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A counterexample concerning contractive
projections of real JB�-triples

By LÁSZLÓ L. STACHÓ (Szeged)

Abstract. We describe the complete real polynomial vector fields of a Euclidean
disc and we construct a contractive linear projection of a real JB∗-triple onto a 2-
dimensional subspace with Euclidean norm such that the projected triple product vio-
lates the Jordan identity.

1. Introduction

In 1982 the author established [9] that the image by a contractive lin-
ear projection of the unit ball of a complex Banach space is holomorphically
symmetric whenever the unit ball itself has the same property. As a con-
sequence of this fact, in 1984 Kaup proved [7] by the aid of his Riemann
mapping theorem [6] on bounded symmetric domains that the image of a
complex JB∗-triple by a contractive linear projection is a JB∗-triple with
the projected product and this latter is the unique operation satisfying the
JB∗-triple axioms on the image space. This theorem answered positively a
long standing conjecture stating that contractive linear images of complex
C∗-algebras are JB∗-triples. Also this result gave rise to the possibility
of generalizing the Arens product (defined originally for C∗-algebras) to
biduals of complex JB∗-triples [3].

Recall that by a complex JB∗-triple we mean a Banach space E

equipped with an operation {xyz} (x, y, z ∈ E) of three arguments (called

Mathematics Subject Classification: 17C65, 32M15, 46B20.
Key words and phrases: JB∗-triple, real Jordan triple, complete vector field, contractive
projection.
Supported by OTKA 26532 and the Spanish-Hungarian Scientific and Technological
Cooperation Project TET E-3/97.



224 László L. Stachó

the triple product) which is symmetric complex-bilinear in its outer vari-
ables x, z, conjugate-linear in the inner variable y, satisfies the C∗-axiom
‖{xxx}‖ = ‖x‖3 (x ∈ E), the Jordan identity {ab{xyz}} = {{abx}yz} −
{x{bay}z} + {xy{abz}} (a, b, x, y, z ∈ E), and the spectral axiom stating
that, for any a ∈ E, the linear operator Dax := {aax} is E-Hermitian
with non-negative spectrum (i.e. ‖ exp(ζDa)‖ ≤ 1 whenever Re ζ ≤ 0). In
particular complex C∗-algebras with the triple product {xyz} := 1

2xy∗z +
1
2zy∗x can be regarded as complex JB∗-triples. Given a complex Banach
space E, there can be defined a JB∗-triple product on E if and only if the
unit ball is symmetric holomorphically and this product is uniquely deter-
mined in the latter case. Conversely, given an operation { } : E3 → E

on a Banach space E, there exists at most one equivalent norm | | on E

(the so-called JB∗-norm of { }) which makes (E, | |, { }) a JB∗-triple. (For
details see e.g. [11].)

Recently considerable efforts are paid to develop a theory of real JB∗-
triples [1], [11], [5], [8] defined as real subspaces of complex JB∗-triples
being closed under the underlying triple product. Some positive results
[2], [4] have already appeared concerning the problem of contractive pro-
jections of real JB∗-triples, and several experts raise the conjecture that
the contractive linear image of a real JB∗-triple is a real JB∗-triple with
the projected product. The simple example of Section 2 in 4 real dimen-
sions disproves this expectation: the projected product is no Jordan triple
product on the range of a rank 2 contractive linear projection P of the re-
alification of a 2 complex dimensional Cartan factor (E, ‖ ‖, { }) of Type 1.
In our example the intersection D of the unit ball of E with the range of the
projection P is a (2-dimensional) Euclidean disc. By the real version [10] of
the projection principle, the vector fields of the form P [c−{xcx}] ∂/∂x | D
are all complete in D.∗ However, they do not constitute a Lie-triple with
respect to the Lie triple product

[
X(x) ∂/∂x, Y (x) ∂/∂x, Z(x) ∂/∂x

]
:=[[

X(x) ∂/∂x, Y (x) ∂/∂x
]
, Z(x) ∂/∂x

]
where

(1.1)
[
X(x) ∂/∂x, Y (x) ∂/∂x

]
:= lim

τ↓0
[
X

(
x+τY (x)

)−Y
(
x+τX(x)

)] ∂/∂x

∗In our context, given a function f : E → E, we may identify f(x) ∂/∂x simply with f .

The vector field f(x) ∂/∂x is said to be complete in D if for every x0 ∈ D there is a

differentiable function x : R→ D such that x(0) = x0 and d
dt

x(t) = f(x(t)) (t ∈ R).
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is the usual Lie-commutator of vector fields. Our example based heuristi-
cally upon a complete parameterized list of the complete real polynomial
vector fields on a (2-dimensional real) Euclidean disc, a result of inde-
pendent interest which we descuss in Section 3. Among the underlying
domains of real Cartan triple factors Hilbert balls play a distinguished
role: their gauge functions can be the JB∗-norm for several different real
JB∗-triple factors [8]. This latter fact seems to be one of the main obsta-
cles on the way to a pure real geometric theory of JB∗-triples, and it is
commonly agreed that a deep understanding of the structure of the com-
plete real polynomial vector fieds of Hilbert balls can be crutial in this
direction.

2. Counterexample

Proposition 2.1. On the 2-dimensional complex space C2 let

(2.2) {xyz} :=
1
2
〈x | y〉 z +

1
2
〈z | y〉 y (x, y, z ∈ C2)

be the Jordan triple product of the complex type 1 Cartan factor structure

of C2 with respect to the canonical scalar product 〈x | y〉 := x1y1 + x2y2

and conjugation x := (x1, x2), and let P denote the real-linear projection

Px :=
2∑

k=1

Re 〈x | ek〉 ek

(
x = (x1, x2) ∈ C2

)

onto the real-linear subspace Re1 +Re2 with the unit vectors e1 := (1, 0),
e2 := (i/

√
2, 1/

√
2). Then the projection P is contractive with respect to

the JB∗-triple norm ‖ · ‖ associated with (2.2) but the operation

{xyz} := P{xyz} (x, y, z ∈ Re1 + Re2)

violates the Jordan identity.

Proof. It is well-known [8] that the JB∗-triple norm of the triple
product (2.2) on C2 coincides with the Hilbert norm associated with the
scalar product, i.e.

‖x‖ = 〈x | x〉1/2 =
[ 4∑

k=1

(
Re 〈x | ek〉

)2
]1/2

(x ∈ C2)
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where e3 := (−i/
√

2, 1/
√

2) and e4 := (0, i). Since the system {e1, e2, e3, e4}
is orthonormed with respect to the real scalar product Re 〈x | y〉 on C2,
the operator P is an orthogonal projection with respect to Re 〈x | y〉 and
in particular contractive with respect to the norm ‖ ‖. We have to show
that

(2.3) {ab}{xyz}P }P 6= {{abx}P yz}P − {x{bay}P z}P + {xy{abz}P }P

for some a, b, x, y, z ∈ Re1 + Re2. For

(2.4) a := e2, b := e2, x := e2, y := e1, z := e2

we have inequality. Indeed

{ekekek}P = P 〈ek | ek〉 ek = ek (k = 1, 2),

{e2e2e1}P = {e1e2e2}P =
1
2
P

[〈e2 | e2〉 e1 + 〈e1 | e2〉 e2

]

=
1
2
P

(
e1 − i√

2
e2

)
= P (

3
4
,− i

4
) = P

(
3
4
e1 − 1

4
e4

)
=

3
4
e1,

{e2e1e2}P = P
[〈e2 | e1〉 e2

]
= P

(
i√
2
e2

)
= P

(
−1

2
,
i

2

)

= P

(
−1

2
e1 +

1
2
e4

)
= −1

2
e1,

{e1e2e1}P = P
[〈e1 | e2〉 e1

]
= P

(
− i√

2
e1

)
= P

(
− i√

2
, 0

)

=
1
2
P (e3 − e2) = −1

2
e2,

It follows

{ab{xyz}P }P = {e2e2{e2e1e2}P }P = −1
2
{e2e2e1}P = −3

8
e1,

{{abx}P yz}P = {{e2e2e2}P e1e2}P = {e2e1e2}P = −1
2
e1,

{x{bay}P z}P = {e2{e2e2e1}P e2}P =
3
4
{e2e1e2}P = −3

8
e1,

{xy{abz}P }P = {e2e1{e2e2e2}P }P = {e2e1e2}P = −1
2
e1.



A counterexample concerning contractive projections 227

Therefore the left hand side in (2.3) equals −3/8e1 while the right hand
side takes the value −5/8e1 for the choice (2.4). ¤

Remark 2.5. It turns out from the above proof that D := P{x ∈ C2 :
‖x‖ < 1} = {α1e1 + α2e2 : α1, α2 ∈ R, α2

1 + α2
2 < 1} is a 2-dimensional

Euclidean disc. Therefore there are even two different real Jordan triple
products, namely

{xyz}1 :=
1
2

Re 〈x | y〉 z +
1
2

Re 〈z | y〉x,

{xyz}2 := Re 〈x | y〉 z + Re 〈z | y〉x− Re 〈x | z〉 y

which make ran(P ) with the norm ‖ ‖ a 2-dimensional real JB∗-triple.
That is the vector fields [c−{xcx}1] ∂/∂x (c ∈ ran(P )) resp. [c−{xcx}2]×
∂/∂x (c ∈ ran(P )) are complete in D. Also all the polynomial vector
fields Xc := [c−{xcx}P ] ∂/∂x (c ∈ ran(P )) of degree 2 are complete in D.
However, with the commutator of vector fields (1.1),

{
[Xa, [Xb, Xc]] : a, b, c ∈ ran(P )

} 6⊂ {
Xu : u ∈ ran(P )

}
.

3. Complete real polynomial vector fields
on the disc

Throughout this section let x, y, z denote the coordinate functions

x : (ξ, η) 7→ ξ, y : (ξ, η) 7→ η, z := x + iy

on R2. Recall that by a polynomial P of the type R2 → R of degree ≤ N
we mean a function of the form P =

∑
k+`≤N
k,`≥0

αk,`x
ky` with suitable real

coefficients αk,`. Since x = (z + z)/2 and y = i(z − z)/2, by induction
on N it follows that R2 → R polynomials of degree N can be written in
the complex forms

P =
∑

k+2`≤N
k,`≥0

|z|2`
[
µk,`z

k + µk,` zk
]

=
N∑

m=0

[
pm(|z|2)zm + pm(|z|2)zm

]

with suitable complex coefficients µk,` and some polynomials p0, . . . , pN :
R→ C (where each pm is of degree ≤ (N−m)/2). In particular P vanishes
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at the points of the unit circle T :=
{
(cos t, sin t) : t ∈ R}

if and only if

0 = P (cos t, sin t) =
∑N

m=0

[
pm(1)eimt + pm(1)e−imt

]
(t ∈ R) which is

equivalent to pm(1) = 0 (m = 0, . . . , N). Since for a polynomial p : R→ C
we have p(1) = 0 iff p(ρ) = (1−ρ)q(ρ) for some polynomial q, we conclude
that

(3.1)
{
P ∈ Pol(R2,R2) : p(T) = 0

}
=

{
(1− |z|2)Q : Q ∈ Pol(R2,R2)

}
.

In the sequel we identify R2 with C via the complex coordinate z. Thus
we regard the point (ξ, η) ∈ R2 as the complex number ξ + iη and the
mapping (ρ cos θ, ρ sin θ) 7→ (ρm cosmθ, ρm sin mθ) is identified with the
complex function zm for m = 0, 1, 2, . . . . In terms of this identification
we have the following description of the complete real polynomial vector
fields of the unit disc D := {(ξ, η) ∈ R2 : ξ2 +η2 < 1}(≡ {ζ ∈ C : |ζ| < 1}).

Theorem 3.2. Let P ∈ Pol(R2,R2). Then the vector field P (v) ∂/∂v
is complete in D if and only if P is a finite real linear combination of the
functions

iz, µzm − µzm+2 (µ ∈ C, m = 0, 1, . . . ),

(1− |z|2)Q (Q ∈ Pol(R2,R2) ≡ PolR(C,C)).

Proof. Let P denote the set of all polynomials P ∈ Pol(R2,R2)
such that the vector field P (v) ∂/∂v is complete in D. Since D is a (real-
analytic) submanifold of R2 with the analytic boundary T, for a polynomial
P ∈ Pol(R2,R2) we have P ∈ P if and only if P is tangent to the circle T.
That is,

P = {P ∈ Pol(R2,R2) : P (ξ, η) ⊥ (ξ, η) for ξ, η ∈ R, ξ2 + η2 = 1}(3.3)

= {P ∈ Pol(R2,R2) : Re(P (eiτ )e−iτ ) = 0 (τ ∈ R)}.

Let us write t for the natural coordinate function t : τ 7→ τ of the real
line R. Notice that, according to the identification z : R2 ↔ C, P (eit) is
a complex valued trigonometric polynomial of degree N whenever P is a
real polynomial R2 → R2 of degree N . Define

T := {trigonometric polynomials R→ C} = ⊕∞k=−∞Ceikt,

S := {P (eit) : P ∈ P}
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where ⊕ denotes algebraic direct sum. By (3.3) we have

(3.4) S = {T ∈ T : Re(T · e−it) = 0}.

Thus S is a real-linear subspace of T . Given any T ∈ S, by differentiating
the relation Re(T · eit) = 0 we see that also 0 = Re(T ′ · eit − iT · eit) =
Re[(T ′ − iT )eit]. That is

AS ⊂ S where A(T ) := T ′ − iT (T ∈ T ).

Observe that the complex-linear operator A acts diagonally with imaginary
eigenvalues over the canonical basis of T :

Aeikt = i(k − 1)eikt (k = 0,±1,±2, . . . ).

Since S is an A-invariant real-linear subspace of T and the eigenvalues of
A2 are real, namely A2eikt = −(k − 1)2eikt, it follows

T = ⊕∞m=0Tm where Tm := {T ∈ T : A2T = −m2T}(3.5)

= Cei(1+m)t + Cei(1−m)t,

S = ⊕∞m=0Sm where Sm := S ∩ Tm.

Indeed, the decomposition T = ⊕mTm is trivial; if T ∈ S then we can
write T =

∑N
m=0 Tm with suitable N and Tm ∈ Tm (m = 0, . . . , N) and

here necessarily Tm = `m(A2)T ∈ A2S ⊂ S where `m is the Lagrange
interpolation polynomial of degree N with the property `m(−k2) = δmk

(k = 0, . . . , N). By (3.4) and (3.5),

Sm = {T ∈ Tm : Re(T · e−it) = 0}

=
{ ∑

ε=±1

µεe
i(εm+1)t : Re

∑
ε=±1

µεe
iεmt = 0

}

=
{ ∑

ε=±1

µεe
i(1+εm)t : Re[(µ1 + µ−1)eimt] = 0

}

=
{ ∑

ε=±1

µεe
i(1+εm)t : µ1 + µ−1 = 0

}

= {µei(1−m)t − µei(1+m)t : µ ∈ C}.
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By setting Z0,µ := (µ − µ)z, Zm,µ := µzm−1 − µzm+1 (m > 0, µ ∈ C),
we have µei(1−m)t − µei(1+m)t = Zm,µ(eit). Thus for each real polynomial
P ∈ P there exists some real linear combination of the real polynomials
Zm,µ which coincides with P on the boundary T of D. That is, each
element of P is the sum of some real polynomial vanishing on T with a
real-linear combination of functions of the form Zm,µ. Taking (3.1) into
account, this completes the proof. ¤
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