume now that equation (55) has a solution with XY Z 6= 0. Let
X = X0, Y = Y0, Z = Z0 be a positive solution of (55) with
gcd(X0, Y0, Z0) = 1 and

max(X0, Y0, Z0) < K.

We begin by finding all the rational points on the curve

(57) Dz2 −∆y2 = 3.

Since z0 = Z0/X0 and y0 = Y0/X0 is a rational point on the curve (57),
it follows that one can parametrize all rational solutions of equation (57)
simply by letting

t =
z − z0

y − y0

and computing z and y versus z0, y0 and t from equation (57). The
resulting formulae are:

(58)





y =
y0Dt2 − 2z0Dt + y0∆

Dt2 −∆
,

z =
−z0Dt2 + 2y0∆t− z0∆

Dt2 −∆
.

Clearly, t is a rational number. Notice moreover that the above formulae
are correctly defined in the sense that the denominator Dt2−∆ can never
vanish. Indeed, a straightforward computation shows that the conditions

{
Dt2 −∆ = 0

y0Dt2 − 2z0Dt + y0∆ = 0
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force Dz2
0 −∆y2

0 = 0, which is impossible because the point (z0, y0) is on
the curve given by formula (57).

Assume now that X, Y , Z are nonzero integers satisfying equation
(55). Since the point of coordinates z = Z/X and y = Y/X is a rational
point on the curve (57), it follows that there exists some rational number
t = u/v with u and v coprime such that formulae (58) are satisfied. Hence,

(59)





Y

X
=

u2DY0 − 2uvDZ0 + v2∆Y0

(u2D − v2∆)X0
,

Z

X
=
−u2DZ0 + 2uv∆Y0 − v2∆Z0

(u2D − v2∆)X0
.

Let d = gcd(X,Y, Z). From equations (59), it follows that

(60)





X =
d

d1
(u2D − v2∆)X0,

Y =
d

d1
(u2DY0 − 2uvDZ0 + v2∆Y0),

Z =
d

d1
(−u2DZ0 + 2uv∆Y0 − v2∆Z0).

In formula (60), we used d1 for the greatest common divisor of all three
numbers

(u2D−v2∆)X0, u2DY0−2uvDZ0+v2∆Y0, −u2DZ0+2uv∆Y0−v2∆Z0.

Notice first of all that all prime divisors of d1 divide 6D∆X0.
Indeed, to see why this is so, assume that p does not divide 6D∆X0

but

(61) u2D ≡ v2∆ (mod p)

and

(62) u2DY0 − 2uvDZ0 + v2∆Y0 ≡ 0 (mod p).

If we substitute (61) in (62), we get

v2∆Y0 − 2uvDZ0 + v2∆Y0 ≡ 0 (mod p)
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or

(63) 2v2∆Y0 ≡ 2uvDZ0 (mod p).

Notice that p does not divide uv. Indeed, if for example p | u, then since
(u, v) = 1 formula (61) would imply that p | ∆, which contradicts the fact
that p does not divide 6D∆X0. Now from formula (63) we get that

v∆Y0 ≡ uDZ0 (mod p)

or, after squaring both sides of the above congruence,

(64) (v2∆)(∆Y 2
0 ) ≡ (u2D)(DZ2

0 ) (mod p).

From formulae (61) and (64) we get that

∆Y 2
0 ≡ DZ2

0 (mod p)

or
3X2

0 = DZ2
0 −∆Y 2

0 ≡ 0 (mod p),

which is the desired contradiction.
Let us now return to equation (54). From the above considerations

we get that

(65)





Um =
d

d1
(u2DY0 − 2uvDZ0 + v2∆Y0),

Vm =
d

d1
(u2D − v2∆)X0.

Notice first of all that d | (Um, Vm); hence d | 4Qm (for a proof of this
well-known fact see, for example, [16]). Formula (65) can be rewritten as

(66)





αm − βm =
d
√

∆
d1

(u2DY0 − 2uvDZ0 + v2∆Y0),

αm + βm =
d

d1
(u2D − v2∆)X0.

Hence,

(67)





2αm=
d

d1

(
u2D(X0+

√
∆Y0)−2uvD

√
∆Z0−v2∆(X0−

√
∆Y0)

)
,

2βm=
d

d1

(
u2D(X0−

√
∆Y0)+2uvD

√
∆Z0−v2∆(X0+

√
∆Y0)

)
.



Multiply perfect numbers in Lucas sequences with odd parameters 139

Denote

(68)

{
f1(u, v)=u2D(X0+

√
∆Y0)−2uvD

√
∆Z0−v2∆(X0−

√
∆Y0),

f2(u, v)=u2D(X0−
√

∆Y0)+2uvD
√

∆Z0−v2∆(X0+
√

∆Y0).

Notice that by multiplying equations (67) we get that

(69) 4
d2
1

d2
(αβ)m = f1(u, v)f2(u, v).

In equation (69), notice that the largest prime factor of the left side is
bounded (this is because if p is a prime factor of the left side then either
p | 2d1, hence p | 6D∆X0, or p | (αβ) = −Q). Thus, if we succeed
in showing that the homogeneous form of degree four f1(u, v)f2(u, v) has
only simple factors, then the fact that equation (68) has only finitely many
solutions will follow from the general theory of Thue equations (see, for
example, [26]).

We first show that none of the quadratic forms f1(u, v) or f2(u, v) is
a constant multiple of a perfect square. Notice that they both have the
same discriminant namely

(70) 4(D2∆Z2
0 + D∆(X2

0 −∆Y 2
0 )).

If the expression given by formula (70) is zero, then

D∆(DZ2
0 + X2

0 −∆Y 2
0 ) = 0,

or
0 = (DZ2

0 −∆Y 2
0 ) + X2

0 = 3X2
0 + X2

0 = 4X2
0 ,

which is impossible.
We now show that the two quadratic forms f1(u, v) and f2(u, v) are

coprime. Assume that this is not the case. Then a common linear factor
of them will divide both

(71) u2DY0 − 2uvDZ0 + v2∆Y0

and

(72) u2D − v2∆.
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It now follows that for v = 1, the equation

(73) u2DY0 − 2uDZ0 + ∆Y0 = 0

will have as one of its solutions either u = (∆/D)1/2 or u = −(∆/D)1/2.
We will treat only the case in which u = (∆/D)1/2 is a solution of equation
(72) as the remaining case is similar. We get

∆
D
·DY0 − 2

(
∆
D

)1/2

·DZ0 + ∆Y0 = 0,

or √
∆Y0 =

√
DZ0,

or
DZ2

0 −∆Y 2
0 = 0,

which is impossible because DZ2
0 −∆Y 2

0 = 3X2
0 .

Proposition 2 is therefore proved. ¤

Particular instances of Proposition 2 have been treated in various
papers throughout the literature. For example in [17], [20] and [25], it is
shown that the equation

(74) Wm = D ¤

has only finitely many solutions m and that all of them are effectively
computable in terms of D, P and Q. In [21], McDaniel and Ribenboim

have determined, in an elementary fashion, all solutions of equation (74)
when D = 1 or 2. We also mention that Rotkiewicz (see [24]) showed
that in some instances equation (49) has no solution when s = D is prime.
However, his results apply only for Lucas or Lehmer sequences for which
one of the parameters P or Q is even.

We are now ready to prove some more lemmas and propositions that
we need.

Lemma 3. There are only finitely many pairs (q, m), where q is a

prime for which

(75)
Umq

Um
= D ¤ or 2D ¤
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for some D which is divisible only with primes dividing P 2+4Q. Moreover,

all such pairs are effectively computable in terms of P and Q.

The above statement remains true for pairs (q, m) such that q ≥ 3 if

in equation (75) one replaces the terms of the sequence (Un)n≥0 by the

corresponding terms of the sequence (Vn)n≥0.

Proof of Lemma 3. We treat only the sequence (Un)n≥0 since the
corresponding statement for the sequence (Vn)n≥0 can be dealt with sim-
ilarly. We may also assume that D is square-free.

Assume first that D = 1. By either Lemma 2 or Proposition 2, it
follows that there are only finitely many pairs (q, m), such that

(76)
Umq

Um
= ¤.

In fact, from the results from [22], we know that there is no such pair with
q > 3, that there are at most two such pairs with q = 2 and only finitely
many with q = 3.

Assume now that

(77)
Umq

Um
= 2 ¤

for some prime number q. It follows easily that either q = 2 or q = 3.
Hence, equation (77) can be written either as

Vm = ¤ or as
U3m

Um
= 2 ¤.

By either Lemma 2 or Proposition 2, it follows that there are only finitely
many such m’s. In fact, from either [21] or [22], it follows that there are
at most three m’s for which Vm = ¤, namely m = 1, 3 or 5.

Assume now that

(78)
Umq

Um
= D ¤ or 2D ¤

for some D 6= 1, where D | P 2 + 4Q = (α− β)2. Let p be a prime number
such that p | D. Notice that

(79)
Umq

Um
= (αm)q−1 + (αm)q−2(βm) + · · ·+ (βm)q−1 ≡ ±q (mod p),
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where the sign in (79) depends on whether or not q is a quadratic residue
modulo p. Equations (78) and (79) imply that q ≡ 0 (mod p). Hence,
q = p and equation (78) is

(80)
Ump

Um
= p ¤ or 2p ¤.

For each p fixed, it follows, by Proposition 2, that there are only finitely
many m’s for which either one of the equations (80) is satisfied. The claim
of the Lemma follows now by noticing that there are only finitely many
such p’s (namely, the prime divisors of P 2 + 4Q).

Lemma 3 is therefore proved. ¤

We are now ready to treat equation (48) at least when (Wn)n≥0 ≡
(Un)n≥0.

Proposition 3. There exists a computable constant C, such that if

(81) Un = d¤,

then

(82) Ω(n) ≤ ω(d) + C.

Proof of Proposition 3. We may assume that d is square-free and
that Ω(n) is large. Let C13 be an upper bound for the number of all
pairs of the form (q,m) satisfying equation (75) for some square-free D |
P 2 + 4Q. The existence of C13 is guaranteed by Lemma 3. The claim is
that inequality (82) holds for C = C13. Indeed, here is the argument.

Assume Ω(n) = t and let q1 ≤ q2 ≤ · · · ≤ qt be all the primes (counted
with multiplicities) dividing n. Denote m0 = n and

(83) mi =
n

q1 . . . qi
= qi+1 . . . qt for i = 1, . . . , t− 1.

Write equation (81) as

(84) d ¤ = Un = Um0 =
Um0

Um1

· Um1

Um2

· . . . · Umt−1

Umt

.

From the way we have arranged the primes qj , it can be easily seen that
the greatest common divisor of any two of the factors appearing in the
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product from the right hand side of formula (84) is divisible only with
primes dividing 2(P 2 + 4Q). Indeed, assume that

(85) p | gcd
(

Umi

Umi+1

,
Umj

Umj+1

)

for some j > i. In particular, p | Umj . Since j ≥ i + 1, it follows that
mj | mi+1. Hence, p | Umi+1 . In particular,

(86) p | gcd
(

Umi

Umi+1

, Umi+1

)
.

But it is well-known that the greatest common divisor appearing in formula
(86) is a divisor of mi/mi+1 = qi+1. Hence, p = qi+1. In particular,
p = qi+1 | Uqi+1(q2

i+1−1). Since p | Umj , it follows that

(87) p = qi+1 | gcd(Uqi+1(q2
i+1−1), Umj

) = U(qi+1(q2
i+1−1), mj).

From formula (87), it follows that

(88) gcd(qi+1(q2
i+1 − 1),mj) 6= 1.

However, from the fact that mj = qj+1qj+2 . . . qt and qj+1 ≥ qi+1, it
follows, by formula (88), that either qi+1 = qj+1, or qi+1 = 2 and qj+1 = 3.
When qi+1 = qj+1, formula (87) implies that p = qi+1 | Uqi+1 , which
shows that p is a divisor of P 2 + 4Q. Finally, when qi+1 = 2 and qj+1 =
3, we simply get 2 = qi+1 = p. This shows that indeed the greatest
common divisor given by formula (85) is divisible only with primes dividing
2(P 2 + 4Q).

Now write each one of the factors appearing in the product from the
right hand side of formula (84) as

(89)
Umi

Umi+1

= 2δiDiFi ¤ for i = 0, 1, . . . , t− 1,

where δi ∈ {0, 1}, both Di and Fi are odd and square-free, gcd(P 2 +4Q,

Fi) = 1 and Di is divisible only with primes dividing P 2 + 4Q. It is
clear that every positive integer can be represented in this way and such
a representation is unique. From the above arguments, it follows that
gcd(Fi, Fj) = 1 for all i 6= j. Hence,

∏t−1
i=0 Fi divides d. All it remains to
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notice is that there are at most C13 values for i = 0, . . . , t − 1 for which
Fi = 1. Hence,

(90) ω(d) ≥ t− C13 = Ω(n)− C13,

which is precisely inequality (82).
Proposition 3 is therefore proved. ¤

We will also need to understand better the prime factors of d appear-
ing in equation (81), when n is divisible with a large power of 2. This is
the purpose of the next Proposition.

Proposition 4. Assume that n = 2sm, where m is odd. Assume that

s is much larger than ω(n). Denote

(91) ni = 2im for i = 0, 1, . . . , s

and let

(92)
Uni+1

Uni

= 2δiDiFi ¤ for i = 0, . . . , s− 1,

where 2δ
i DiFi is square-free, both Di and Fi are odd, Di | P 2 +4Q and Fi

is coprime to P 2 + 4Q. Then, there exists a computable constant C, such

that at least

(93) s− ω(n)− C = ord2(n)− ω(n)− C

of the numbers Fi are either divisible with at least two primes, or Fi is a

prime ≡ 3 (mod 4).

Proof of Proposition 4. Notice first that the numbers n0, n1, . . . , ns

are precisely the numbers m0,m1, . . . , ms the only difference being that
they are indexed backwards. Thus, the quantities Fi appearing in formula
(92) are among the Fi’s appearing at the proof of Proposition 3 (to be more
precise, the Fi from formula (92) corresponds to Fs−i from formula (89)).

By Lemma 3, it follows that at least s − C13 of the numbers Fi are
not 1. Let us count how many Fi’s can be primes congruent to 1 modulo 4.
We discard the cases i = 0 or 1. For i ≥ 2, the number

(94)
Uni+1

Uni

=
U2i+1m

U2im
= V2im
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is a multiple of

(95) V2i = α2i

+ β2i

= (α2i−1
+ β2i−1

)2 − 2(αβ)2
i−1

= V 2
2i−1 − 2Q2i−1

.

By formula (95), it follows that V2i is congruent to 7 modulo 8; hence,
with 3 modulo 4. Choose C14 > 1 such that V2i is coprime to P 2 + 4Q

for all i > C14. This can be easily done, since every prime divisor of V2i

is at least as large as 2i+1 − 1. Since V2i ≡ 3 (mod 4), it follows that
V2i = di ¤, where di is square-free, coprime to P 2 + 4Q and is divisible
with at least one prime pi which is 3 modulo 4. Now if Fi is not divisible
by pi, it simply follows that pi | m. Notice now that since

gcd(V2i , V2j ) = 1 for i 6= j

(see [16]), it follows that pi 6= pj . Hence, there are at most ω0(n) = ω(m) =
ω(n) − 1 indices i for which Fi can be a prime congruent to 1 modulo 4.
This argument shows that Proposition 4 holds for C = C15 = C13 + C14.

¤

The situation is not at all as good as illustrated in Propositions 3
and 4 when Un is replaced by Vn in equation (81). However, the following
result turns out to be helpful.

Proposition 5. Let n = 2sm, where m is odd. There exists a com-

putable constant C, such that if

(96) Vn = d¤,

then

(97) Ω(m) ≤ ω(d) + C + ω(V2s).

Proof of Proposition 5. The proof of Proposition 5 is similar to
the proof of Proposition 3. We shall just sketch it here to make clear
why we needed to add the extra term ω(V2s) at the right hand side of
inequality (97).

Let t = Ω(m) and assume that q1 ≤ q2 ≤ · · · ≤ qt are all the primes
(counted with multiplicities) dividing m. Denote m0 = n = 2sm and

(98) mi =
n

q1 . . . qi
= 2sqi+1 . . . qt for i = 1, . . . , t.
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Write equation (96) as

(99) d¤ = Vn =
Vm0

Vm1

· Vm1

Vm2

· . . . · Vmt−1

Vmt

· V2s .

One can show, as in the proof of Proposition 3, that the greatest common
divisor of any two of the numbers

(100)
Vmi

Vmi+1

for i = 0, 1, . . . , t

is divisible only with primes dividing 2(P 2 + 4Q)V2s . Hence, if one writes

(101)
Vmi

Vmi+1

= 2δiDiFi ¤ for i = 0, 1, . . . , t− 1,

where 2δiDiFi is square-free, both Di and Fi are odd, Fi is coprime to
P 2 + 4Q and Di is divisible only with primes dividing P 2 + 4Q, it then
follows, by Lemma 3, that there are at most C13 indices i for which Fi is 1.
Hence, there are at least Ω(m)− C13 such indices i for which Fi is not 1.
However, it could happen that Fi | V2s . At any rate, since gcd(Fi, Fj) = 1
for i 6= j, it follows that Fi | V2s in at most ω(V2s) instances. Hence,

(102) Ω(m)− C13 − ω(V2s) ≤ ω(d),

which is precisely inequality (97) with C = C13.
We conclude here our analyzis of Ω(n) in terms of ω(d) where d is the

square-free part of Wn. ¤

5. The proof of the Theorem

Assume that

(103) σ(Wn) = kWn

for some n and k. We shall exploit the order at which 2 can appear in the
right hand side of equation (103). We need the following lemma.
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Lemma 4. Assume that n = 2sm, where m ≥ 1 is odd. Then, there

exists a constant C, such that

(104) ord2(Wn) ≤
{

C + s if Wn = Un,

C if Wn = Vn.

Proof of Lemma 4. This is well-known. One can take

(105) C = C16 = max(ord2(U3), ord2(U6), ord2(V3), ord2(V6)). ¤

We begin by bounding Ω(n), k and q(n).

Case I. Wn = Un.

Write

(106) σ(Un) = kUn.

By Lemma 4, it follows that

(107)
ord2(σ(Un)) = ord2(kUn) = ord2(k) + ord2(Un)

≤ log2 k + s + C16.

Now write

(108) Un = d¤.

By formula (107), it follows that

(109) ω(d) ≤ ord2(σ(Un)) + 1 ≤ log2 k + s + C17,

where C17 = C16 + 1. By inequalities (90) and (109), we get

(110) Ω(n) ≤ ω(d) + C13 ≤ log2 k + s + C18,

where C18 = C13 + C17. Since Ω(n) = s + Ω(m) ≥ s + ω(n)− 1, we get

ω(n) ≤ Ω(n)− s + 1 ≤ log2 k + C18 + 1

or

(111) ω(n) log 2 ≤ log k + C19,
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where C19 = (C18 + 1) log 2. On the other hand, since

(112) log k = log
(

σ(Un)
Un

)
,

it follows, by inequalities (33) and (111), that

(113) ω(n) log 2 < un + C19 + C7 log2(ω(n) + 1),

where un is given by formula (21). Since un is bounded by C3, inequality
(113) implies that ω(n) < C20. From equation (112), inequality (33) and
the fact that ω(n) < C20, we get

log k = log
(

σ(Un)
Un

)
< un + C7 log2(ω(n) + 1)(114)

< C3 + C7 log2(C2
20 + 1) = C21.

Hence, k is bounded as well. We now bound q(n). If q(n) ≤ C1, there is
nothing to bound. So, we assume that q(n) > C1. In this case, formula
(21), inequality (29) and equation (112), give

(115) log k < 4


∑

q|n

log q

q − 1


 ∏

q|n

(
1 +

1
q − 1

)
.

Since k ≥ 2 and ω(n) < C20, inequality (115) implies

log 2 < 4
ω(n) log q(n)

q(n)− 1

(
1 +

1
q(n)− 1

)ω(n)

(116)

<
4C20 log q(n)

q(n)− 1

(
1 +

1
q(n)− 1

)C20

.

Notice that the function of q(n) appearing in the right hand side of in-
equality (116) tends to zero when q(n) is large. Hence, inequality (116)
implies that q(n) < C22.

It remains to bound Ω(n). We start by bounding s. By Proposition 4,
we know that for s large, the square-free number d appearing in the right
hand side of equation (108) has at least s−ω(n)−C15 odd coprime factors
of the form Fi, such that each one of these factors is either a product of two
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(or more) distinct primes, or is a prime congruent to 3 modulo 4. Notice
that each one of these factors Fi will bring a contribution of at least 2 in
ord2(d); hence in ord2(σ(Un)). These arguments combined with inequality
(107), show that

2(s− ω(n)− C16) ≤ log2 k + s + C16

or

(117) s < log2 k + 2ω(n) + 2C16 + C17 < C23,

because both k and ω(n) have already been bounded. Finally, notice that
inequality (110) together with the fact that both s and k are bounded
leads to the conclusion that Ω(n) is bounded as well.

Case II. Wn = Vn.
Write

(118) σ(Vn) = kVn.

By Lemma 4, it follows that

(119) ord2(σ(Vn)) = ord2(kVn) = ord2(k) + ord2(Vn) ≤ log2 k + C16.

Now write

(120) Vn = d¤.

By formula (120) and inequality (119), it follows that

(121) ω(d) ≤ ord2(σ(Vn)) + 1 ≤ log2 k + C17.

By inequalities (102) and (121), we get

(122) Ω(m) ≤ ω(d) + C17 + ω(V2s) ≤ log2 k + C24 + ω(V2s),

where C24 = C17 + C13. Since

V2s = α2s

+ β2s

,

it follows that

(123) ω(V2s) < 2sC25,
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where C25 = log |α| + 1. Inequality (122), together with the fact that
ω(n) ≤ Ω(m) + 1, imply

(124) ω(n) ≤ log2 k + C24 + 1 + 2sC25.

We now find bounds on s, k and Ω(n). Assume first that s > C9 and we
shall return to the case when s ≤ C9 later.

Since

(125) log k = log
(

σ(Vn)
Vn

)
,

it follows, by formula (125) and inequality (46), that

(126) log k <
1

1.5s

(
C8v

′
m + C12 log2(ω(m) + 1)

)
for s > C9,

where v′m < C3. Inequalities (124) and (126) give

log k <
1

1.5s

(
C8 · C3 + C12 log2 (log2 k + C24 + 2 + 2sC25)

)

for s > C9.(127)

It is not that hard to see that inequality (127) forces that both k and s

are bounded by C26. Inequalities (122) and (123) imply now that Ω(m) is
bounded; hence Ω(n) = Ω(m) + s is bounded as well.

However, notice that the previous arguments were done assuming that
s > C9. We still need to justify that both k and Ω(n) are bounded even
when s ≤ C9. But assume that s ≤ C9. Inequality (124) implies that

(128) ω(n) ≤ log2 k + C27.

Combining inequality (35), formula (125) and inequality (128), we get

(129) log k < vn + C7 log2(ω(n) + 1) < C3 + C7 log2(log2 k + C27).

Inequality (129) implies that k is bounded and then inequality (122) im-
plies that Ω(m) is bounded; hence Ω(n) = Ω(m) + s is bounded as well.
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We need to show that q(n) is bounded as well. If q(n) ≤ C1, then
certainly q(n) is bounded. When q(n) > C1, formulae (34) and (125) imply
that

(130)

log k < 4


∑

q|n

log q

q − 1


∏

q|n

(
1 +

1
q − 1

)

< 4
ω(n) log q(n)

q(n)− 1

(
1 +

1
q(n)− 1

)ω(n)

.

Since k ≥ 2 and ω(n) is bounded, inequality (130) implies that q(n) is
bounded as well.

Hence, we have showed that in both instances there exists a bound
C28 such that

(131) max(Ω(n), q(n), k) < C28.

Assume also that C28 > 2 is larger than the largest prime dividing P 2+4Q.
Finally, set C = C28.

We now proceed to give the closing argument.

Assume that C is an integer (if not, just round it up to the next
integer).

For any subset P of primes, denote by

(132) ClP = {q | q ≤ p for some p ∈ P} .

That is, Cl stands for the closure operator with respect to the ≤ order
restricted only to subsets consisting of primes.

We assume first that (Wn)n≥0 = (Un)n≥0. Let

A1 = {q | q < C}(133)

and

B1 = A1.(134)

Assume that i ≥ 1 and that both Ai and Bi have been constructed. Let

Ai+1 = Ai ∪ Cl
�
q
�� q |Um for some m ∈ Bi

	
(135)

∪Cl
�
q
�� q | r(r2 − 1) for some prime r such that r | σ(Um) for some m ∈ Bi
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and

(136) Bi+1 = {m | m = q1q2 . . . qt for some t ≤ i+1 and pj ∈ Ai for all j = 1, . . . , t}.

We also assume that 1 ∈ A1.
In this case, the proof ends once we prove the following:

Lemma 5. If Un is multiply perfect, then n ∈ BC .

Proof of Lemma 5. Assume that Un is multiply perfect and let q1 ≤
q2 ≤ · · · ≤ qt be all the prime divisors (counted with multiplicities) of n.
Since t = Ω(n) < C, it suffices to prove that qi ∈ Ai. This can be easily
done by induction. We outline only the induction step for i = 2.

Clearly, q1 = q(n) ∈ A1. If n = q1, we are done. Assume now that
n > q1. Write

(137) Un = Uq1 ·
Un

Uq1

.

If the two factors of the product appearing in the right hand side of equality
(137) are not coprime, it simply follows that there exists a prime qj | n

with j ≥ 2, such that qj | Uq1 . In particular, qj ∈ A2. Since A2 is closed
to the left, it follows that q2 ∈ A2.

Assume now that the two factors appearing in the right hand side of
formula (137) are coprime. Then,

(138) σ(Un) = σ(Uq1) · σ
(

Un

Uq1

)
= kUn = kUq1 ·

Un

Uq1

.

Assume first that

(139) gcd
(

σ(Uq1),
Un

Uq1

)
6= 1.

Let r be a prime divisor of the greatest common denominator appearing
in formula (139). In particular, r | σ(Uq1) and r | Un. Since r | Ur(r2−1),
it follows that

(140) r | gcd(Un, Ur(r2−1)) = U(r(r2−1),n).
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Formula (140) shows that qj | r(r2− 1) for some j ≥ 1. If j > 1, it follows
that qj ∈ A2, therefore q2 ∈ A2 as well. If j = 1, it follows that r | Uq1 .
Hence,

(141) r | gcd
(

Un

Uq1

, Uq1

)
,

which is impossible since we assumed that the two numbers above are
coprime.

Finally, assume that σ(Uq1) and Un/Uq1 are coprime. From equation
(138), it follows that σ(Uq1) | kUq1 . Denoting by k1 the ratio of kUq1 to
σ(Uq1), we get

(142) σ

(
Un

Uq1

)
= k1

Un

Uq1

.

In particular, Un/Uq1 is multiply perfect. From the above arguments, it
follows easily that q2 ∈ A1. Indeed, this follows, for example, from the
way the upper bound C on q(n) was chosen (see inequality (130)). Hence,
q2 ∈ A1 ⊆ A2.

The general induction step follows from similar arguments. We do
not give further details. ¤

We finally treat the case (Wn)n≥0 = (Vn)n≥0. Fix s ≥ 0. Set

As
1 = {q | q < C} ∪ Cl

{
q

∣∣ q | V2s

}
(143)

and

Bs
1 = {2sq | for some odd q ∈ As

1} .(144)

Let i ≥ 1 and assume that As
i and Bs

i have been constructed. Set

As
i+1 = As

i ∪ Cl
�
q
�� q |Vm for some m ∈ Bs

i

	
(145)

∪Cl
�
q
�� q | r(r2 − 1) for some r prime where r |σ(Vm) for some m ∈ Bs

i

	
and

(146) Bs
i+1 = Bs

i ∪
�
m
�� m = m1q for some m1 ∈ Bs

i and some odd q ∈ As
i+1

	
.

We assume again that 1 ∈ As
1 for all s ≥ 0.

Then, the claim is:
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Lemma 6. If Vn is multiply perfect, then

(147) n ∈
C−1⋃
s=0

Bs
C−s.

Proof of Lemma 6. Follows from arguments similar to the ones em-
ployed at the proof of Lemma 5. The only reason why we needed to
separate the powers of 2, was to insure that the inductive argument ap-
plied in the proof of Lemma 4, which was based on the idea of reducing the
problem for Wmq to the problem for Wmq/Wq = W ′

m, can still be applied.
The Theorem is therefore proved. ¤
Remark. One can see from the above algorithm why the size of the

computable constant C such that n < C, whenever Wn is multiply perfect,
can be as large as claimed in Section 2.
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