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A counterexample concerning contractive
projections of real JB*-triples

By LASZLO L. STACHO (Szeged)

Abstract. We describe the complete real polynomial vector fields of a Euclidean
disc and we construct a contractive linear projection of a real JB*-triple onto a 2-
dimensional subspace with Euclidean norm such that the projected triple product vio-
lates the Jordan identity.

1. Introduction

In 1982 the author established [9] that the image by a contractive lin-
ear projection of the unit ball of a complex Banach space is holomorphically
symmetric whenever the unit ball itself has the same property. As a con-
sequence of this fact, in 1984 KAUP proved [7] by the aid of his Riemann
mapping theorem [6] on bounded symmetric domains that the image of a
complex JB*-triple by a contractive linear projection is a JB*-triple with
the projected product and this latter is the unique operation satisfying the
JB*-triple axioms on the image space. This theorem answered positively a
long standing conjecture stating that contractive linear images of complex
C*-algebras are JB*-triples. Also this result gave rise to the possibility
of generalizing the Arens product (defined originally for C*-algebras) to
biduals of complex JB*-triples [3].

Recall that by a complex JB*-triple we mean a Banach space F
equipped with an operation {zyz} (z,y,2 € E) of three arguments (called
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the triple product) which is symmetric complex-bilinear in its outer vari-
ables x, z, conjugate-linear in the inner variable y, satisfies the C*-axiom
[{zzx}|| = ||z|]® (z € E), the Jordan identity {ab{zyz}} = {{abx}yz} —
{z{bay}z} + {xy{abz}} (a,b,z,y,z € E), and the spectral axiom stating
that, for any a € E, the linear operator D,z := {aaz} is E-Hermitian
with non-negative spectrum (i.e. ||exp(¢D,)|| < 1 whenever Re( < 0). In
particular complex C*-algebras with the triple product {zyz} := %:zy*z +
%zy*a: can be regarded as complex JB*-triples. Given a complex Banach
space F/, there can be defined a JB*-triple product on F if and only if the
unit ball is symmetric holomorphically and this product is uniquely deter-
mined in the latter case. Conversely, given an operation { } : B> — E
on a Banach space E, there exists at most one equivalent norm | | on E
(the so-called JB*-norm of { }) which makes (E,| |,{ }) a JB*-triple. (For
details see e.g. [11].)

Recently considerable efforts are paid to develop a theory of real JB*-
triples [1], [11], [5], [8] defined as real subspaces of complex JB*-triples
being closed under the underlying triple product. Some positive results
[2], [4] have already appeared concerning the problem of contractive pro-
jections of real JB*-triples, and several experts raise the conjecture that
the contractive linear image of a real JB*-triple is a real JB*-triple with
the projected product. The simple example of Section 2 in 4 real dimen-
sions disproves this expectation: the projected product is no Jordan triple
product on the range of a rank 2 contractive linear projection P of the re-
alification of a 2 complex dimensional Cartan factor (E, || ||,{ }) of Type 1.
In our example the intersection D of the unit ball of E with the range of the
projection P is a (2-dimensional) Euclidean disc. By the real version [10] of
the projection principle, the vector fields of the form Plc—{zcx}] 8/ Oz | D
are all complete in D.* However, they do not constitute a Lie-triple with
respect to the Lie triple product [X(z) 8/81?,Y(:L’) a/83:,Z(3:) 8/83:] =
[[X(2) a/@:n, Y(x) 8/8;6] , Z(x) 8/81‘] where

(1.1) [X(a:) a/(?a:, Y (x) 5/695} = 1;{18 [X (Jr—I—TY(:U))—Y(:U—i—TX(x))] 8/61‘

*In our context, given a function f : E — E, we may identify f(z) c9/8m simply with f.
The vector field f(z) 8/8.’E is said to be complete in D if for every xo € D there is a
differentiable function = : R — D such that z(0) = z¢ and %m(t) = f(z(t)) (t € R).
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is the usual Lie-commutator of vector fields. Our example based heuristi-
cally upon a complete parameterized list of the complete real polynomial
vector fields on a (2-dimensional real) Euclidean disc, a result of inde-
pendent interest which we descuss in Section 3. Among the underlying
domains of real Cartan triple factors Hilbert balls play a distinguished
role: their gauge functions can be the JB*-norm for several different real
JB*-triple factors [8]. This latter fact seems to be one of the main obsta-
cles on the way to a pure real geometric theory of JB*-triples, and it is
commonly agreed that a deep understanding of the structure of the com-
plete real polynomial vector fieds of Hilbert balls can be crutial in this
direction.

2. Counterexample

Proposition 2.1. On the 2-dimensional complex space C? let

22w =g alniti iy @yzed)

be the Jordan triple product of the complex type 1 Cartan factor structure
of C? with respect to the canonical scalar product (x | y) := 191 + 2272
and conjugation T := (T1,%3), and let P denote the real-linear projection

2

Pz = ZRe (x| ex) ek (z = (21,22) € C?)
k=1

onto the real-linear subspace Re; + Rey with the unit vectors ey := (1,0),
es = (i/v/2,1/+/2). Then the projection P is contractive with respect to
the JB*-triple norm || - || associated with (2.2) but the operation

{zyz} := P{ayz} (x,y,z € Re; + Reg)

violates the Jordan identity.

PrOOF. It is well-known [8] that the JB*-triple norm of the triple
product (2.2) on C? coincides with the Hilbert norm associated with the
scalar product, i.e.

4

1/2
lall = (x| 2)"/2 = [Z(Re (e ek>)2] (xeC?)

k=1
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where e := (—i/v/2,1/v/2) and e4 := (0,4). Since the system {e;, ez, e3,e4}
is orthonormed with respect to the real scalar product Re (z | y) on C?,
the operator P is an orthogonal projection with respect to Re (z | y) and
in particular contractive with respect to the norm || ||. We have to show
that

(2.3) {abH{zyz}ptp # {{abz}pyz}p — {z{bay}pztp + {zy{abz}p}pr
for some a, b, x,y, 2z € Re; + Rey. For
(2.4) a:=ey, b:=ey, T:=ey yY:=e;, 2z:=e
we have inequality. Indeed
{ererer}tp = P e | ex)er = eg (k=1,2),

1
{626261}]3 = {616262}]3 = §P[<62 | 62> €1 =+ <61 | €2> 62]
1 1 3 1 3 1 3
—Zp _ —P(Z _Y=pP | Ze, = = _ 2
2 <el \@62> Wy <4€1 464) o
{626162}]3 = P[<€2 | 61)62] =P Lez =P _1 2
V2 272
1 1 1
=P (26]_ + 264) = *561,

{erese}p = Pl{er | e) en] = P (—\;éel> _p <—\j§,0>

1 1
= QP(SS —e3) = *562,
It follows

1 3

{ab{zyz}p}p = {e2ea{ezerea}plp = —5{626261}13 =—zen
1
{{abz}pyz}p = {{e2e2e2}pereatp = {e2e162}p = —561,
3 3

{z{bay}pzip = {ez{ezezer}peatp = {ezereatp = —cen,

1
{zy{abz}p}p = {eze1{ezezea}p}p = {e2e1e2}p = —5¢1
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Therefore the left hand side in (2.3) equals —3/8e; while the right hand
side takes the value —5/8e; for the choice (2.4). O

Remark 2.5. Tt turns out from the above proof that D := P{z € C?:
|z|| < 1} = {aie1 + azes : a1, as € R, a2 + a3 < 1} is a 2-dimensional
Euclidean disc. Therefore there are even two different real Jordan triple
products, namely

1 1
{zyzh = S Refr | y) 2+ S Re (2| y) 2,

{zyz}2 :=Re(z|y)z+ Re(z [y)xr —Re(z[2)y

which make ran(P) with the norm || || a 2-dimensional real JB*-triple.
That is the vector fields [¢c — {zcx}4] 8/8;10 (c € ran(P)) resp. [c—{zcx}o] X
8/03; (¢ € ran(P)) are complete in D. Also all the polynomial vector

fields X, := [c— {xcz}p] 8/8x (c € ran(P)) of degree 2 are complete in D.
However, with the commutator of vector fields (1.1),

{[Xa,[Xs, Xc]] s a,b,c €ran(P)} ¢ { Xy : u € ran(P)}.

3. Complete real polynomial vector fields
on the disc

Throughout this section let x, y, z denote the coordinate functions

(&) =& Yy (En) e zi=x+tiy

on R2. Recall that by a polynomial P of the type R? — R of degree < N

we mean a function of the form P = > pi<n c«;f,ggl:kyZ with suitable real
k,£>0

coefficients ay,¢. Since x = (2 4+ %)/2 and y = i(Z — 2)/2, by induction

on N it follows that R?> — R polynomials of degree N can be written in

the complex forms

N
P= 3 [ et + i) = Y [Pz + PP

k4+20<N m=0
k,£30
with suitable complex coefficients jx ¢ and some polynomials po,...,pn :

R — C (where each p,, is of degree < (N —m)/2). In particular P vanishes
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at the points of the unit circle T := {(cost,sint) : ¢ € R} if and only if

0 = P(cost,sint) = Zrz:o [pm(l)eimt —l—pm(l)e_"mt} (t € R) which is
equivalent to p,,(1) =0 (m =0,...,N). Since for a polynomial p: R — C
we have p(1) = 0 iff p(p) = (1 —p)q(p) for some polynomial ¢, we conclude
that

(3.1) {P €Pol(R*,R?) : p(T) =0} = {(1 — |2[*)Q : Q € Pol(R* R?)}.

In the sequel we identify R? with C via the complex coordinate z. Thus
we regard the point (£,7) € R? as the complex number ¢ + in and the
mapping (pcosf, psinf) — (p™ cosmb, p™ sinmf) is identified with the
complex function 2z for m = 0,1,2,.... In terms of this identification
we have the following description of the complete real polynomial vector
fields of the unit disc D := {(¢,n) e R? : &2+ < 1}(={¢C € C:|¢| < 1}).

Theorem 3.2. Let P € Pol(R? R?). Then the vector field P(v) 8/81)
is complete in D if and only if P is a finite real linear combination of the
functions

iz, pE™ — 2™t (LeC, m=0,1,...),

1-122)Q (Q € Pol(R?, R?) = Polg(C, C)).

PROOF. Let P denote the set of all polynomials P € Pol(R? R?)

such that the vector field P(v) 8/ Ov is complete in D. Since D is a (real-
analytic) submanifold of R? with the analytic boundary T, for a polynomial
P € Pol(R?,R?) we have P € P if and only if P is tangent to the circle T.
That is,

(3.3) P={PePol(R%R?) :P&n) L (&n) for ,neR, 2 +n2 =1}
= {P € Pol(R*,R?) : Re(P(e)e™ ") = 0 (1 € R)}.

Let us write t for the natural coordinate function ¢ : 7 — 7 of the real
line R. Notice that, according to the identification z : R? « C, P(e®) is
a complex valued trigonometric polynomial of degree N whenever P is a
real polynomial R? — R? of degree N. Define

T := {trigonometric polynomials R — C} = @52 Ce™,

— 00

S:={P("):PcP}
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where @ denotes algebraic direct sum. By (3.3) we have
(3.4) S={T €7 :Re(T-e ") =0}

Thus S is a real-linear subspace of 7. Given any T € S, by differentiating
the relation Re(T - €') = 0 we see that also 0 = Re(T” - et —iT - e't) =
Re[(T" —iT)e']. That is

ASCc S where A(T):=T —iT' (TeT).

Observe that the complex-linear operator A acts diagonally with imaginary
eigenvalues over the canonical basis of 7:

Aeikt :Z(k— l)eikt (k:o,:l:L:l:Q,)

Since S is an A-invariant real-linear subspace of 7 and the eigenvalues of
A? are real, namely AZe*t = —(k — 1)%ei*t ] it follows

(35) T =0%_yT,, where 7, :={T¢cT:AT=-m’T}
— CelFmt 4 gei(t=m)t.
S=&_0Sm where S, :=8NT7,.

Indeed, the decomposition T = ®,,7,, is trivial; if T € S then we can
write T' = Zﬁ:o T,, with suitable N and T}, € 7,,, (m =0,...,N) and
here necessarily T, = /£,,(A%)T € A?S C S where /,, is the Lagrange
interpolation polynomial of degree N with the property £,,(—k?) = dms
(k=0,...,N). By (3.4) and (3.5),

Sm={T €T, :Re(T-e ) =0}

— { Z Maei(em—l-l)t - Re Z Maeiemt — O}

e==+1 e==+1

_ { Z #Eei(lJrsm)t . Re[(ﬂl +H)€imt] _ O}

e==+1

N { Z peeTEM Ly 4+ iy = 0}
e==+1

— {'uei(l—m)t _ ﬁei(l—f—m)t e (C}
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By setting Zo ,, := (1 — 0)2, Zm = pz™ ' —mz™* (m > 0, p € C),
we have pe!! =™t — eiltm)t = 7 (™). Thus for each real polynomial
P € P there exists some real linear combination of the real polynomials
Zm,, which coincides with P on the boundary T of ID. That is, each
element of P is the sum of some real polynomial vanishing on T with a
real-linear combination of functions of the form Z,, ,. Taking (3.1) into
account, this completes the proof. O
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