A counterexample concerning contractive projections of real JB*-triples

By LÁSZLÓ L. STACHÓ (Szeged)

Abstract

We describe the complete real polynomial vector fields of a Euclidean disc and we construct a contractive linear projection of a real JB*-triple onto a 2 dimensional subspace with Euclidean norm such that the projected triple product violates the Jordan identity.

1. Introduction

In 1982 the author established [9] that the image by a contractive linear projection of the unit ball of a complex Banach space is holomorphically symmetric whenever the unit ball itself has the same property. As a consequence of this fact, in 1984 Kaup proved [7] by the aid of his Riemann mapping theorem [6] on bounded symmetric domains that the image of a complex JB*-triple by a contractive linear projection is a JB*-triple with the projected product and this latter is the unique operation satisfying the JB*-triple axioms on the image space. This theorem answered positively a long standing conjecture stating that contractive linear images of complex C^{*}-algebras are JB^{*}-triples. Also this result gave rise to the possibility of generalizing the Arens product (defined originally for C^{*}-algebras) to biduals of complex JB*-triples [3].

Recall that by a complex JB*-triple we mean a Banach space E equipped with an operation $\{x y z\}(x, y, z \in E)$ of three arguments (called

[^0]the triple product) which is symmetric complex-bilinear in its outer variables x, z, conjugate-linear in the inner variable y, satisfies the C^{*}-axiom $\|\{x x x\}\|=\|x\|^{3}(x \in E)$, the Jordan identity $\{a b\{x y z\}\}=\{\{a b x\} y z\}-$ $\{x\{b a y\} z\}+\{x y\{a b z\}\}(a, b, x, y, z \in E)$, and the spectral axiom stating that, for any $a \in E$, the linear operator $D_{a} x:=\{a a x\}$ is E-Hermitian with non-negative spectrum (i.e. $\left\|\exp \left(\zeta D_{a}\right)\right\| \leq 1$ whenever $\operatorname{Re} \zeta \leq 0$). In particular complex C^{*}-algebras with the triple product $\{x y z\}:=\frac{1}{2} x y^{*} z+$ $\frac{1}{2} z y^{*} x$ can be regarded as complex JB*-triples. Given a complex Banach space E, there can be defined a JB^{*}-triple product on E if and only if the unit ball is symmetric holomorphically and this product is uniquely determined in the latter case. Conversely, given an operation $\left\}: E^{3} \rightarrow E\right.$ on a Banach space E, there exists at most one equivalent norm || on E (the so-called JB^{*}-norm of $\}$) which makes $(E,| |,\{ \})$ a JB*-triple. (For details see e.g. [11].)

Recently considerable efforts are paid to develop a theory of real JB*triples [1], [11], [5], [8] defined as real subspaces of complex JB*-triples being closed under the underlying triple product. Some positive results [2], [4] have already appeared concerning the problem of contractive projections of real JB*-triples, and several experts raise the conjecture that the contractive linear image of a real JB^{*}-triple is a real JB^{*}-triple with the projected product. The simple example of Section 2 in 4 real dimensions disproves this expectation: the projected product is no Jordan triple product on the range of a rank 2 contractive linear projection P of the realification of a 2 complex dimensional Cartan factor $(E,\| \|,\{ \})$ of Type 1 . In our example the intersection D of the unit ball of E with the range of the projection P is a (2-dimensional) Euclidean disc. By the real version [10] of the projection principle, the vector fields of the form $P[c-\{x c x\}]^{\partial} / \partial x \mid D$ are all complete in $D .{ }^{*}$ However, they do not constitute a Lie-triple with respect to the Lie triple product $\left[X(x)^{\partial} / \partial x, Y(x)^{\partial} / \partial x, Z(x)^{\partial} / \partial x\right]:=$ $\left[\left[X(x)^{\partial} / \partial x, Y(x)^{\partial} / \partial x\right], Z(x)^{\partial} / \partial x\right]$ where

$$
\begin{equation*}
\left[X(x)^{\partial} / \partial x, Y(x)^{\partial} / \partial x\right]:=\lim _{\tau \downarrow 0}[X(x+\tau Y(x))-Y(x+\tau X(x))]^{\partial} / \partial x \tag{1.1}
\end{equation*}
$$

*In our context, given a function $f: E \rightarrow E$, we may identify $f(x)^{\partial} / \partial x$ simply with f. The vector field $f(x)^{\partial} / \partial x$ is said to be complete in D if for every $x_{0} \in D$ there is a differentiable function $x: \mathbb{R} \rightarrow D$ such that $x(0)=x_{0}$ and $\frac{d}{d t} x(t)=f(x(t))(t \in \mathbb{R})$.
is the usual Lie-commutator of vector fields. Our example based heuristically upon a complete parameterized list of the complete real polynomial vector fields on a (2-dimensional real) Euclidean disc, a result of independent interest which we descuss in Section 3. Among the underlying domains of real Cartan triple factors Hilbert balls play a distinguished role: their gauge functions can be the JB^{*}-norm for several different real JB^{*}-triple factors [8]. This latter fact seems to be one of the main obstacles on the way to a pure real geometric theory of JB*-triples, and it is commonly agreed that a deep understanding of the structure of the complete real polynomial vector fieds of Hilbert balls can be crutial in this direction.

2. Counterexample

Proposition 2.1. On the 2-dimensional complex space \mathbb{C}^{2} let

$$
\begin{equation*}
\{x y z\}:=\frac{1}{2}\langle x \mid y\rangle z+\frac{1}{2}\langle z \mid y\rangle y \quad\left(x, y, z \in \mathbb{C}^{2}\right) \tag{2.2}
\end{equation*}
$$

be the Jordan triple product of the complex type 1 Cartan factor structure of \mathbb{C}^{2} with respect to the canonical scalar product $\langle x \mid y\rangle:=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}$ and conjugation $\bar{x}:=\left(\overline{x_{1}}, \overline{x_{2}}\right)$, and let P denote the real-linear projection

$$
P x:=\sum_{k=1}^{2} \operatorname{Re}\left\langle x \mid e_{k}\right\rangle e_{k} \quad\left(x=\left(x_{1}, x_{2}\right) \in \mathbb{C}^{2}\right)
$$

onto the real-linear subspace $\mathbb{R} e_{1}+\mathbb{R} e_{2}$ with the unit vectors $e_{1}:=(1,0)$, $e_{2}:=(i / \sqrt{2}, 1 / \sqrt{2})$. Then the projection P is contractive with respect to the JB*-triple norm $\|\cdot\|$ associated with (2.2) but the operation

$$
\{x y z\}:=P\{x y z\} \quad\left(x, y, z \in \mathbb{R} e_{1}+\mathbb{R} e_{2}\right)
$$

violates the Jordan identity.
Proof. It is well-known [8] that the JB*-triple norm of the triple product (2.2) on \mathbb{C}^{2} coincides with the Hilbert norm associated with the scalar product, i.e.

$$
\|x\|=\langle x \mid x\rangle^{1 / 2}=\left[\sum_{k=1}^{4}\left(\operatorname{Re}\left\langle x \mid e_{k}\right\rangle\right)^{2}\right]^{1 / 2} \quad\left(x \in \mathbb{C}^{2}\right)
$$

where $e_{3}:=(-i / \sqrt{2}, 1 / \sqrt{2})$ and $e_{4}:=(0, i)$. Since the system $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is orthonormed with respect to the real scalar product $\operatorname{Re}\langle x \mid y\rangle$ on \mathbb{C}^{2}, the operator P is an orthogonal projection with respect to $\operatorname{Re}\langle x \mid y\rangle$ and in particular contractive with respect to the norm $\|\|$. We have to show that

$$
\begin{equation*}
\left.\{a b\}\{x y z\}_{P}\right\}_{P} \neq\left\{\{a b x\}_{P} y z\right\}_{P}-\left\{x\{b a y\}_{P} z\right\}_{P}+\left\{x y\{a b z\}_{P}\right\}_{P} \tag{2.3}
\end{equation*}
$$

for some $a, b, x, y, z \in \mathbb{R} e_{1}+\mathbb{R} e_{2}$. For

$$
\begin{equation*}
a:=e_{2}, \quad b:=e_{2}, \quad x:=e_{2}, \quad y:=e_{1}, \quad z:=e_{2} \tag{2.4}
\end{equation*}
$$

we have inequality. Indeed

$$
\begin{aligned}
\left\{e_{k} e_{k} e_{k}\right\}_{P} & =P\left\langle e_{k} \mid e_{k}\right\rangle e_{k}=e_{k} \quad(k=1,2), \\
\left\{e_{2} e_{2} e_{1}\right\}_{P} & =\left\{e_{1} e_{2} e_{2}\right\}_{P}=\frac{1}{2} P\left[\left\langle e_{2} \mid e_{2}\right\rangle e_{1}+\left\langle e_{1} \mid e_{2}\right\rangle e_{2}\right] \\
& =\frac{1}{2} P\left(e_{1}-\frac{i}{\sqrt{2}} e_{2}\right)=P\left(\frac{3}{4},-\frac{i}{4}\right)=P\left(\frac{3}{4} e_{1}-\frac{1}{4} e_{4}\right)=\frac{3}{4} e_{1}, \\
\left\{e_{2} e_{1} e_{2}\right\}_{P} & =P\left[\left\langle e_{2} \mid e_{1}\right\rangle e_{2}\right]=P\left(\frac{i}{\sqrt{2}} e_{2}\right)=P\left(-\frac{1}{2}, \frac{i}{2}\right) \\
& =P\left(-\frac{1}{2} e_{1}+\frac{1}{2} e_{4}\right)=-\frac{1}{2} e_{1}, \\
\left\{e_{1} e_{2} e_{1}\right\}_{P} & =P\left[\left\langle e_{1} \mid e_{2}\right\rangle e_{1}\right]=P\left(-\frac{i}{\sqrt{2}} e_{1}\right)=P\left(-\frac{i}{\sqrt{2}}, 0\right) \\
& =\frac{1}{2} P\left(e_{3}-e_{2}\right)=-\frac{1}{2} e_{2},
\end{aligned}
$$

It follows

$$
\begin{aligned}
& \left\{a b\{x y z\}_{P}\right\}_{P}=\left\{e_{2} e_{2}\left\{e_{2} e_{1} e_{2}\right\}_{P}\right\}_{P}=-\frac{1}{2}\left\{e_{2} e_{2} e_{1}\right\}_{P}=-\frac{3}{8} e_{1}, \\
& \left\{\{a b x\}_{P} y z\right\}_{P}=\left\{\left\{e_{2} e_{2} e_{2}\right\}_{P} e_{1} e_{2}\right\}_{P}=\left\{e_{2} e_{1} e_{2}\right\}_{P}=-\frac{1}{2} e_{1}, \\
& \left\{x\{b a y\}_{P} z\right\}_{P}=\left\{e_{2}\left\{e_{2} e_{2} e_{1}\right\}_{P} e_{2}\right\}_{P}=\frac{3}{4}\left\{e_{2} e_{1} e_{2}\right\}_{P}=-\frac{3}{8} e_{1}, \\
& \left\{x y\{a b z\}_{P}\right\}_{P}=\left\{e_{2} e_{1}\left\{e_{2} e_{2} e_{2}\right\}_{P}\right\}_{P}=\left\{e_{2} e_{1} e_{2}\right\}_{P}=-\frac{1}{2} e_{1} .
\end{aligned}
$$

Therefore the left hand side in (2.3) equals $-3 / 8 e_{1}$ while the right hand side takes the value $-5 / 8 e_{1}$ for the choice (2.4).

Remark 2.5. It turns out from the above proof that $D:=P\left\{x \in \mathbb{C}^{2}\right.$: $\|x\|<1\}=\left\{\alpha_{1} e_{1}+\alpha_{2} e_{2}: \alpha_{1}, \alpha_{2} \in \mathbb{R}, \alpha_{1}^{2}+\alpha_{2}^{2}<1\right\}$ is a 2 -dimensional Euclidean disc. Therefore there are even two different real Jordan triple products, namely

$$
\begin{aligned}
& \{x y z\}_{1}:=\frac{1}{2} \operatorname{Re}\langle x \mid y\rangle z+\frac{1}{2} \operatorname{Re}\langle z \mid y\rangle x, \\
& \{x y z\}_{2}:=\operatorname{Re}\langle x \mid y\rangle z+\operatorname{Re}\langle z \mid y\rangle x-\operatorname{Re}\langle x \mid \bar{z}\rangle \bar{y}
\end{aligned}
$$

which make $\operatorname{ran}(P)$ with the norm $\|\|$ a 2-dimensional real JB*-triple. That is the vector fields $\left[c-\{x c x\}_{1}\right]^{\partial} / \partial x(c \in \operatorname{ran}(P))$ resp. $\left[c-\{x c x\}_{2}\right] \times$ $\partial_{/ \partial x}(c \in \operatorname{ran}(P))$ are complete in D. Also all the polynomial vector fields $X_{c}:=\left[c-\{x c x\}_{P}\right]^{\partial} / \partial x(c \in \operatorname{ran}(P))$ of degree 2 are complete in D. However, with the commutator of vector fields (1.1),

$$
\left\{\left[X_{a},\left[X_{b}, X_{c}\right]\right]: a, b, c \in \operatorname{ran}(P)\right\} \not \subset\left\{X_{u}: u \in \operatorname{ran}(P)\right\}
$$

3. Complete real polynomial vector fields on the disc

Throughout this section let x, y, z denote the coordinate functions

$$
x:(\xi, \eta) \mapsto \xi, \quad y:(\xi, \eta) \mapsto \eta, \quad z:=x+i y
$$

on \mathbb{R}^{2}. Recall that by a polynomial P of the type $\mathbb{R}^{2} \rightarrow \mathbb{R}$ of degree $\leq N$ we mean a function of the form $P=\sum_{\substack{k+\ell \leq N \\ k, \ell \geq 0}} \alpha_{k, \ell} x^{k} y^{\ell}$ with suitable real coefficients $\alpha_{k, \ell}$. Since $x=(z+\bar{z}) / 2$ and $y=i(\bar{z}-z) / 2$, by induction on N it follows that $\mathbb{R}^{2} \rightarrow \mathbb{R}$ polynomials of degree N can be written in the complex forms

$$
P=\sum_{\substack{k+2 \ell \leq N \\ k, \ell \geq 0}}|z|^{2 \ell}\left[\mu_{k, \ell} z^{k}+\overline{\mu_{k, \ell}} \bar{z}^{k}\right]=\sum_{m=0}^{N}\left[p_{m}\left(|z|^{2}\right) z^{m}+\overline{p_{m}\left(|z|^{2}\right)} \bar{z}^{m}\right]
$$

with suitable complex coefficients $\mu_{k, \ell}$ and some polynomials p_{0}, \ldots, p_{N} : $\mathbb{R} \rightarrow \mathbb{C}\left(\right.$ where each p_{m} is of degree $\left.\leq(N-m) / 2\right)$. In particular P vanishes
at the points of the unit circle $\mathbb{T}:=\{(\cos t, \sin t): t \in \mathbb{R}\}$ if and only if $0=P(\cos t, \sin t)=\sum_{m=0}^{N}\left[p_{m}(1) e^{i m t}+\overline{p_{m}(1)} e^{-i m t}\right](t \in \mathbb{R})$ which is equivalent to $p_{m}(1)=0(m=0, \ldots, N)$. Since for a polynomial $p: \mathbb{R} \rightarrow \mathbb{C}$ we have $p(1)=0$ iff $p(\rho)=(1-\rho) q(\rho)$ for some polynomial q, we conclude that

$$
\begin{equation*}
\left\{P \in \operatorname{Pol}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right): p(\mathbb{T})=0\right\}=\left\{\left(1-|z|^{2}\right) Q: Q \in \operatorname{Pol}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)\right\} \tag{3.1}
\end{equation*}
$$

In the sequel we identify \mathbb{R}^{2} with \mathbb{C} via the complex coordinate z. Thus we regard the point $(\xi, \eta) \in \mathbb{R}^{2}$ as the complex number $\xi+i \eta$ and the mapping $(\rho \cos \theta, \rho \sin \theta) \mapsto\left(\rho^{m} \cos m \theta, \rho^{m} \sin m \theta\right)$ is identified with the complex function z^{m} for $m=0,1,2, \ldots$. In terms of this identification we have the following description of the complete real polynomial vector fields of the unit disc $\mathbb{D}:=\left\{(\xi, \eta) \in \mathbb{R}^{2}: \xi^{2}+\eta^{2}<1\right\}(\equiv\{\zeta \in \mathbb{C}:|\zeta|<1\})$.

Theorem 3.2. Let $P \in \operatorname{Pol}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$. Then the vector field $P(v) \partial^{\partial} \partial v$ is complete in \mathbb{D} if and only if P is a finite real linear combination of the functions

$$
\begin{array}{ll}
i z, \quad \mu \bar{z}^{m}-\bar{\mu} z^{m+2} & (\mu \in \mathbb{C}, m=0,1, \ldots), \\
\left(1-|z|^{2}\right) Q & \left(Q \in \operatorname{Pol}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right) \equiv \operatorname{Pol}_{\mathbb{R}}(\mathbb{C}, \mathbb{C})\right) .
\end{array}
$$

Proof. Let \mathcal{P} denote the set of all polynomials $P \in \operatorname{Pol}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ such that the vector field $P(v) \partial^{\partial} / \partial v$ is complete in \mathbb{D}. Since \mathbb{D} is a (realanalytic) submanifold of \mathbb{R}^{2} with the analytic boundary \mathbb{T}, for a polynomial $P \in \operatorname{Pol}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ we have $P \in \mathcal{P}$ if and only if P is tangent to the circle \mathbb{T}. That is,

$$
\begin{align*}
\mathcal{P} & =\left\{P \in \operatorname{Pol}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right): P(\xi, \eta) \perp(\xi, \eta) \text { for } \xi, \eta \in \mathbb{R}, \xi^{2}+\eta^{2}=1\right\} \tag{3.3}\\
& =\left\{P \in \operatorname{Pol}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right): \operatorname{Re}\left(P\left(e^{i \tau}\right) e^{-i \tau}\right)=0(\tau \in \mathbb{R})\right\} .
\end{align*}
$$

Let us write t for the natural coordinate function $t: \tau \mapsto \tau$ of the real line \mathbb{R}. Notice that, according to the identification $z: \mathbb{R}^{2} \leftrightarrow \mathbb{C}, P\left(e^{i t}\right)$ is a complex valued trigonometric polynomial of degree N whenever P is a real polynomial $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of degree N. Define

$$
\begin{aligned}
\mathcal{T} & :=\{\text { trigonometric polynomials } \mathbb{R} \rightarrow \mathbb{C}\}=\oplus_{k=-\infty}^{\infty} \mathbb{C} e^{i k t}, \\
\mathcal{S} & :=\left\{P\left(e^{i t}\right): P \in \mathcal{P}\right\}
\end{aligned}
$$

where \oplus denotes algebraic direct sum. By (3.3) we have

$$
\begin{equation*}
\mathcal{S}=\left\{T \in \mathcal{T}: \operatorname{Re}\left(T \cdot e^{-i t}\right)=0\right\} . \tag{3.4}
\end{equation*}
$$

Thus \mathcal{S} is a real-linear subspace of \mathcal{T}. Given any $T \in \mathcal{S}$, by differentiating the relation $\operatorname{Re}\left(T \cdot e^{i t}\right)=0$ we see that also $0=\operatorname{Re}\left(T^{\prime} \cdot e^{i t}-i T \cdot e^{i t}\right)=$ $\operatorname{Re}\left[\left(T^{\prime}-i T\right) e^{i t}\right]$. That is

$$
A \mathcal{S} \subset \mathcal{S} \quad \text { where } \quad A(T):=T^{\prime}-i T \quad(T \in \mathcal{T})
$$

Observe that the complex-linear operator A acts diagonally with imaginary eigenvalues over the canonical basis of \mathcal{T} :

$$
A e^{i k t}=i(k-1) e^{i k t} \quad(k=0, \pm 1, \pm 2, \ldots)
$$

Since \mathcal{S} is an A-invariant real-linear subspace of \mathcal{T} and the eigenvalues of A^{2} are real, namely $A^{2} e^{i k t}=-(k-1)^{2} e^{i k t}$, it follows

$$
\begin{align*}
\mathcal{T} & =\oplus_{m=0}^{\infty} \mathcal{T}_{m} \quad \text { where } \quad \mathcal{T}_{m} & :=\left\{T \in \mathcal{T}: A^{2} T=-m^{2} T\right\} \tag{3.5}\\
& & =\mathbb{C} e^{i(1+m) t}+\mathbb{C} e^{i(1-m) t} \\
\mathcal{S}=\oplus_{m=0}^{\infty} \mathcal{S}_{m} & \text { where } \quad \mathcal{S}_{m} & :=\mathcal{S} \cap \mathcal{T}_{m} .
\end{align*}
$$

Indeed, the decomposition $\mathcal{T}=\oplus_{m} \mathcal{T}_{m}$ is trivial; if $T \in \mathcal{S}$ then we can write $T=\sum_{m=0}^{N} T_{m}$ with suitable N and $T_{m} \in \mathcal{T}_{m}(m=0, \ldots, N)$ and here necessarily $T_{m}=\ell_{m}\left(A^{2}\right) T \in A^{2} \mathcal{S} \subset \mathcal{S}$ where ℓ_{m} is the Lagrange interpolation polynomial of degree N with the property $\ell_{m}\left(-k^{2}\right)=\delta_{m k}$ $(k=0, \ldots, N)$. By (3.4) and (3.5),

$$
\begin{aligned}
\mathcal{S}_{m} & =\left\{T \in \mathcal{T}_{m}: \operatorname{Re}\left(T \cdot e^{-i t}\right)=0\right\} \\
& =\left\{\sum_{\varepsilon= \pm 1} \mu_{\varepsilon} e^{i(\varepsilon m+1) t}: \operatorname{Re} \sum_{\varepsilon= \pm 1} \mu_{\varepsilon} e^{i \varepsilon m t}=0\right\} \\
& =\left\{\sum_{\varepsilon= \pm 1} \mu_{\varepsilon} e^{i(1+\varepsilon m) t}: \operatorname{Re}\left[\left(\mu_{1}+\overline{\mu_{-1}}\right) e^{i m t}\right]=0\right\} \\
& =\left\{\sum_{\varepsilon= \pm 1} \mu_{\varepsilon} e^{i(1+\varepsilon m) t}: \mu_{1}+\overline{\mu_{-1}}=0\right\} \\
& =\left\{\mu e^{i(1-m) t}-\bar{\mu} e^{i(1+m) t}: \mu \in \mathbb{C}\right\} .
\end{aligned}
$$

By setting $Z_{0, \mu}:=(\mu-\bar{\mu}) z, Z_{m, \mu}:=\mu \bar{z}^{m-1}-\bar{\mu} z^{m+1}(m>0, \mu \in \mathbb{C})$, we have $\mu e^{i(1-m) t}-\bar{\mu} e^{i(1+m) t}=Z_{m, \mu}\left(e^{i t}\right)$. Thus for each real polynomial $P \in \mathcal{P}$ there exists some real linear combination of the real polynomials $Z_{m, \mu}$ which coincides with P on the boundary \mathbb{T} of \mathbb{D}. That is, each element of \mathcal{P} is the sum of some real polynomial vanishing on \mathbb{T} with a real-linear combination of functions of the form $Z_{m, \mu}$. Taking (3.1) into account, this completes the proof.

References

[1] T. Dang and B. Russo, Real Banach-Jordan triples, Proc. Amer. Math. Soc 122 (1994), 135-145.
[2] L. J. Bunce and C.-H. Chu, Real contractive projections on commutative C*-algebras, Math. Z. 226 (1997), 85-101.
[3] S. Dineen, Complete holomorphic vector fields on the second dual of a Banach space, Math. Scandinavica 59 (1986), 131-142.
[4] Y. Friedman and B. Russo, Contractive projections on $C(K)$, Trans. Amer. Math. Soc. 273 (1982), 57-93.
[5] J.-M. Isidro, W. Kaup and A. Rodriguez, On real forms of JB*-triples, Manuscripta Math. 86 (1995), 311-335.
[6] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983), 503-529.
[7] W. Kaup, Contractive projections on Jordan C^{*}-algebras and generalizations, Math. Scandinavica 54 (1984), 95-100.
[8] W. Kaup, On real Cartan factors, Manuscripta Math. 92 (1-2) (1997), 191-222.
[9] L. L. Stachó, A projection principle concerning biholomorphic automorphisms, Acta Sci. Math. 44 (1982), 99-124.
[10] L. L. Stachó, On nonlinear projections of vector fields, Josai Mathematical Monographs JMM1 (1999), 47-55.
[11] H. Upmeier, Symmetric Banach manifolds a JC*-algebras, Mathematics Studies 104, North Holland, 1985.

STACHÓ LÁSZLÓ

JATE BOLYAI INSTITUTE
ARADI VÉrtanúk tere 1
6720 SZEGED
HUNGARY
E-mail: stacho@math.u-szeged.hu
(Received November 4, 1999; revised February 17, 2000)

[^0]: Mathematics Subject Classification: 17C65, 32M15, 46B20.
 Key words and phrases: JB*-triple, real Jordan triple, complete vector field, contractive projection.
 Supported by OTKA 26532 and the Spanish-Hungarian Scientific and Technological Cooperation Project TET E-3/97.

