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Convergence of evolution operator families
and its applications to functional limit theorems

By HERBERT HEYER (Tübingen) and GYULA PAP (Debrecen)

Abstract. The present paper deals with the convergence of triangular systems
{Xn,` : n, ` ∈ N} of rowwise independent random variables taking their values in an
arbitrary locally compact group G. More precisely, sufficient conditions are given in
terms of the expectations E(U ◦ Xn,`) for all irreducible (continuous, unitary) repre-
sentations U of G such that the partial products Xn,1 · . . . · Xn,kn(·) (for Z+-valued

scaling functions kn on R+) converge as n → ∞ towards a stochastically continuous
càdlàg process {X(t) : t ∈ R+} with independent increments in G. The conditions
are established under the hypotheses that the limiting process is specified or that it
remains unspecified. The approach is measure- and Fourier-theoretic and employs ef-
ficiently convolution hemigroups of finite variation on G and their Fourier transforms.
In the case of unspecified limits the validity of Lévy’s continuity theorem for groups G
is required.

1. Introduction

A major matter of concern in central limit theory is the problem
of convergence of triangular systems of random variables towards a limit
which can be either specified or unspecified. There are good reasons for
studying the problem for random variables taking values in an arbitrary
locally compact group G. Following a natural hierarchy one deals with
the problem by first considering Lie groups and then passes to Lie projec-
tive locally compact groups G. Among the Lie projective groups we find
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the Moore groups which by definition admit only finite dimensional irre-
ducible representations. To reach the most general framework of arbitrary
locally compact groups the full harmonic analysis of infinite dimensional
representations can be employed.

In their previous work on the subject [11]–[13] the authors followed the
hierarchic path in discussing the problem of convergence of triangular sys-
tems and successfully emphasized the measure-theoretic approach. While
in [11] and [13] the conditions securing the convergence were given in terms
of the characteristics of associated generating families, the phrasing of the
conditions in [12] appeared to be in terms of Fourier transforms involving
finite dimensional representations. In the present work the machinery de-
veloped in [12] will be extended to infinite dimensional representations of
an arbitrary locally compact group G with the aim of solving the problem
in a somewhat ultimate way.

The problem of convergence of triangular systems of G-valued random
variables will be treated in a four-step procedure: There is the problem (α)
of convergence of a sequence of hemigroups {µn(s, t) : 0 6 s 6 t} of proba-
bility measures on G towards a limiting hemigroup {µ(s, t) : 0 6 s6 t}, and
as a consequence, the problem (β) of convergence of a sequence of partial
convolution products µn,kn(s)+1 ∗ . . . ∗ µn,kn(t) towards µ(s, t). Next, the
problem (α) leads directly to the problem (γ) of convergence of G-valued
processes {Xn(t) : t ∈ R+} with independent left increments towards a
limiting process {X(t) : t ∈ R+} (necessarily having again independent
left increments) associated with a hemigroup {µ(s, t) : 0 6 s 6 t}, and the
problem (β) yields the problem (δ) of convergence of a sequence of partial
products Xn,1 · . . . ·Xn,kn(·) towards the process X(·).

All hemigroups and processes involved are assumed or deduced to be
of finite variation. The conditions found to be sufficient for the respective
convergence are in terms of related integrating families.

A special feature of our approach is the generalization of the steps (α)
to (δ) to the situation for which the limiting hemigroup or process remains
unspecified. In order to arrive at useful results the validity of the Lévy
continuity theorem is assumed. For Moore groups G this Lévy continuity
property is readily available (see [10]). For more general classes of locally
compact groups it still requires an appropriate investigation (see [6]).

The layout of our presentation can be described as follows. Section 2
is devoted to basics on càdlàg functions and functions of finite variation
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taking their values in the space L(B) of bounded linear operators on a Ba-
nach space B. In Section 3 we introduce the (bilinear) Lebesgue–Bochner–
Stieltjes integral for operator-valued functions, following the exposition
in [9]. Section 4 contains our important tool of integrating functions of
evolution families in L(B), and in Section 5 we describe the convergence
of evolution families in terms of their integrating functions. The last Sec-
tion 6 contains the solution to problems (α) to (δ), at first for specified
limits, and subsequently for unspecified ones. The final result in Section 6
is a martingale difference version of the theorem contributing to problem
(δ) in the unspecified limit case. Its proof relies on results established in
Section 5.

Although some of the arguments needed in proving the results are bor-
rowed from the authors’ previous publications on the subject, the idea of
an integrating family related to a hemigroup on an arbitrary locally com-
pact group could only be fruitfully employed by applying the Lebesgue–
Bochner–Stieltjes integral. The attentive reader will recognize the spirit
of two valuable sources that we profited from: Hucke’s approach to the
convergence problem via associated stochastic differential equations [14]
and Schmidt’s notion of evolution families of finite variation [16].

2. Càdlàg functions and functions of finite variation

Let R+ := {t ∈ R : t > 0} and S := {(s, t) ∈ R2 : 0 6 s 6 t}. Let
B be a real or complex Banach space. Let L(B) denote the Banach space
of bounded linear operators on B. A function f : R+ → L(B) is called
càdlàg if it is right continuous with left limits. (The limit is always meant
in the norm topology on L(B).) Let D(R+,L(B)) denote the space of all
càdlàg functions from R+ into L(B). The spaces D([0, T ],L(B)), T > 0,
are defined similarly. Let D(S,L(B)) denote the space of all functions from
S into L(B) which are càdlàg separately in each variable. Any function
f ∈ D(R+,L(B)) is locally bounded, i.e.,

‖f‖T := sup
t∈[0,T ]

‖f(t)‖ < ∞ for all T > 0.

The space D([0, T ],L(B)) is a (non-separable) Banach space with the
above norm. The local uniform topology on D(R+,L(B)) is associated
with the metric

%lu(f, g) :=
∞∑

n=1

2−n min{1, ‖f − g‖n} for f, g ∈ D(R+,L(B)).
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The space D(R+,L(B)) is a complete (but not separable) metric space
under %lu. There is a metrizable topology on D(R+,L(B)), called the Sko-
rokhod topology , for which this space is complete (but again not necessarily
separable; separability holds only if B is finite dimensional; see Ethier
and Kurtz [8, Proposition 3.5.6].). The Skorokhod topology is weaker
than the local uniform topology. (See Ethier and Kurtz [8, Proposi-
tion 3.5.3].)

Let C(R+,L(B)) and C(S,L(B)) denote the spaces of all continuous
functions from R+ and from S into L(B), respectively. If f ∈ C(R+,L(B))
and (fn)n>1 is a sequence in D(R+,L(B)) such that fn → f for the Sko-
rokhod topology, then fn → f locally uniformly. (See Ethier and Kurtz
[8, Lemma 3.10.1].)

A function f : S → L(B) is said to be of finite variation (continuous
finite variation) if for all t ∈ R+

Vf (t) := sup

{
m∑

i=1

‖f(τi−1, τi)‖ : m ∈ N, 0 6 τ0 < τ1 < · · · < τm 6 t

}
<∞

(and Vf ∈ C(R+,R)). A function f : S → L(B) is of (continuous) finite
variation if and only if for all T > 0, there exists a (continuous) function
vT : [0, T ] → R such that ‖f(s, t)‖ 6 vT (t) − vT (s) for all (s, t) ∈ ST . (If
f : S → L(B) is of (continuous) finite variation then the function Vf is
a suitable choice for vT for each T > 0.) Any function f : S → L(B) of
continuous finite variation is necessarily continuous.

A function g : R+ → L(B) is said to be of (continuous) finite variation
if the function (s, t) 7→ g(t)−g(s) from S into L(B) enjoys the correspond-
ing property. It is easy to see that a function g : R+ → L(B) of finite
variation is continuous if and only if it is of continuous finite variation.

Let FV (R+,L(B)) and FV (S,L(B)) denote the spaces of all functions
of finite variation in D(R+,L(B)) and in D(S,L(B)), respectively.

Lemma 2.1. If f ∈ FV (R+,L(B)) then Vf is càdlàg.
If in addition, f ∈ C(R+,L(B)), then Vf is continuous.

Proof. Let t ∈ R+. For each ε > 0, let us choose δ ∈ (0, 1) such
that ‖f(t + h) − f(t)‖ < ε/2 for all 0 < h < δ, and choose t =: t0 < t1 <
· · · < tn := t + 1 such that t1 − t < δ and

Vf (t + 1)− Vf (t)−
n∑

j=1

‖f(tj)− f(tj−1)‖ <
ε

2
.
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Then

Vf (t + 1)− Vf (t) < ε +
n∑

j=2

‖f(tj)− f(tj−1)‖ 6 ε + Vf (t + 1)− Vf (t1),

hence for all 0 < h < t1 − t,

Vf (t + h)− Vf (t) 6 Vf (t1)− Vf (t) < ε

implies right continuity of Vf . Monotonicity of Vf implies existence of left
limits. The second statement can be proved similarly. ¤

3. Lebesgue–Bochner–Stieltjes integral

In what follows we shall apply a generalization of the (bilinear) Lebes-
gue–Bochner–Stieltjes integral for operator-valued functions introduced by
Bogdanowicz (see [2]–[5]).

Let us consider the semiring

A := { ]a, b] : a, b ∈ R+, a 6 b} .

Let g ∈ FV (R+,L(B)). The right continuity of Vg implies that the set
function βg : A → L(B), defined by

βg(]a, b]) := g(b)− g(a), ]a, b] ∈ A

is a σ-additive set function of finite variation. (See Günzler [9, A 1.62].)
A function h : R+ → L(B) is said to be simple (with respect to A) if

it has the form

h =
n∑

k=1

Ak1]ak,bk],

where ]ak, bk] ∈ A, k = 1, . . . , n are pairwise disjoint intervals and A1, . . .

. . . , An ∈ L(B). For a simple function h : R+ → L(B) of the above form,
let ∫

]0,∞[

h dg :=
n∑

k=1

Ak(g(bk)− g(ak)) ∈ L(B).



162 Herbert Heyer and Gyula Pap

Let L1(R+,A, g,L(B)) denote the set of functions f : R+ → L(B) such
that there exists a sequence (hm)m>1 of simple functions with

sup
m>2

4m

∫

]0,∞[

‖hm − hm−1‖ dVg < ∞

and with hm → f λVg -a.s., where λVg denotes the Lebesgue–Stieltjes mea-
sure on (R+,B(R+)) generated by Vg. For f ∈ L1(R+,A, g,L(B)), let

∫

]0,∞[

f dg := lim
m→∞

∫

]0,∞[

hm dg,

where (hm)m>1 is a sequence of simple functions with the above pro-
perties. For a set A ⊂ R+ and for a function f : R+ → L(B) with
f · 1A ∈ L1(R+,A, g,L(B)), we write

∫

A

f dg :=
∫

]0,∞[

f · 1A dg.

Lemma 3.1. Let g ∈ FV (R+,L(B)).
(i) The mapping f 7→ ∫

]0,∞[
f dg from L1(R+,A, g,L(B)) into L(B) is

well-defined, linear, independent of a λVg -a.s. modification of f , and

∥∥∥∥
∫

]0,∞[

f(τ) dg(τ)
∥∥∥∥ 6

∫

]0,∞[

‖f(τ)‖ dVg(τ).

(ii) If f ∈ D(R+,L(B)) then for all 0 6 s < t,
(f−) ·1]s,t] ∈ L1(R+,A, g,L(B)), where f− : R+ → L(B) is defined by
f−(0) := 0 and f−(u) := f(u−) := limv↑u f(v) for u > 0. Moreover,

∥∥∥∥
∫

]s,t]

f(τ−) dg(τ)
∥∥∥∥ 6

∫

]s,t]

‖f(τ−)‖ dVg(τ).

Particularly, for all 0 6 s < t 6 T ,
∥∥∥∥
∫

]s,t]

f(τ−) dg(τ)
∥∥∥∥ 6 ‖f‖T (Vg(t)− Vg(s)).

(iii) If f ∈ FV (R+,L(B)) then for all 0 6 s < t 6 T ,
∥∥∥∥∥
∫

]s,t]

f(τ−) dg(τ)

∥∥∥∥∥ 6 ‖g‖T (2‖f‖T + Vf (t)− Vf (s)).
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(iv) If h : R+ → R+ is an increasing càdlàg function with h(0) = 0 then

∫

]0,t]

h(τ−)m−1 dh(τ) 6 h(t)m

m
for all t > 0, m ∈ N.

Proof. (i). See Günzler [9, A 2.57] or Bogdanowicz [2].
(ii) If f : R+ → L(B) is left continuous then for all T > 0 and for

all ε > 0 there exists a simple function hT,ε : R+ → L(B) such that
supt∈[0,T ] ‖f(t) − hT,ε(t)‖ 6 ε. (See Billingsley [1, Lemma 14.1].) Ob-
viously for all ε1, ε2 > 0 and for all 0 6 s < t 6 T ,

∫

]s,t]

‖hT,ε1 − hT,ε2‖ dVg 6 (ε1 + ε2)Vg(T ),

hence we have

sup
m>2

4m

∫

]s,t]

‖hT,4−m − hT,4−m+1‖ dVg < ∞

and hT,4−m(t) → f(t) for all t ∈ [0, T ]. Consequently,
f · 1]s,t] ∈ L1(R+,A, g,L(B)) for all 0 6 s < t 6 T .

(iii) This follows from (ii) using the subsequent partial integration
formula:

∫

]s,t]

f(τ−) dg(τ) +
∫

[s,t[

g(τ+) df(τ) = f(t−)g(t+)− f(s−)g(s+).

(Here the second integral is defined starting with the semiring Ã := {[a, b[ :
a, b ∈ R+, a 6 b} and the left continuous function f− ∈ FV (R+,L(B)),
hence g ·1[s,t[ ∈ L1(R+, Ã, f−,L(B)), as in (ii).) Denoting Ss,t := {(u, v) ∈
R2 : s 6 u < v 6 t}, we have

∫

[s,t]

∫

[s,t]

1Ss,t(u, v) df(u) dg(v) =
∫

]s,t]

(f(v−)− f(s−)) dg(v)

=
∫

]s,t]

f(v−) dg(v)− f(s−)(g(t+)− g(s+)),

and ∫

[s,t]

∫

[s,t]

1Ss,t(u, v) dg(u) df(v) =
∫

[s,t[

(g(t+)− f(u+)) df(u)
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= g(t+)(f(t−)− f(s−))−
∫

[s,t[

g(u+) df(u).

Hence Fubini’s theorem (see Günzler [9, A 4.64] or Bogdanowicz [5])
implies the above partial integration formula.

(iv) It can be proved by Itô’s formula in Jacod and Shiryayev [15,
I 4.57]. (See Heyer and Pap [12], Lemma 2.1 (iii).) ¤

4. Generation of evolution families

Definition 4.1. A function f : S → L(B) is called multiplicative if
f(s, t)f(t, u) = f(s, u) for all (s, t), (t, u) ∈ S, and f(t, t) = I for all t ∈ R+.

A family {f(s, t) : 0 6 s 6 t} in L(B) is called an evolution family
if the function (s, t) 7→ f(s, t) from S into L(B) is multiplicative and
f ∈ D(S,L(B)).

An evolution family {f(s, t) : 0 6 s 6 t} in L(B) is said to be of (con-
tinuous) finite variation or continuous if the function (s, t) 7→ f(s, t)− I

from S into L(B) enjoys the corresponding property.

Remark 4.2. If a function f : S → L(B) is multiplicative and f − I

is of finite variation then the function f is of finite variation separately in
each variable (see Schmidt [16, Proposition 8 (a)]).

If a function f : S→ L(B) is multiplicative and f − I is of continuous
finite variation then the function f is continuous; especially, {f(s, t) : 0 6
s 6 t} is a continuous evolution family in L(B). (This can be proved as
Lemma 3.1 in Heyer and Pap [11].)

Theorem 4.3. Let g ∈ FV (R+,L(B)).

(i) There exists a unique f ∈ D(R+,L(B)) such that

f(t) = I +
∫

]0,t]

f(τ−) dg(τ) for all t ∈ R+.

In fact,

f(t) = I +
∞∑

k=1

∫
· · ·

∫

0<τk<...<τ16t

dg(τk) . . . dg(τ1) for all t ∈ R+,
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and the series is locally uniformly convergent on R+. Moreover,
f ∈ FV (R+,L(B)),

‖f‖T 6 exp{Vg(T )} for all T > 0, and

Vf (t)− Vf (s) 6 (Vg(t)− Vg(s)) exp{Vg(T )} for all 0 6 s 6 t 6 T.

If in addition, g ∈ C(R+,L(B)), then f ∈ C(R+,L(B)).
(ii) There exists a unique f ∈ D(S,L(B)) such that

f(s, t) = I +
∫

]s,t]

f(s, τ−) dg(τ) for all 0 6 s 6 t.

In fact,

f(s, t) = I +
∞∑

k=1

∫
· · ·

∫

s<τk<···<τ16t

dg(τk) . . . dg(τ1) for all 0 6 s 6 t,

and the series is locally uniformly convergent on S. Moreover, {f(s, t) :
0 6 s 6 t} is an evolution family of finite variation in L(B).
If in addition, g ∈ C(R+,L(B)), then the evolution family {f(s, t) :
0 6 s 6 t} is of continuous finite variation.

Proof. For h ∈ D(R+,L(B)), let

Ah(t) := I +
∫

]0,t]

h(τ−) dg(τ) for all t ∈ R+.

The inequalities in Lemma 3.1 (ii) imply that Ah ∈ D(R+,L(B)).
Applying Lemma 3.1 (ii) and (iv) we obtain

‖Amh1 −Amh2‖T 6 ‖h1 − h2‖T
(Vg(T ))m

m!

for all h1, h2 ∈ D(R+,L(B)) and for all m ∈ N, and we can follow the
line of argument used in the proof of Theorem 3.4 in Heyer and Pap [12]
(based on usual fixed point method). ¤

Definition 4.4. Let {f(s, t) : 0 6 s 6 t} be an evolution family in
L(B). A function g ∈ FV (R+,L(B)) is called an integrating function of
{f(s, t) : 0 6 s 6 t} if g(0) = 0 and

f(s, t) = I +
∫

]s,t]

f(s, τ−) dg(τ) for all 0 6 s 6 t.
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Remark 4.5. If an evolution family {f(s, t) : 0 6 s 6 t} in L(B) has an
integrating function then in view of Theorem 4.3 (ii), {f(s, t) : 0 6 s 6 t}
is necessarily of finite variation.

Theorem 4.6. Let {f(s, t) : 0 6 s 6 t} be an evolution family of

finite variation in L(B). Then it has an integrating function. Moreover,

f is locally bounded, more precisely,

‖f(s, t)‖ 6 1 + Vf−I(T ) for all 0 6 s 6 t 6 T.

If g ∈ FV (R+,L(B)) is an integrating function of f then

‖f(s, t)− I − (g(t)− g(s))‖ 6 (1 + Vf−I(T ))(Vg(t)− Vg(s))2

for all 0 6 s 6 t 6 T.

If in addition, f is continuous, then it has a continuous integrating

function.

If in addition, f is of continuous finite variation, then its integrating

function is uniquely determined (and continuous).

Proof. The existence of an integrating function can be proved ex-
actly as in Theorem 3.10 in Heyer and Pap [12] (using Proposition 8 (a)
(ii) in Schmidt [16] for explicit construction). Local boundedness follows
from

‖f(s, t)‖ 6 ‖f(s, t)− I‖+ ‖I‖ 6 1 + Vf−I(T ).

Using Lemma 3.1 (ii) we obtain for all 0 6 s 6 t 6 T ,

‖f(s, t)− I‖ =

∥∥∥∥∥
∫

]s,t]

f(s, τ−) dg(τ)

∥∥∥∥∥ 6
∫

]s,t]

‖f(s, τ−)‖ dVg(τ)

6 (1 + Vf−I(T ))(Vg(t)− Vg(s)).

Consequently,

‖f(s, t)− I − (g(t)− g(s))‖ =

∥∥∥∥∥
∫

]s,t]

(f(s, τ−)− I) dg(τ)

∥∥∥∥∥

6
∫

]s,t]

‖f(s, τ−)− I‖ dVg(τ) 6 (1 + Vf−I(T ))(Vg(t)− Vg(s))2.
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If f is continuous, then the existence of a continuous integrating function
can be proved exactly as in Theorem 3.10 in Heyer and Pap [12].

If f is of continuous finite variation in L(B) and g1, g2∈FV (R+,L(B))
are integrating functions of f then for all 0 6 s 6 t 6 T ,

‖(g1(t)− g1(s))− (g2(t)− g2(s))‖
6 (1 + Vf−I(T ))

(
(Vg1(t)− Vg1(s))

2 + (Vg2(t)− Vg2(s))
2
)
.

Hence for all n ∈ N,

‖g1(t)− g2(t)‖

=

∥∥∥∥∥
n∑

k=1

((
g1

(
kt

n

)
− g1

(
(k−1)t

n

))
−

(
g2

(
kt

n

)
− g2

(
(k − 1)t

n

)))∥∥∥∥∥

6 (1 + Vf−I(T ))
n∑

k=1

((
Vg1

(
kt

n

)
− Vg1

(
(k − 1)t

n

))2

+
(

Vg2

(
kt

n

)
− Vg2

(
(k − 1)t

n

))2
)

6 (1 + Vf−I(T ))

(
Vg1(T ) max

16k6n

(
Vg1

(
kt

n

)
− Vg1

(
(k − 1)t

n

))

+ Vg2(T ) max
16k6n

(
Vg2

(
kt

n

)
− Vg2

(
(k − 1)t

n

)))
.

Since n ∈ N is arbitrary and, in view of Lemma 2.1, Vg1 and Vg2 are
continuous we obtain g1(t) = g2(t) for all t > 0. ¤

5. Convergence of evolution families

Definition 5.1. A sequence (fn)n>1 in D(R+,L(B)) is called C-rela-
tively compact if it is relatively compact in D(R+,L(B)) and if all limit
points of the sequence (fn)n>1 (with respect to the Skorokhod topology)
are in C(R+,L(B)).
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For f ∈ D(R+,L(B)), T > 0 and δ > 0, let

ωT (f ; δ) := sup{‖f(t)− f(s)‖ : 0 6 s < t 6 T, t− s 6 δ},

ω′T (f ; δ) := inf

{
max
16i6r

sup
ti−1<s<t6ti

‖f(t)− f(s)‖ :

0 = t0 < . . . < tr = T, min
16i6r

(ti − ti−1) > δ

}
.

The following lemma is well known (see Ethier and Kurtz [8, Theo-
rem 3.6.3]).

Lemma 5.2. Let (fn)n>1 be a sequence in D(R+,L(B)). Then the

following statements are equivalent:

(i) (fn)n>1 is relatively compact.

(i) (a) There is a dense subset D of R+ and there are compact sets

Kt ⊂ L(B), t ∈ D, such that {fn(t) : n ∈ N} ⊂ Kt for all t ∈ D,

(b) lim
δ→0

sup
n>1

ω′T (fn; δ) = 0 for all T > 0.

Theorem 5.3. Let (fn)n>1 be a sequence in D(R+,L(B)). Then the

following statements are equivalent:

(i) (fn)n>1 is C-relatively compact.

(ii) (a) There is a dense subset D of R+ and there are compact sets

Kt ⊂ L(B), t ∈ D, such that {fn(t) : n ∈ N} ⊂ Kt for all t ∈ D,

(b) lim
δ→0

lim sup
n→∞

ω′T (fn; δ) = 0 for all T > 0,

(c) lim
n→∞

sup
t∈[0,T ]

‖fn(t)− fn(t−)‖ = 0 for all T > 0.

(iii) (a) There is a dense subset D of R+ and there are compact sets

Kt ⊂ L(B), t ∈ D, such that {fn(t) : n ∈ N} ⊂ Kt for all t ∈ D,

(b) lim
δ→0

lim sup
n→∞

ωT (fn; δ) = 0 for all T > 0.

Proof. (i) =⇒ (ii) In view of Lemma 5.2, relative compactness
of the sequence (fn)n>1 implies (ii) (a) and (b). Moreover, (ii)(c) follows
from Lemma 3.10.1 in Ethier and Kurtz [8].
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(ii) =⇒ (iii) follows from the inequality

ωT (f ; δ) 6 2ω′T (f ; δ) + sup
t∈[0,T ]

‖f(t)− f(t−)‖

valid for all T > 0, f ∈ D(R+,L(B)) and δ > 0.

(iii) =⇒ (i) We have the inequality

ω′T (f ; δ) 6 2ωT (f ; δ)

for all T > 0, f ∈ D(R+,L(B)) and δ > 0. (See Billingsley [1, (14.9)].)
Hence, in view of Lemma 5.2, (iii) (a) and (b) imply relative compactness
of the sequence (fn)n>1. We also have the inequality

Jf (T ) := sup
t∈[0,T ]

‖f(t)− f(t−)‖ 6 ωT (f ; δ)

valid for all T > 0, f ∈ D(R+,L(B)) and δ > 0, thus (iii) (b) implies

lim
n→∞

Jfn(T ) = 0.

If fn′ → f in the Skorokhod topology then Jfn′ → Jf in the Skorokhod
topology (see Proposition 3.5.3 and the beginning of Section 3.10 in Ethier

and Kurtz [8]), hence Jf (T ) = 0 for all continuity point of Jf . Since Jf is
nondecreasing, we conclude Jf (T ) = 0 for all T ∈ R+, hence f(t) = f(t−)
for all t > 0. Consequently, the sequence (fn)n>1 is C-relatively compact.

¤

Theorem 5.4. Let (gn)n>1 be a sequence in FV (R+,L(B)). Suppose

that

(a) there is a dense subset D of R+ such that for all t ∈ D, the sequence

(gn(t))n>1 in L(B) is convergent,

(b) lim
δ→0

lim sup
n→∞

ωT (Vgn ; δ) = 0 for all T > 0.

Then the following assertions are valid:

(i) There is a function g ∈ FV (R+,L(B))
⋂

C(R+,L(B)) such that

gn → g locally uniformly.
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(ii) Let f ∈ FV (R+,L(B)) and fn ∈ FV (R+,L(B)), n ∈ N, such that

f(t) = I +
∫

]0,t]

f(τ−) dg(τ) for all t ∈ R+,

fn(t) = I +
∫

]0,t]

fn(τ−) dgn(τ) for all t ∈ R+.

Then f ∈ C(R+,L(B)) and fn → f locally uniformly. More precisely,

there exist c > 0 and c′ > 0 such that

‖fn − f‖T 6 c‖gn − g‖T exp{c′Vg(T )} for all T > 0, n ∈ N.

(iii) Let h ∈ D(S,L(B)) and hn ∈ D(S,L(B)), n ∈ N, such that

h(s, t) = I +
∫

]s,t]

h(s, τ−) dg(τ) for all 0 6 s 6 t,

hn(s, t) = I +
∫

]s,t]

hn(s, τ−) dgn(τ) for all 0 6 s 6 t.

Then h ∈ C(S,L(B)) and

lim
n→∞

sup
06s6t6T

‖hn(s, t)− h(s, t)‖ = 0 for all T > 0.

More precisely,

‖hn(s, t)− h(s, t)‖ 6 c‖gn − g‖T exp{c′Vg(T )}
for all 0 6 s 6 t 6 T, n ∈ N.

Proof. It is performed in the same way as the proof of Theorem 4.4
in Heyer and Pap [12] (using again fixed point method). We remark that
in [12] gn(0) = 0 was supposed for all n ∈ N, but it is not needed. ¤

Theorem 5.5. Let Γ be a topological space, and let {gγ : γ ∈ Γ} ⊂
FV (R+,L(B)). Suppose that

(a) the mapping γ 7→ gγ from Γ into D(R+,L(B)) is continuous with

respect to the local uniform topology (i.e., for all T > 0, γ ∈ Γ and

δ > 0, there exists a neighborhood W ⊂Γ of γ such that ‖gγ−gγ′‖T <δ

for γ′ ∈ W ),
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(b) the mapping γ 7→ Vgγ from Γ into D(R+,R+) is locally bounded (i.e.,
for all T > 0 and γ ∈ Γ, there exists a neighborhood W ⊂ Γ of γ such
that sup

γ′∈W
Vgγ′ (T ) < ∞).

Then the following assertions are valid:

(i) Let fγ ∈ FV (R+,L(B)), γ ∈ Γ, such that

fγ(t) = I +
∫

]0,t]

fγ(τ−) dgγ(τ) for all t ∈ R+, γ ∈ Γ.

Then for all t > 0, the mapping γ 7→ fγ(t) from Γ into L(B) is
continuous. More precisely, for all T > 0, γ, γ′ ∈ Γ,

‖fγ − fγ′‖T 6 4‖gγ − gγ′‖T exp
{

2Vgγ′ (T )
}

.

(ii) Let hγ ∈ D(S,L(B)), γ ∈ Γ, such that

hγ(s, t) = I +
∫

]s,t]

hγ(s, τ−) dgγ(τ) for all 0 6 s 6 t, γ ∈ Γ.

Then for all 0 6 s 6 t, the mapping γ 7→ hγ(s, t) from Γ into L(B) is
continuous. More precisely, for all T > 0, γ, γ′ ∈ Γ,

sup
06s6t6T

‖hγ(s, t)− hγ′(s, t)‖ 6 4‖gγ − gγ′‖T exp
{

2Vgγ′ (T )
}

.

Proof. For γ ∈ Γ, f ∈ D(R+,L(B)) and t ∈ R+ let

Aγf(t) := I +
∫

]0,t]

f(τ−) dgγ(τ).

Then Aγfγ = fγ for all γ ∈ Γ.
Let T > 0 and γ ∈ Γ. The inequalities in Lemma 3.1 (ii) imply

(as in the proof of Theorem 3.4 in Heyer and Pap [12]) that for all
f, f̃ ∈ D(R+,L(B)) and m ∈ N,

‖Am
γ f −Am

γ f̃‖T 6 ‖f − f̃‖T

(Vgγ (T ))m

m!
.

We can choose k ∈ N such that

(Vgγ (T ))k

k!
6 1

2
.
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We have for all γ′ ∈ Γ,

‖fγ − fγ′‖T 6 ‖fγ −Ak
γfγ′‖T + ‖Ak

γfγ′ − fγ′‖T .

Clearly

‖fγ −Ak
γfγ′‖T = ‖Ak

γfγ −Ak
γfγ′‖T 6 1

2
‖fγ − fγ′‖T ,

hence
‖fγ − fγ′‖T 6 2‖Ak

γfγ′ − fγ′‖T .

Moreover,

‖Ak
γfγ′ − fγ′‖T 6

k−1∑

j=0

‖Aj+1
γ fγ′ −Aj

γfγ′‖T 6 ‖Aγfγ′ − fγ′‖
k−1∑

j=0

(Vgγ (T ))j

j!

6 ‖Aγfγ′ − fγ′‖ exp{Vgγ (T )}.
Using Lemma 3.1 (iii) we obtain for all t ∈ [0, T ],

‖Aγfγ′ − fγ′‖ = ‖Aγfγ′ −Aγ′fγ′‖ =

∥∥∥∥∥
∫

]0,t]

fγ′(τ)d(gγ(τ)− gγ′(τ))

∥∥∥∥∥
6 ‖gγ − gγ′‖T (2‖fγ′‖T + Vfγ′ (T )).

By Theorem 4.3 (i),

‖fγ′‖T 6 exp{Vgγ′ (T )} and Vfγ′ (T ) 6 Vgγ′ (T ) exp{Vgγ′ (T )},
hence

‖Aγfγ′ − fγ′‖T 6 ‖gγ − gγ′‖T (2 + Vgγ′ (T )) exp{Vgγ′ (T )}
6 2‖gγ − gγ′‖T exp{2Vgγ′ (T )}.

Collecting the estimates we conclude that

‖fγ − fγ′‖T 6 4‖gγ − gγ′‖T exp{2Vgγ′ (T )}.

Applying (i) for the functions g
(s)
γ (t) := gγ(s + t), γ ∈ Γ, t ∈ R+,

s ∈ R+, we obtain

sup
t∈[s,T ]

‖hγ(s, t)− hγ′(s, t)‖

6 4 sup
t∈[s,T ]

‖gγ(t)− gγ′(t)‖ exp{2(Vgγ′ (T )− Vgγ′ (s))}
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for all s ∈ R+ and T ∈ [s,∞[, which implies

sup
06s6t6T

‖hγ(s, t)− hγ′(s, t)‖ 6 4‖gγ − gγ′‖T exp{2Vgγ′ (T )},

hence the assertion in (ii) has been proved. ¤

6. Convergence of convolution hemigroups

Let G be a locally compact group. A representation of G is in our con-
text always a continuous homomorphism U from G into the group U(HU )
of unitary operators on a (complex) Hilbert space HU . More precisely
one speaks of a continuous, unitary representation of G with representing
Hilbert space HU . The totality of representations of G will be abbreviated
by Rep(G).

U ∈ Rep(G) is said to be irreducible if there exists no nontrivial
closed U -invariant subspace of HU . By the Gelfand–Raikov theorem the
set Irr(G) of irreducible representations of G separates the points of G.

For a locally compact space E, let Mb(E) denote the Banach space
of (real bounded Radon) measures on E considered as continuous linear
functionals on the space of continuous real-valued functions with com-
pact supports on E. Subsets of Mb(E) of particular interest are the cone
Mb

+(E) of nonnegative measures and the convex set M1(E) of probability
measures on E. The set Mb

+(E) will be equipped with the weak topology
τw (of measures). For every x ∈ E, εx denotes the Dirac measure in x.

Once E is assumed to be a locally compact group G, the space Mb(G)
becomes a Banach algebra with respect to convolution (of measures), and
M1(G) becomes a semigroup with unit element εe (where e denotes the
neutral element of the multiplicatively written group G).

Finally we note that M1(G) is metrizable and separable iff G admits
a countable basis of its topology.

The Fourier transform of a measure µ ∈ Mb(G) is given by

〈µ̂(U)u, v〉 =
∫

G

〈U(x)u, v〉µ(dx)

whenever U ∈ Rep(G), u, v ∈ HU .
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Clearly, for given U ∈ Rep(G), µ̂(U) belongs to the space L(HU ) of
bounded linear operators on HU . In fact, one has

‖µ̂(U)‖ 6 ‖µ‖.

Moreover, the mapping µ 7→ µ̂ from Mb(G) into the set of mappings
Rep(G) → ⋃{L(HU ) : U ∈ Rep(G)} is injective (even on Irr(G) ), linear,
multiplicative, and sequentially bicontinuous in the sense of the following
equivalences expressed for sequences (µn)n>0 of measures in M1(G) :

(i) µn → µ0.

(ii) µ̂n(U)u → µ̂0(U)u for all U ∈ Irr(G), u ∈ HU .

(iii) 〈µ̂n(U)u, v〉 → 〈µ̂0(U)u, v〉 for all U ∈ Irr(G), u, v ∈ HU .

(For the proof see, for example, Siebert [17].)

Definition 6.1. A mapping (s, t) 7→ µ(s, t) from S into M1(G) is said
to be multiplicative if µ(s, r) ∗ µ(r, t) = µ(s, t) for all 0 6 s 6 r 6 t, and
µ(t, t) = εe for all t ∈ R+.

A family {µ(s, t) : 0 6 s 6 t} in M1(G) is called a convolution
hemigroup (briefly hemigroup) in M1(G) if the mapping (s, t) 7→ µ(s, t)
from S into M1(G) is multiplicative and càdlàg.

A convolution hemigroup {µ(s, t) : (s, t) ∈ S} in M1(G) is said to be
continuous if the mapping (s, t) 7→ µ(s, t) from S into M1(G) is continuous.

Let {µ(s, t) : 0 6 s 6 t} be a family in M1(G). Then the following
statements are equivalent:

(i) {µ(s, t) : 0 6 s 6 t} is a convolution hemigroup in M1(G),

(ii) {µ̂(s, t)(U) : 0 6 s 6 t} is an evolution family in L(HU ) for every
U ∈ Irr(G).

Let {µ(s, t) : 0 6 s 6 t} be a convolution hemigroup in M1(G). Then
the continuity of {µ̂(s, t)(U) : 0 6 s 6 t} for every U ∈ Irr(G) implies the
continuity of {µ(s, t) : 0 6 s 6 t}. (We note that the space L(HU ) has
been endowed with the norm topology.)

Definition 6.2. Let Γ ⊂ Rep(G). A mapping (s, t) 7→ µ(s, t) from
S into M1(G) is said to be of (continuous) F-finite variation with respect
to Γ if for all U ∈ Γ, the function (s, t) 7→ µ̂(s, t)(U)−I from S into L(HU )
is of (continuous) finite variation.
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Remark 6.3. If G is a locally compact group and a mapping (s, t) 7→
µ(s, t) from S into M1(G) is multiplicative and of continuous F-finite vari-
ation in M1(G) with respect to Irr(G) then it is continuous; especially,
{µ(s, t) : 0 6 s 6 t} is a continuous convolution hemigroup in M1(G).

Definition 6.4. Let {µ(s, t) : 0 6 s 6 t} be a convolution hemigroup
in M1(G). Let Γ ⊂ Rep(G). A family of mappings ϕU ∈ FV (R+,L(HU )),
U ∈ Γ is called an integrating family related to {µ(s, t) : 0 6 s 6 t} if for
all U ∈ Γ, we have ϕU (0) = 0 and

µ̂(s, t)(U) = I +
∫

]s,t]

µ̂(s, τ−)(U) dϕU (τ) for all (s, t) ∈ S.

If a convolution hemigroup {µ(s, t) : 0 6 s 6 t} in M1(G) has an
integrating family with Γ ⊂ Rep(G) then it is necessarily of F-finite vari-
ation with respect to Γ. Moreover, if {µ(s, t) : 0 6 s 6 t} is a convolution
hemigroup of F-finite variation in M1(G) with respect to Γ ⊂ Rep(G)
then by Theorem 4.6 it has an integrating family with parameter set Γ. If
{µ(s, t) : 0 6 s 6 t} is a convolution hemigroup of continuous F-finite vari-
ation in M1(G) with respect to Γ then the integrating family {ϕU : U ∈ Γ}
of {µ(s, t) : 0 6 s 6 t} is uniquely determined and consists of continuous
functions in view of Theorem 4.6.

Theorem 6.5. Let {µ(s, t) : 0 6 s 6 t} and {µn(s, t) : 0 6 s 6 t},
n > 1, be convolution hemigroups of F-finite variation in M1(G) with

respect to Irr(G). Let {ϕU : U ∈ Irr(G)} and {ϕU
n : U ∈ Irr(G)}, n > 1,

be some related integrating families. Suppose that for all U ∈ Irr(G),

(a) there is a dense subset D of R+ such that lim
n→∞

ϕU
n (t) = ϕU (t) for all

t ∈ D,

(b) lim
δ→0

lim sup
n→∞

ωT (VϕU
n
; δ) = 0 for all T > 0.

Then

µn(s, t) → µ(s, t) for all 0 6 s 6 t,

and {µ(s, t) : 0 6 s 6 t} is a convolution hemigroup of continuous F-finite

variation with respect to Irr(G).

Proof. The statement follows from Theorem 5.4 (iii) applied for the
sequence (ϕU

n )n>1 in FV (R+,L(HU )) for all U ∈ Irr(G). ¤
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Corollary 6.6. Let {µn,` : n, ` ∈ N} be an array in M1(G). For all

n ∈ N let kn : R+ → Z+ be an increasing, right continuous function with

kn(0) = 0 and kn(R+) = Z+.

Let {µ(s, t) : 0 6 s 6 t} be a convolution hemigroup of F-finite

variation in M1(G) with respect to Irr(G). Let {ϕU : U ∈ Irr(G)} be some

related integrating family. Suppose that for all U ∈ Irr(G),

(a) there is a dense subset D of R+ such that lim
n→∞

kn(t)∑
`=1

(µ̂n,`(U) − I) =
ϕU (t) for all t ∈ D,

(b) lim
δ→0

lim sup
n→∞

sup
06s6t6T

t−s6δ

kn(t)∑
`=kn(s)+1

‖µ̂n,`(U)− I‖ = 0 for all T > 0.

Then
kn(t)

*`=kn(s)+1

µn,` → µ(s, t) for all 0 6 s 6 t,

and {µ(s, t) : 0 6 s 6 t} is a convolution hemigroup of continuous F-finite

variation with respect to Irr(G).

Let (Ω,A,P) be a probability space. If {X(t) : t > 0} is a G-valued
càdlàg process with independent left increments then the distributions

µ(s, t) := PX(s)−1X(t) for 0 6 s 6 t

of the left increments X(s)−1X(t) form a convolution hemigroup {µ(s, t) :
0 6 s 6 t} in M1(G). The process {X(t) : t > 0} is stochastically
continuous if and only if the convolution hemigroup {µ(s, t) : 0 6 s 6 t}
is continuous. The process {X(t) : t ∈ R+} is said to be of (continuous)
F-finite variation with respect to Γ ⊂ Irr(G) if the convolution hemigroup
{µ(s, t) : 0 6 s 6 t} enjoys the corresponding property.

Theorem 6.7. Let G be a second countable locally compact group.

Let {µ(s, t) : 0 6 s 6 t} be a convolution hemigroup of F-finite variation in

M1(G) with respect to Irr(G). Let {ϕU : U ∈ Irr(G)} be some related inte-

grating family. Let {Xn(t) : t ∈ R+}, n > 1, be G-valued càdlàg processes

with independent left increments having F-finite variation with respect to

Irr(G). Let {ϕU
n : U ∈ Irr(G)}, n > 1, be some related integrating families.

Suppose that for all U ∈ Irr(G),
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(a) there is a dense subset D of R+ such that lim
n→∞

ϕU
n (t) = ϕU (t) for all

t ∈ D,

(b) lim
δ→0

lim sup
n→∞

ωT (VϕU
n
; δ) = 0 for all T > 0.

Then there exists a stochastically continuous càdlàg process {X(t) : t ∈
R+} with independent left increments having continuous F-finite variation
with respect to Irr(G) such that

Xn
L−→ X

(in the sense of weak convergence of the induced measures on the space
D(R+, G)), and PX(s)−1X(t) = µ(s, t) for all 0 6 s 6 t.

Proof. It can be carried out exactly as the proof of Theorem 5.10
in Heyer and Pap [12]. ¤

For a G-valued random variable X and for U ∈ Rep(G), we can define
the expectation E(U ◦X) ∈ L(HU ) by

〈E(U ◦X)u, v〉 = E
(〈(U ◦X)u, v〉)

whenever u, v ∈ HU , hence in fact, E(U ◦ X) = P̂X(U). Eventually, we
have for all u ∈ HU that

E(U ◦X)u =
∫

Ω

(U ◦X)(ω)uP(dω),

where the integral on the right hand side is a Pettis integral. However,
if G is a second countable locally compact group then

E(U ◦X) =
∫

Ω

(U ◦X)(ω)P(dω),

where the integral on the right hand side is a Bochner integral. Indeed,
the Bochner integral

∫
Ω

Z(ω)P(dω) of a random variable Z : Ω → B with
values in a Banach space B exists if E‖Z‖ < ∞ and Z is almost separable-
valued, i.e., there exists Ω0 ∈ A such that P(Ω0) = 1 and {Z(ω) : ω ∈ Ω0}
is a separable subset of B. A second countable locally compact group G is
necessarily separable (since there exists a metric which induces its topology
and then the second countability implies separability), consequently, for
all U ∈ Rep(G), the set {U(x) : x ∈ G} is separable in L(HU ). Since
‖U(x)‖ = 1 for all x ∈ G, the Bochner integral

∫
Ω
(U ◦X)(ω)P(dω) exists

for all G-valued random variables X and for all U ∈ Rep(G).
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Corollary 6.8. Let {Xn,` : n, ` ∈ N} be an array of rowwise indepen-

dent G-valued random variables. For all n ∈ N, let kn : R+ → Z+ be an

increasing, right continuous function with kn(0) = 0 and kn(R+) = Z+.

Let {µ(s, t) : 0 6 s 6 t} be a convolution hemigroup of F-finite

variation in M1(G) with respect to Irr(G). Let {ϕU : U ∈ Irr(G)} be some

related integrating family. Suppose that for all U ∈ Irr(G),

(a) there is a dense subset D of R+ such that lim
n→∞

kn(t)∑
`=1

(E(U ◦Xn,`)−I) =
ϕU (t) for all t ∈ D,

(b) lim
δ→0

lim sup
n→∞

sup
06s6t6T

t−s6δ

kn(t)∑
`=kn(s)+1

‖E(U ◦Xn,`)− I‖ = 0 for all T > 0.

Then there exists a stochastically continuous càdlàg process {X(t) : t ∈
R+} with independent left increments having continuous F-finite variation

with respect to Irr(G) such that

kn(·)∏

`=1

Xn,`
L−→ X(·),

and PX(s)−1X(t) = µ(s, t) for all 0 6 s 6 t.

If one wishes to consider the convergence of a sequence of hemigroups
in M1(G) without specifying the limiting hemigroup a more sophisticated
approach is necessary. For a cardinal α, let H(α) be an α-dimensional
complex Hilbert space and let Repα(G) denote the set of representations
U ∈ Rep(G) with representing Hilbert space H(α).

Definition 6.9. A locally compact group G is said to have the Lévy
continuity property with respect to a subset Γ ⊂ Rep(G) if there is a
topology in Γ such that if (µn)n>1 is a sequence in M1(G), the mapping
h : Γ → ⋃

U∈Γ

L(HU ) is continuous on Γ
⋂

Repα(G) for each cardinal α and

µ̂n(U) → h(U) for all U ∈ Γ

then there exists a measure µ ∈ M1(G) satisfying µn → µ and µ̂(U) =
h(U) for all U ∈ Γ.



Convergence of evolution operator families . . . 179

Remark 6.10. The Fell topology in Γ (see, e.g., Dixmier [7]) could
be a natural candidate. We note that the Lévy continuity property used
in Heyer [10] and Bougerol [6] is slightly different since it contains
convergence µ̂n(U) → h(U) only in the strong operator topology on L(HU )
(and not in the norm topology as in the Definition 6.9), but only the subset
Γ = Rep(f)(G) of all finite-dimensional representations of G is considered
and continuity of the mapping h : Rep(f)(G) → ⋃

U∈Γ

L(HU ) on the whole

set Rep(f)(G) is supposed. A locally compact group G is called a Moore
group once Irr(G) ⊂ Rep(f)(G). A Moore group has the Lévy continuity
property with respect to the set Rep(f)(G) (see Heyer [10]). Further
classes of locally compact groups having the Lévy continuity property have
been discussed in the work [6] of Bougerol.

Theorem 6.11. Let G be a locally compact group with Lévy conti-

nuity property with respect to a subset Γ ⊂ Rep(G). Let {µn(s, t) : 0 6
s 6 t}, n > 1, be convolution hemigroups of F-finite variation in M1(G)
with respect to Γ. Let {ϕU

n : U ∈ Γ}, n > 1, be some related integrating

families. Suppose that for all U ∈ Γ,

(a) there is a dense subset D of R+ such that the sequence (ϕU
n (t))n>1 in

L(HU ) is convergent for all t ∈ D,

(b) lim
δ→0

lim sup
n→∞

ωT (VϕU
n
; δ) = 0 for all T > 0.

Then there is a family of mappings ϕU∈FV (R+,L(HU ))
⋂

C(R+,L(HU )),
U ∈ Γ, such that ϕU

n → ϕU locally uniformly for all U ∈ Γ.

If in addition, for each cardinal α,

(c) the mapping U 7→ ϕU from Γ
⋂

Repα(G) into C(R+,L(H(α))) is con-

tinuous (i.e., for all T > 0, U ∈ Γ
⋂

Repα(G) and δ > 0, there exists

a neighborhood W ⊂ Γ
⋂

Repα(G) of U such that ‖ϕU − ϕU ′‖T < δ

for all U ′ ∈ W ),

(d) the mapping U 7→ VϕU from Γ
⋂

Repα(G) into C(R+,R+) is locally

bounded (i.e., for all T > 0 and U ∈ Γ
⋂

Repα(G), there exists a

neighborhood W ⊂ Γ
⋂

Repα(G) of U such that sup
U ′∈W

VϕU′ (T ) < ∞),

then there is a convolution hemigroup {µ(s, t) : 0 6 s 6 t} of continuous

F-finite variation with respect to Γ such that

µn(s, t) → µ(s, t) for all 0 6 s 6 t,
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and {ϕU : U ∈ Γ} is an integrating family related to {µ(s, t) : 0 6 s 6 t}.
Proof. Let U ∈ Γ. Assumption (b) implies that for all T > 0, we

have
lim
δ→0

lim sup
n→∞

ωT (ϕU
n ; δ) = 0.

Assumption (a) implies that for all t ∈ D, the set {ϕU
n (t) : n > 1}−

is compact in L(HU ). Applying Theorem 5.3 we conclude that for each
subsequence (n′) of (n) there are a subsequence (n′′) of (n′) and a function
ϕU ∈ C(R+,L(HU )) such that ϕU

n′′ → ϕU locally uniformly. Assumption
(a) implies that the function ϕU is uniquely determined, hence ϕU

n → ϕU

locally uniformly.
Applying Theorem 5.4 (iii) for the sequence (ϕU

n )n>1 in
FV (R+,L(HU )) we obtain

‖µ̂n(s, t)(U)− hU (s, t)‖ → 0 for all 0 6 s 6 t,

where {hU (s, t) : 0 6 s 6 t} is an evolution family of continuous finite
variation in L(HU ) with integrating function ϕU :

hU (s, t) = I +
∫

]s,t]

hU (s, τ−) dϕU (τ) for all 0 6 s 6 t.

Using conditions (i) and (ii), and applying Theorem 5.5 to the family
{ϕU : U ∈ Γ

⋂
Repα(G)} with a cardinal α we obtain that for all 0 6 s 6 t,

the function U 7→ hU (s, t) from Γ
⋂

Repα(G) into L(H(α)) is continuous.
Since the group G has the Lévy continuity property, we arrive at the
assertion. ¤

Corollary 6.12. Let G be a locally compact group with Lévy continu-

ity property with respect to a subset Γ ⊂ Rep(G). Let {µn,` : (n, `) ∈ N2}
be an array in M1(G). For all n ∈ N let kn : R+ → Z+ be an increasing,

right continuous function with kn(0) = 0 and kn(R+) = Z+.

Suppose that for all U ∈ Γ,

(a) there is a dense subset D of R+ such that the sequence(
kn(t)∑
`=1

(µ̂n,`(U)− I)
)

n>1

in L(HU ) is convergent for all t ∈ D,

(b) lim
δ→0

lim sup
n→∞

sup
06s6t6T

t−s6δ

kn(t)∑
`=kn(s)+1

‖µ̂n,`(U)− I‖ = 0 for all T > 0.



Convergence of evolution operator families . . . 181

Then there is a family of mappings ϕU∈FV (R+,L(HU ))
⋂

C(R+,L(HU )),
U ∈ Γ, such that

sup
t∈[0,T ]

∥∥∥∥∥∥

kn(t)∑

`=1

(µ̂n,`(U)− I)− ϕU (t)

∥∥∥∥∥∥
→ 0 for all T > 0, U ∈ Γ.

If in addition, for each cardinal α,

(c) the mapping U 7→ ϕU from Γ
⋂

Repα(G) into C(R+,L(H(α))) is con-

tinuous,

(d) the mapping U 7→ VϕU from Γ
⋂

Repα(G) into C(R+,R+) is locally

bounded,

then
kn(t)

*`=kn(s)+1

µn,` → µ(s, t) for all 0 6 s 6 t,

where {µ(s, t) : 0 6 s 6 t} is a convolution hemigroup of continuous F-

finite variation with respect to Γ, and {ϕU : U ∈ Γ} is an integrating

family related to {µ(s, t) : 0 6 s 6 t}.
Theorem 6.13. Let G be a second countable locally compact group

with Lévy continuity property with respect to a subset Γ ⊂ Rep(G). Let

{Xn(t) : t ∈ R+}, n > 1, be G-valued càdlàg processes with independent

left increments having F-finite variation with respect to Γ. Let {ϕU
n : U ∈

Γ}, n > 1, be some related integrating families. Suppose that for all U ∈ Γ,

(a) there is a dense subset D of R+ such that the sequence (ϕU
n (t))n>1 in

L(HU ) is convergent for all t ∈ D,

(b) lim
δ→0

lim sup
n→∞

ωT (VϕU
n
; δ) = 0 for all T > 0.

Then there is a family of mappings ϕU∈FV (R+,L(HU ))
⋂

C(R+,L(HU )),
U ∈ Γ, such that ϕU

n → ϕU locally uniformly for all U ∈ Γ.

If in addition, for each cardinal α,

(c) the mapping U 7→ ϕU from Γ
⋂

Repα(G) into C(R+,L(H(α))) is con-

tinuous,

(d) the mapping U 7→ VϕU from Γ
⋂

Repα(G) into C(R+,R+) is locally

bounded,
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then there exists a stochastically continuous càdlàg process {X(t) : t ∈
R+} with independent left increments having continuous F-finite variation
with respect to Γ such that

Xn
L−→ X,

and {ϕU : U ∈ Γ} is an integrating family related to {PX(s)−1X(t) : 0 6
s 6 t}.

Corollary 6.14. Let G be a second countable locally compact group
with Lévy continuity property with respect to a subset Γ ⊂ Rep(G). Let
{Xn,` : (n, `) ∈ N2} be an array of rowwise independent G-valued ran-
dom variables. For all n ∈ N let kn : R+ → Z+ be an increasing, right
continuous function with kn(0) = 0 and kn(R+) = Z+.

Suppose that for all U ∈ Γ,

(a) there is a dense subset D of R+ such that the sequence(
kn(t)∑
`=1

(E(U ◦Xn,`)− I)
)

n>1

in L(HU ) is convergent for all t ∈ D,

(b) lim
δ→0

lim sup
n→∞

sup
06s6t6T

t−s6δ

kn(t)∑
`=kn(s)+1

‖E(U ◦Xn,`)− I‖ = 0 for all T > 0.

Then there is a family of mappings ϕU∈FV (R+,L(HU ))
⋂

C(R+,L(HU )),
U ∈ Γ, such that ϕU

n → ϕU locally uniformly for all U ∈ Γ.

If in addition, for each cardinal α,

(c) the mapping U 7→ ϕU from Γ
⋂

Repα(G) into C(R+,L(H(α))) is con-
tinuous,

(d) the mapping U 7→ VϕU from Γ
⋂

Repα(G) into C(R+,R+) is locally
bounded,

then there exists a stochastically continuous càdlàg process {X(t) : t ∈
R+} with independent left increments having continuous F-finite variation
with respect to Γ such that

kn(·)∏

`=1

Xn,`
L−→ X(·),

and {ϕU : U ∈ Γ} is an integrating family related to {PX(s)−1X(t) : 0 6
s 6 t}.

Next we present a convergence theorem for randomly scaled sums
of an array of not rowwise independent G-valued random variables but
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having a property similar to martingale differences. We will use conditional
expectation E(Z | F) of a random variable Z : Ω → B with values in a
Banach space B, where F ⊂ A is a σ-algebra. It is defined for almost
separable-valued random variables Z with E‖Z‖ < ∞ (see [18]). Hence
if G is a second countable locally compact group then the conditional
expectation E(U ◦X | F) is defined for all G-valued random variables X

and for all U ∈ Rep(G).

Theorem 6.15. Let G be a second countable locally compact group

with Lévy continuity property with respect to a subset Γ ⊂ Rep(G). For

all n ∈ N, let Fn,1 ⊂ Fn,2 ⊂ . . . be a filtration of a probability space

(Ω,A,P) endowed with an adapted sequence (Xn,`)`>1 of G-valued random

variables, and let Fn,0 := {∅, Ω}. For all n ∈ N, let {σn(t) : t ∈ R+} be a

family of stopping times with respect to the filtration Fn,1 ⊂ Fn,2 ⊂ . . .

such that σn(0) = 0 and t 7→ σn(t) is increasing and right continuous.

Suppose that for all U ∈ Γ,

(a) there is a dense subset D of R+ such that the sequence




σn(t)∑

`=1

(E(U ◦Xn,` | Fn,`−1)− I)




n>1

of L(HU )-valued random variables converges in probability to a non-

random limit for all t ∈ D,

(b) lim
δ→0

lim sup
n→∞

sup
06s6t6T

t−s6δ

σn(t)∑
`=σn(s)+1

‖E(U ◦Xn,` | Fn,`−1)− I‖ = 0 P-a.s. for

all T > 0.

Then there is a family of mappings gU∈FV (R+,L(HU ))
⋂

C(R+,L(HU )),
U ∈ Γ, such that for all T > 0, U ∈ Γ we have

sup
t∈[0,T ]

∥∥∥∥∥∥

σn(t)∑

`=1

(E(U ◦Xn,` | Fn,`−1)− I)− gU (t)

∥∥∥∥∥∥
→ 0 in probability.

If in addition, for each cardinal α,

(c) the mapping U 7→ gU from Γ
⋂

Repα(G) into C(R+,L(H(α))) is con-

tinuous,
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(d) the mapping U 7→ VgU from Γ
⋂

Repα(G) into C(R+,R+) is locally

bounded,

then there exists a stochastically continuous càdlàg process {X(t) : t ∈
R+} with independent left increments having continuous F-finite variation

with respect to Γ such that

σn(·)∏

`=1

Xn,`
L−→ X(·),

and {gU : U ∈ Γ} is an integrating family related to {PX(s)−1X(t) : 0 6
s 6 t}.

We need some preparations for the proof of Theorem 6.15.

Lemma 6.16. For all n ∈ N, let Fn,1 ⊂ Fn,2 ⊂ . . . be a filtration of a

probability space (Ω,A,P) endowed with an adapted sequence (Zn,`)`>1 of

almost separable-valued random variables in L(B), and let Fn,0 := {∅, Ω}.
For all n ∈ N, let τn be a stopping time with respect to the filtration

Fn,1 ⊂ Fn,2 ⊂ . . . .

Suppose that

(a) there exists C1 ∈ R+ such that for all n ∈ N and 1 6 i1 < i2 < . . . <

im 6 τn(ω): ∥∥∥∥∥∥

m∏

j=1

Zn,ij (ω)

∥∥∥∥∥∥
6 C1 P-a.s.,

(b) max
16`6τn

‖E(Zn,` | Fn,`−1)− I‖ → 0 in probability,

(c) there exists C2 ∈ R+ such that sup
n>1

τn(ω)∑
`=1

‖E(Zn,` | Fn,`−1)(ω)−I‖6 C2

P-a.s.,

(d) there exists z0 ∈ L(B) such that
τn∏

`=1

E(Zn,` | Fn,`−1) → z0 in proba-

bility.

Then

E

(
τn∏

`=1

Zn,`

)
→ z0.
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Proof. For a sequence (Vn)n>0 of L(B)-valued random variables,
Vn → V0 in probability if and only if any subsequence (n′) ⊂ (n) contains
a subsequence (n′′) ⊂ (n′) such that Vn′′ → V0 P-a.s., hence the lemma
will be proved if we show the statement assuming P-a.s. convergence in (b)
and in (d).

Let

Yn,` := Zn,` · 1An,`
+ I · 1{An,`

where

An,` :=
{

ω ∈ Ω : ‖E(Zn,` | Fn,`−1)− I‖ 6 1
2

}
⊂ Fn,`−1.

Clearly Yn,` is Fn,`-measurable,

E(Yn,` | Fn,`−1) = E(Zn,` | Fn,`−1) · 1An,`
+ I · 1{An,`

,

and the inverse E(Yn,` | Fn,`−1)−1 exists. For all n, the sequence

(
m∏

`=1

Yn,`

1∏

`=m

E(Yn,` | Fn,`−1)−1

)

m>1

is a martingale with respect to the filtration Fn,1 ⊂ Fn,2 ⊂ . . . , since

E

(
m∏

`=1

Yn,`

1∏

`=m

E(Yn,` | Fn,`−1)−1 | Fn,m−1

)

=
m−1∏

`=1

Yn,`E(Yn,m | Fn,m−1)
1∏

`=m

E(Yn,` | Fn,`−1)−1

=
m−1∏

`=1

Yn,`

1∏

`=m−1

E(Yn,` | Fn,`−1)−1.

We have also

E(Yn,` | Fn,`−1)−1 = I + (E(Zn,` | Fn,`−1)−1 − I) · 1An,`
,
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hence

1∏

`=τn

E(Yn,` | Fn,`−1)−1 − I

=
τn∑

m=1

∑

16i1,...,im6τn

1∏

`=m

[
(E(Zn,i`

| Fn,i`−1)−1 − I) · 1An,i`

]
,

and using condition (a) we obtain
∥∥∥∥∥

1∏

`=τn

E(Yn,` | Fn,`−1)−1 − I

∥∥∥∥∥

6
∞∑

m=1

1
m!




τn∑

j=1

‖E(Zn,j | Fn,j−1)−1 − I‖ · 1An,j




m

= exp





τn∑

j=1

‖E(Zn,j | Fn,j−1)−1 − I‖ · 1An,j



 .

Moreover,

‖E(Zn,j | Fn,j−1)−1 − I‖ · 1An,j 6 2‖E(Zn,j | Fn,j−1)− I‖,

since for ω ∈ An,j we have

E(Zn,j | Fn,j−1)−1(ω)− I = E(Zn,j | Fn,j−1)−1(ω)

× [I − E(Zn,j | Fn,j−1)(ω)] ,

and

E(Zn,j | Fn,j−1)−1(ω) =
[
I − (I − E(Zn,j | Fn,j−1)−1(ω))

]−1

=
∞∑

k=0

(I − E(Zn,j | Fn,j−1)−1(ω))k

implies

‖E(Zn,j | Fn,j−1)−1(ω)‖ 6
∞∑

k=0

‖I−E(Zn,j | Fn,j−1)−1(ω)‖k 6
∞∑

k=0

1
2k

= 2.
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Consequently by condition (c),

∥∥∥∥∥
1∏

`=τn

E(Yn,` | Fn,`−1)−1 − I

∥∥∥∥∥ 6 exp



2

τn∑

j=1

‖E(Zn,j | Fn,j−1)− I‖




6 e2C2 P-a.s.,

hence ∥∥∥∥∥
1∏

`=τn

E(Yn,` | Fn,`−1)−1

∥∥∥∥∥ 6 1 + e2C2 P-a.s.

Condition (a) implies also

∥∥∥∥∥
τn∏

`=1

Yn,`

∥∥∥∥∥ 6 C1 P-a.s.,

hence using the above martingale, we conclude

E
( τn∏

`=1

Yn,`

1∏

`=τn

E(Yn,` | Fn,`−1)−1

)
= I.

Thus

E

(
τn∏

`=1

Yn,`

)
− z0 =E

(
τn∏

`=1

Yn,`

)
− E

(
τn∏

`=1

Yn,`

1∏

`=τn

E(Yn,` | Fn,`−1)−1z0

)

= E

(
τn∏

`=1

Yn,`

1∏

`=τn

E(Yn,` | Fn,`−1)−1

(
τn∏

`=1

E(Yn,` | Fn,`−1)− z0

))
,

hence
∥∥∥∥∥E

(
τn∏

`=1

Yn,`

)
− z0

∥∥∥∥∥

6 C1(1 + e2C2)E

∥∥∥∥∥
τn∏

`=1

E(Yn,` | Fn,`−1)− z0

∥∥∥∥∥ → 0 P-a.s.,
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since conditions (b) and (d) imply

τn∏

`=1

E(Yn,` | Fn,`−1) → z0 P-a.s.,

and the above arguments leads also to
∥∥∥∥∥

τn∏

`=1

E(Yn,` | Fn,`−1)− z0

∥∥∥∥∥ 6 1 + e2C2 + ‖z0‖ P-a.s.

Finally, condition (b) implies

τn∏

`=1

Yn,` −
τn∏

`=1

Zn,` → 0 P-a.s.,

and we have
∥∥∥∥∥

τn∏

`=1

Yn,` −
τn∏

`=1

Zn,`

∥∥∥∥∥ 6
∥∥∥∥∥

τn∏

`=1

Yn,`

∥∥∥∥∥ +

∥∥∥∥∥
τn∏

`=1

Zn,`

∥∥∥∥∥ 6 2C1 P-a.s.,

thus

E

(
τn∏

`=1

Yn,` −
τn∏

`=1

Zn,`

)
→ 0,

which implies the statement. ¤
Proof of Theorem 6.15. Clearly P-a.s.,

gU
n (t) :=

σn(t)∑

`=1

(E(U ◦Xn,` | Fn,`−1)− I) for t ∈ R+, U ∈ Γ

defines a (random) integrating family related to the (random) evolution
family hU

n (s, t) : 0 6 s 6 t} of finite variation in L(HU ), defined by

hU
n (s, t) :=

σn(t)∏

`=σn(s)+1

E(U ◦Xn,` | Fn,`−1).

Moreover,

VgU
n
(t) =

σn(t)∑

`=1

‖E(U ◦Xn,` | Fn,`−1)− I‖.
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Condition (a) implies that for each subsequence (n′) of (n) there is a
subsequence (n′′) of (n′) such that {gU

n′′(t) : n′′ > 1}− is compact in
L(HU ) for all t ∈ D P-a.s. Applying Theorem 5.3 we conclude that for
each subsequence (n′′′) of (n′′) there are a subsequence (n′′′′) of (n′′′) and
a function gU ∈ C(R+,L(HU )) such that gU

n′′′′ → gU locally uniformly P-
a.s. Assumption (a) implies that the function gU is uniquely determined,
hence gU

n′′ → gU locally uniformly P-a.s.
Applying Theorem 5.4 (iii) for the sequence (gU

n′′)n′′>1 in
FV (R+,L(HU )) we obtain

‖hU
n′′(s, t)− hU (s, t)‖ → 0 for all 0 6 s 6 t P-a.s,

where {hU (s, t) : 0 6 s 6 t} is an evolution family of continuous finite
variation in L(HU ) with integrating function gU :

hU (s, t) = I +
∫

]s,t]

hU (s, τ−) dgU (τ) for all 0 6 s 6 t.

Thus

hU
n (s, t) =

σn(t)∏

`=σn(s)+1

E(U ◦Xn,` | Fn,`−1) → hU (s, t) in probability.

We have for arbitrary 1 6 i1 < . . . < im,
∥∥∥∥∥

m∏

`=1

U ◦Xn,ij

∥∥∥∥∥ 6
m∏

`=1

‖U ◦Xn,ij‖ 6 1,

and

max
16`6σn(T )

‖E(U ◦Xn,` | Fn,`−1)− I‖

6 sup
06s6t6T

t−s6δ

σn(t)∑

`=σn(s)+1

‖E(U ◦Xn,` | Fn,`−1)− I‖

for all n ∈ N and for all δ > 0, hence (b) implies

max
16`6σn(T )

‖E(U ◦Xn,` | Fn,`−1)− I‖ → 0 P-a.s.
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Moreover, for all T > 0, for P-a.e. ω ∈ Ω and for sufficiently large r(ω),
n(ω), we have

σn(v)∑

`=σn(u)+1

‖E(U ◦Xn,` | Fn,`−1)− I‖ 6 1

for all 0 6 u < v 6 T with v − u < 1/r, which implies

σn(T )∑

`=1

‖E(U ◦Xn,` | Fn,`−1)− I‖ 6 r P-a.s.

Consequently, we can apply Lemma 6.16 for Zn` := U ◦ Xn,` and for
τn := σn(T ), n > 1, and we obtain

E


U ◦




σn(t)∏

`=σn(s)+1

Xn,`





 = E




σn(t)∏

`=σn(s)+1

(U ◦Xn,`)


 → hU (s, t)

for all U ∈ Γ. Using conditions (i) and (ii), and applying Theorem 5.5 to
the family {gU : U ∈ Γ

⋂
Repα(G)} with a cardinal α we obtain that for

all 0 6 s 6 t, the function U 7→ hU (s, t) from Γ
⋂

Repα(G) into L(H(α))
is continuous. Since the group G has the Lévy continuity property, we
arrive at the assertion. ¤
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